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A B S T R A C T

In this study, we present a novel conservative Allen–Cahn (CAC) equation and its maximum principle
preserving and unconditionally stable numerical method. There have been many research works of the
numerical methods for the CAC equation. To conserve the total mass, many mathematical models for the CAC
equation introduced Lagrange multipliers which are added to the original Allen–Cahn equation. Therefore,
some of the methods do not preserve the maximum principle, i.e., it is possible to have values greater than
the maximum and smaller than the minimum values of the admissible solutions. In this study, we propose a
novel CAC equation with a new Lagrange multiplier which is a power exponent to the concentration so that
the maximum principle strictly holds. Furthermore, we describe the proposed numerical algorithm in detail
and present several computational experiments to validate the superior performance of the proposed scheme.
1. Introduction

In this study, we present a maximum principle preserving and
unconditionally stable numerical scheme for the following conservative
Allen–Cahn (CAC) equation:
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= −

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡) + 𝛼[𝜙𝛽(𝑡)(𝐱, 𝑡) − 𝜙(𝐱, 𝑡)], (1)

𝐱 ∈ 𝛺, 𝑡 > 0,
𝐧 ⋅ ∇𝜙(𝐱, 𝑡) = 0, 𝐱 ∈ 𝜕𝛺, (2)

where 𝛼 is parameter and 𝛽(𝑡) > 0 is a time-dependent Lagrange multi-
plier which makes the solution satisfy the mass conservative constraint.
Here, 𝛺 ⊂ 𝐑2 or 𝐑3, 𝐱 is the space variable, 𝑡 is the time variable, and
𝐧 is the normal vector on 𝜕𝛺. The phase field function 𝜙(𝐱, 𝑡) is the
concentration of one component of the binary mixture at space 𝐱 and
time 𝑡; and satisfies a maximum principle, 0 ≤ 𝜙(𝐱, 𝑡) ≤ 1. Furthermore,
𝐹 (𝜙) = 0.25𝜙2(𝜙 − 1)2 is a double-well potential (see Fig. 1) and 𝜖 is a
small interfacial parameter. When we consider excluding the 𝛼 term, it
becomes the Allen–Cahn (AC) equation:
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= −

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡). (3)

The AC equation is the 𝐿2-gradient flow of the Ginzburg–Landau free
energy functional:

 = ∫𝛺

(

𝐹 (𝜙)
𝜖2

+ 1
2
|∇𝜙|2

)

𝑑𝐱. (4)
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When Eq. (4) is differentiated with respect to time 𝑡, its tempo-
ral derivative is not positive, therefore, the total energy decreases
with time. The AC equation is an equation derived from a study on
phase separation of Fe-Al alloys [1], and various studies have been
done such as time-dependent AC equation on surfaces with radial
basis functions [2], discrete maximum principle and energy stability
scheme [3], high order structure preserving algorithm with a nonlo-
cal constraint [4], maximum principle preserving scheme with local
discontinuous Galerkin methods [5], high order compact structure
preserving difference scheme [6], and explicit stable method using
alternating direction explicit method for the diffusion term [7].

Recently, the CAC equation has been used in many applications
such as two-phase fluid flows [8–10], multiphase fluid flows [11–13],
solving PDE on surfaces [14,15], diblock copolymers [16]. To con-
serve a mass, the authors [17] introduced a time dependent Lagrange
multiplier 𝛽(𝑡)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡) + 𝛽(𝑡), (5)

where 𝛽(𝑡) is given as 𝛽(𝑡) = ∫𝛺 𝐹 ′(𝜙(𝐱, 𝑡))d𝐱∕(𝜖2 ∫𝛺 d𝐱) to keep the mass
conservation and this formulation has been widely used [18–21]. The
authors in [22] presented the following CAC equation:

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
+ 𝛥𝜙(𝐱, 𝑡) + 𝛽(𝑡)

√

2𝐹 (𝜙(𝐱, 𝑡)), (6)
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Fig. 1. Double-well potential free energy function, 𝐹 (𝜙) = 𝜙2(𝜙 − 1)2∕4 which has the
global minimum value at 𝜙 = 0 and 𝜙 = 1.

where 𝛽(𝑡) = ∫𝛺 𝐹 ′(𝜙(𝐱, 𝑡))d𝐱∕[𝜖2 ∫𝛺
√

2𝐹 (𝜙(𝐱, 𝑡))d𝐱] and 𝐹 (𝜙) = 0.25𝜙2

(𝜙 − 1)2. This type of the CAC Eq. (6) has been widely used in various
researches [23–26]. Recently, the CAC equation with a curvature-
dependent Lagrange multiplier was developed in [27]. The above-
mentioned AC and CAC equations are included in category of the phase
field model. More phase field models are the Cahn–Hilliard equation,
phase field crystal equation, etc., and various related studies have been
conducted [28–35].

In this study, we use the following definition of the maximum
principle: If 0 ≤ 𝜙(𝐱, 0) ≤ 1, then 0 ≤ 𝜙(𝐱, 𝑡) ≤ 1 is satisfied for
all time 𝑡, where 𝜙(𝐱, 𝑡) is the solution of the CAC equation. Strictly
speaking, our proposed method is a maximum bound principle pre-
serving method [36]. That is, the phase-field value can be larger than
the maximum of the given initial values; however, its values are in
the bounded range. Unlike the previous CAC Eqs. (5) and (6), the
proposed CAC equation allows a numerical scheme which preserves the
maximum principle.

However, most of the previous mathematical models and numerical
methods do not satisfy strict discrete maximum principle mainly due to
the way of mass correction step. Mass corrections are done by addition
or subtraction to the phase-field function. Therefore, it may violate
the discrete maximum principle, i.e., the phase-field function can have
values less than zero or greater than one, which is non-physical value.

There have some research works to resolve the violation problem
of the maximum principle. In [8], the authors developed a consis-
tent and conservative boundedness mapping algorithm. In [37], the
authors presented improved stabilized integrating factor Runge–Kutta
(RK) methods for the CAC equations. The presented methods pre-
serve the maximum principle unconditionally and conserve the mass
to machine accuracy.

To overcome this drawback, in this study we propose a new simple
mass correction step which takes a positive power to the phase-field
function whose range is from zero to one.

The contents of this paper is as follows. In Section 2, the proposed
computational method is described. In Section 3, the numerical results
are presented. In Section 4, we conclude.

2. Description of the numerical scheme

Now, we present the description of the maximum principle preserv-
ing and unconditionally stable numerical scheme for the proposed CAC
equation. Using the operator splitting technique [38–40]. Recently,
there are also theoretical studies on the stability and convergence of
the operator splitting method for the AC equation [41,42]. We split
Eq. (2) as follows:
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= 𝛥𝜙(𝐱, 𝑡), (7)

𝜕𝜙(𝐱, 𝑡)
= −

𝐹 ′(𝜙(𝐱, 𝑡))
, (8)
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𝜕𝑡 𝜖2 𝜙
𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛼[𝜙𝛽(𝑡)(𝐱, 𝑡) − 𝜙(𝐱, 𝑡)]. (9)

We consider a two-dimensional domain, 𝛺 = (𝐿𝑥, 𝑅𝑥) × (𝐿𝑦, 𝑅𝑦).
The three-dimensional (3D) numerical method is defined similarly and
is a straightforward extension of the two-dimensional case. Therefore,
we omit the details of the 3D extension for simplicity of exposition.
However, we will present the 3D computational experiments for com-
pleteness. Let us discretize 𝛺 as 𝛺𝑑 = {(𝑥𝑖, 𝑦𝑗 )| 𝑥𝑖 = 𝐿𝑥 + (𝑖 − 0.5)ℎ, 𝑖 =
1,… , 𝑁𝑥, 𝑦𝑗 = 𝐿𝑦 + (𝑗 − 0.5)ℎ, 𝑗 = 1,… , 𝑁𝑦}, where ℎ = (𝑅𝑥 − 𝐿𝑥)∕𝑁𝑥
with integers 𝑁𝑥 and 𝑁𝑦. We denote 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑛𝛥𝑡) by 𝜙𝑛

𝑖𝑗 , where 𝛥𝑡
is the time step. Note that, because Eq. (7) is a partial differential
equation (PDE), we use the zero Neumann boundary condition to solve
it. However, because Eqs. (8) and (9) are of the ordinary differential
equation type, no spatial boundary conditions are needed.

In this study, we use the following definition of the discrete maxi-
mum principle: If 0 ≤ 𝜙0

𝑖𝑗 ≤ 1, then 0 ≤ 𝜙𝑛
𝑖𝑗 ≤ 1 is satisfied for all time

tep 𝑛, where 𝜙𝑛
𝑖𝑗 is the numerical solution of the discrete CAC equation.

or given 𝜙𝑛
𝑖𝑗 for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦, we apply the operator

splitting method and first solve the diffusion term, Eq. (7).

𝜙𝑛+1,1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝛥𝑑𝜙

𝑛+1,1
𝑖𝑗 . (10)

We use the finite difference method (FDM) for the 𝑥-directional
term:

𝜙𝑛+1,1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝛥𝑥

𝑑𝜙
𝑛+1,1
𝑖𝑗 =

𝜙𝑛+1,1
𝑖+1,𝑗 − 2𝜙𝑛+1,1

𝑖𝑗 + 𝜙𝑛+1,1
𝑖−1,𝑗

ℎ2
, (11)

which is solved by using the Thomas algorithm for the tri-diagonal
system [43] with the zero Neumann boundary condition, i.e., 𝜙𝑛+1,1

0𝑗 =
𝜙𝑛+1,1
1𝑗 and 𝜙𝑛+1,1

𝑁𝑥+1,𝑗
= 𝜙𝑛+1,1

𝑁𝑥𝑗
for 𝑗 = 1,… , 𝑁𝑦. The zero Neumann

boundary condition means 90◦ contact angle condition [44]. Similarly,
we use the FDM for the 𝑦-directional term:

𝜙𝑛+1,2
𝑖𝑗 − 𝜙𝑛+1,1

𝑖𝑗

𝛥𝑡
= 𝛥𝑦

𝑑𝜙
𝑛+1,2
𝑖𝑗 =

𝜙𝑛+1,2
𝑖,𝑗+1 − 2𝜙𝑛+1,2

𝑖𝑗 + 𝜙𝑛+1,2
𝑖,𝑗−1

ℎ2
(12)

with 𝜙𝑛+1,2
𝑖0 = 𝜙𝑛+1,2

𝑖1 and 𝜙𝑛+1,2
𝑖,𝑁𝑦+1

= 𝜙𝑛+1,2
𝑖𝑁𝑦

for 𝑖 = 1,… , 𝑁𝑥.
Second, we analytically solve Eq. (8) using separation of vari-

ables [25]:

𝜙𝑛+1,3
𝑖𝑗 = 0.5 −

1 − 2𝜙𝑛+1,2
𝑖𝑗

2
√

(

1 − 2𝜙𝑛+1,2
𝑖𝑗

)2
+ 4𝜙𝑛+1,2

𝑖𝑗

(

1 − 𝜙𝑛+1,2
𝑖𝑗

)

𝑒−
𝛥𝑡
2𝜖2

. (13)

Finally, we numerically solve Eq. (9) using an explicit Euler method:

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛+1,3

𝑖𝑗

𝛥𝑡
= 𝛼[(𝜙𝑛+1,3

𝑖𝑗 )𝛽
𝑛
− 𝜙𝑛+1,3

𝑖𝑗 ], (14)

where 𝛽𝑛 is chosen to satisfy the conservation of the total mass, i.e.,
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙𝑛+1
𝑖𝑗 =

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙0
𝑖𝑗 . (15)

To find 𝛽𝑛, we let 𝛼 = 1∕𝛥𝑡, then Eq. (14) becomes

𝜙𝑛+1
𝑖𝑗 = (𝜙𝑛+1,3

𝑖𝑗 )𝛽
𝑛
. (16)

From Eq. (15) and (16), we have
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
(𝜙𝑛+1,3

𝑖𝑗 )𝛽
𝑛
=

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙0
𝑖𝑗 . (17)

As schematically illustrated in Fig. 2, if 𝛽𝑛 < 1, then ∑𝑁𝑥
𝑖=1

∑𝑁𝑦
𝑗=1

(𝜙𝑛+1,3
𝑖𝑗 )𝛽𝑛 in Eq. (17) becomes larger than ∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1 𝜙
𝑛+1,3
𝑖𝑗 . If 𝛽𝑛 > 1,

hen ∑𝑁𝑥
𝑖=1

∑𝑁𝑦
𝑗=1(𝜙

𝑛+1,3
𝑖𝑗 )𝛽𝑛 in Eq. (17) becomes smaller than ∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1
𝑛+1,3 𝑛

𝑖𝑗 . Therefore, we can find an appropriate 𝛽 value which satisfies
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Fig. 2. Schematic illustration of 𝜙𝛽(𝑡) against 𝜙. In practice, the value of 𝛽(𝑡) is very
close to 1.

Fig. 3. Schematic illustration of the Secant method for finding the root 𝛽𝑛 of 𝑓 (𝛽),
i.e., 𝑓 (𝛽𝑛) = 0.

Eq. (16). Because Eq. (17) is a highly nonlinear equation, we solve it
using the Secant method [45]. Let

𝑓 (𝛽) =
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙0
𝑖𝑗 −

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
(𝜙𝑛+1,3

𝑖𝑗 )𝛽 . (18)

We start generating the sequence of approximations using the Se-
cant method by setting 𝛽𝑛0 < 1 < 𝛽𝑛1 . In this study, we set 𝛽𝑛0 = 0.98 and
𝛽𝑛1 = 1.02. Then, the Secant method is as follows:

𝛽𝑛𝑘+1 = 𝛽𝑛𝑘 −
𝑓 (𝛽𝑛𝑘)(𝛽

𝑛
𝑘 − 𝛽𝑛𝑘−1)

𝑓 (𝛽𝑛𝑘) − 𝑓 (𝛽𝑛𝑘−1)
, for 𝑘 = 1,… (19)

As schematically illustrated in Fig. 3, starting with the two given
alues 𝛽𝑛0 and 𝛽𝑛1 , the value 𝛽𝑛2 is the intercept of the horizontal axis
nd line joining (𝛽𝑛0 , 𝑓 (𝛽

𝑛
0 )) and (𝛽𝑛1 , 𝑓 (𝛽

𝑛
1 )). The value 𝛽𝑛3 is the intercept

f the horizontal axis and line joining (𝛽𝑛1 , 𝑓 (𝛽
𝑛
1 )) and (𝛽𝑛2 , 𝑓 (𝛽

𝑛
2 )), and so

on. We can observe that the sequence {𝛽𝑛𝑖 }
∞
𝑖=0 converges to the root 𝛽𝑛

f 𝑓 (𝛽), i.e., 𝑓 (𝛽𝑛) = 0.
We use a stopping condition in the Secant method based on the

onsecutive difference, |𝑓 (𝛽𝑛𝑘) − 𝑓 (𝛽𝑛𝑘−1)| < 𝑡𝑜𝑙, where 𝑡𝑜𝑙 is a given
olerance. If that stopping condition is satisfied, then we let 𝛽𝑛 = 𝛽𝑛𝑘 .
inally, we obtain the updated numerical solution 𝜙𝑛+1

𝑖𝑗 from Eq. (16)
sing 𝛽𝑛.

We also numerically solve Eqs. (5) and (6) using operator splitting
ethod: In both equations, the diffusion term is solved first by the

mplicit Euler method, and then the reaction term is calculated directly
sing the closed-form solution as in the previous research [25].

𝜙𝑛+1,1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝛥𝑑𝜙

𝑛+1,1
𝑖𝑗 , (20)

𝜙𝑛+1,2
𝑖𝑗 = 0.5 −

1 − 2𝜙𝑛+1,1
𝑖𝑗

2
√

(

1 − 2𝜙𝑛+1,1
)2

+ 4𝜙𝑛+1,1
(

1 − 𝜙𝑛+1,1
)

𝑒−
𝛥𝑡
2𝜖2

. (21)
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𝑖𝑗 𝑖𝑗 𝑖𝑗
Fig. 4. Double-well free energy density function, 𝐹 (𝜙) = 0.25(𝜙2 − 1)2 which has the
lobal minimum value at 𝜙 = −1 and 𝜙 = 1.

fter that, we solve the mass conservation term for Eq. (5) as Eq. (22)

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛+1,2

𝑖𝑗

𝛥𝑡
= 𝛽𝑛+1,2, (22)

where 𝛽𝑛+1,2 = 1
𝛥𝑡
∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1(𝜙
0
𝑖𝑗 − 𝜙𝑛+1,2

𝑖𝑗 ), and for Eq. (6) as Eq. (23)

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛+1,2

𝑖𝑗

𝛥𝑡
= 𝛽𝑛+1,2

√

2𝐹 (𝜙𝑛+1,2
𝑖𝑗 ), (23)

here 𝛽𝑛+1,2 = 1
𝛥𝑡
∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1(𝜙
0
𝑖𝑗 − 𝜙𝑛+1,2

𝑖𝑗 )∕
∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1

√

2𝐹 (𝜙𝑛+1,2
𝑖𝑗 ).

Theorem 1. The proposed numerical method (10)–(14) for the CAC model
(2) satisfies the discrete maximum principle.

Proof. We note that 0 ≤ 𝜙𝑛+1
𝑖𝑗 ≤ 1 is always satisfied if 0 ≤ 𝜙𝑛+1,3

𝑖𝑗 ≤ 1
for any 𝛽𝑛 ≥ 0 by the definition Eq. (16). This fact is the key element
in the following proof.

Let us assume 0 ≤ 𝜙𝑛
𝑖𝑗 ≤ 1 and we want to show 0 ≤ 𝜙𝑛+1

𝑖𝑗 ≤ 1, which
implies the proposed method satisfies the discrete maximum principle.
In the first step, it is well known that the fully implicit Euler schemes
(Eqs. (11) and (12)) satisfy the discrete maximum principle, therefore,
0 ≤ 𝜙𝑛+1,1

𝑖𝑗 ≤ 1 and 0 ≤ 𝜙𝑛+1,2
𝑖𝑗 ≤ 1 hold. In the second step, 𝜙𝑛+1,3

𝑖𝑗
in Eq. (13) is bounded by 0 and 1 for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦,
i.e., 0 ≤ 𝜙𝑛+1,3

𝑖𝑗 ≤ 1. In the third step, because of the non-negativity of 𝛽𝑛

and 0 ≤ 𝜙𝑛+1,3
𝑖𝑗 ≤ 1, therefore, 0 ≤ 𝜙𝑛+1

𝑖𝑗 ≤ 1 is satisfied. Hence, the proof
of the discrete maximum principle of the proposed method is complete.
In addition, this result holds for arbitrary time step sizes. Therefore, the
proposed numerical method is unconditionally stable. □

We note that there is another popular quartic polynomial free
energy function, 𝐹 (𝜙) = 0.25(𝜙2 − 1)2, which is frequently used in
literature. It has minimum at 𝜙 = −1 and 𝜙 = 1. If this free energy
potential is used, then the governing CAC equation becomes
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= −

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡)

+ 𝛼

[

(

𝜙(𝐱, 𝑡) + 1
2

)𝛽(𝑡)
−
(

𝜙(𝐱, 𝑡) + 1
2

)

]

. (24)

We briefly present the maximum principle preserving and uncondi-
ionally stable numerical method for the proposed CAC equation with
nother quartic polynomial free energy function, 𝐹 (𝜙) = (𝜙2 − 1)2∕4,
ee Fig. 4.

Using the operator splitting technique, we split Eq. (24) as follows:
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= 𝛥𝜙(𝐱, 𝑡), (25)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
, (26)

𝜕𝜙(𝐱, 𝑡)
= 𝛼

[

(

𝜙(𝐱, 𝑡) + 1
)𝛽(𝑡)

−
(

𝜙(𝐱, 𝑡) + 1
)

]

. (27)

𝜕𝑡 2 2
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Fig. 5. Schematic illustration of (0.5𝜙(𝐱, 𝑡) + 0.5)𝛽(𝑡) against 𝜙. In practice, the value of
(𝑡) is very close to 1.

For given 𝜙𝑛
𝑖𝑗 for 𝑖 = 1,… , 𝑁𝑥 and 𝑗 = 1,… , 𝑁𝑦, we apply the

operator splitting method for the space derivatives in Eq. (25). We use
FDM for the 𝑥- and 𝑦-directional terms:

𝜙𝑛+1,1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗

𝛥𝑡
= 𝛥𝑥

𝑑𝜙
𝑛+1,1
𝑖𝑗 and

𝜙𝑛+1,2
𝑖𝑗 − 𝜙𝑛+1,1

𝑖𝑗

𝛥𝑡
= 𝛥𝑦

𝑑𝜙
𝑛+1,2
𝑖𝑗 , (28)

here we use the homogeneous Neumann boundary condition. Second,
e analytically solve Eq. (26) using separation of variables [39]:

𝑛+1,3
𝑖𝑗 =

𝜙𝑛+1,2
𝑖𝑗

√

(

𝜙𝑛+1,2
𝑖𝑗

)2
+
(

1 −
(

𝜙𝑛+1,2
𝑖𝑗

)2
)

𝑒−
2𝛥𝑡
𝜖2

. (29)

Finally, we solve Eq. (27) using an explicit Euler-type method:

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛+1,3

𝑖𝑗

𝛥𝑡
= 𝛼

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

𝛽𝑛

−
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

, (30)

here 𝛽𝑛 is chosen to satisfy the conservation of the total mass, i.e.,
𝑁𝑥

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙𝑛+1
𝑖𝑗 =

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
𝜙0
𝑖𝑗 . (31)

o find 𝛽𝑛, we rewrite Eq. (30) as

(𝜙𝑛+1
𝑖𝑗 + 1)∕2 − (𝜙𝑛+1,3

𝑖𝑗 + 1)∕2

𝛥𝑡∕2
= 𝛼

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

𝛽𝑛

−
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(32)

and let 𝛼 = 2∕𝛥𝑡, then Eq. (32) becomes

𝜙𝑛+1
𝑖𝑗 + 1

2
=
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

𝛽𝑛

. (33)

From Eqs. (31) and (33), we have

𝑁𝑥

𝑖=1

𝑁𝑦
∑

𝑗=1

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

𝛽𝑛

=
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

𝜙0
𝑖𝑗 + 1

2
. (34)

We solve Eq. (34) using the Secant method and Fig. 5 shows
schematic illustration of (0.5𝜙(𝐱, 𝑡) + 0.5)𝛽(𝑡) against 𝜙.

Finally, we obtain the updated numerical solution 𝜙𝑛+1
𝑖𝑗 from

Eq. (33) with 𝛽𝑛, i.e.,

𝜙𝑛+1
𝑖𝑗 = 2

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 + 1

2

⎞

⎟

⎟

⎠

𝛽𝑛

− 1. (35)

Furthermore, we consider the case of the CAC equation with loga-
ithmic Flory–Huggins potential energy function (36),

(𝜙) = 𝜃
2
[(1 + 𝜙) ln(1 + 𝜙) + (1 − 𝜙) ln(1 − 𝜙)] −

𝜃𝑐
2
𝜙2, (36)

where 𝜃 and 𝜃𝑐 are two positive constants satisfying 𝜃 ≤ 𝜃𝑐 [46]. If this
logarithmic potential energy is used, then the governing CAC equation
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𝛺

becomes
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= −

𝐹 ′(𝜙(𝐱, 𝑡))
𝜖2

+ 𝛥𝜙(𝐱, 𝑡)

+ 𝛼

[

(

𝜙(𝐱, 𝑡) − 𝜙𝛼
𝜙𝛽 − 𝜙𝛼

)𝛾(𝑡)
−
(

𝜙(𝐱, 𝑡) − 𝜙𝛼
𝜙𝛽 − 𝜙𝛼

)

]

, (37)

where 𝜙𝛼 and 𝜙𝛽 are the two critical values of 𝐹 (𝜙) defined in
q. (36) [47]. Using the operator splitting technique, we split Eq. (37)
s
𝜕𝜙(𝐱, 𝑡)

𝜕𝑡
= 𝛥𝜙(𝐱, 𝑡), (38)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= −
𝐹 ′(𝜙(𝐱, 𝑡))

𝜖2
, (39)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

= 𝛼

[

(

𝜙(𝐱, 𝑡) − 𝜙𝛼
𝜙𝛽 − 𝜙𝛼

)𝛾(𝑡)
−
(

𝜙(𝐱, 𝑡) − 𝜙𝛼
𝜙𝛽 − 𝜙𝛼

)

]

. (40)

Eq. (38) can be solved similarly to the previous method (28) and
(39) can be solved using the interpolation method [47]. Then, we solve
Eq. (40) using the explicit Euler-type method:

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛+1,3

𝑖𝑗

𝛥𝑡
= 𝛼

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

𝛾𝑛

−
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

, (41)

where 𝛾𝑛 is chosen to satisfy the conservation of the total mass
∑𝑁𝑥

𝑖=1
∑𝑁𝑦

𝑗=1 𝜙
𝑛+1
𝑖𝑗 =

∑𝑁𝑥
𝑖=1

∑𝑁𝑦
𝑗=1 𝜙

0
𝑖𝑗 . To find 𝛾𝑛, we rewrite Eq. (41):

(𝜙𝑛+1
𝑖𝑗 − 𝜙𝛼)∕(𝜙𝛽 − 𝜙𝛼) − (𝜙𝑛+1,3

𝑖𝑗 − 𝜙𝛼)∕(𝜙𝛽 − 𝜙𝛼)

𝛥𝑡∕(𝜙𝛽 − 𝜙𝛼)

= 𝛼

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

𝛾𝑛

−
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

, (42)

and let 𝛼 = (𝜙𝛽 − 𝜙𝛼)∕𝛥𝑡, then Eq. (42) becomes

𝜙𝑛+1
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼
=
⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

𝛾𝑛

. (43)

Then, we have

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

𝛾𝑛

=
𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1

𝜙0
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼
. (44)

We solve Eq. (44) using the Secant method. Finally, we obtain the
updated numerical solution 𝜙𝑛+1

𝑖𝑗 from Eq. (43) with 𝛾𝑛,

𝜙𝑛+1
𝑖𝑗 = (𝜙𝛽 − 𝜙𝛼)

⎛

⎜

⎜

⎝

𝜙𝑛+1,3
𝑖𝑗 − 𝜙𝛼

𝜙𝛽 − 𝜙𝛼

⎞

⎟

⎟

⎠

𝛾𝑛

+ 𝜙𝛼 . (45)

3. Numerical results

In this section, we simulate the comparison of results with previous
models in two and three dimensions, the evolution of the circles,
and numerical experiments to verify that the maximal principle and
unconditional stability are satisfied. We shall use the thickness of
transition layer 𝜖9.5 ≈ 0.0089 if not otherwise specified, which is defined
as 𝜖𝑚 = ℎ𝑚∕[4

√

2 tanh−1(0.9)] [48] and the time step 𝛥𝑡 = 1.0e-5. We
ill denote the previous model1 (Eq. (5)) as PM1, the previous model2

Eq. (6)) as PM2, and our proposed model (Eq. (2)) as PM3.

.1. Comparison of three models

We perform the following numerical simulations to check the dif-
erences between PM1, PM2, and PM3. We use computational domain

= [0, 1]2 and mesh grid 1282. We define the initial conditions (1)
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Fig. 6. (a): Two different sizes square shape initial conditions. (b)–(d): The numerical results at steady state of PM1, PM2, and PM3, respectively.
Fig. 7. Change of interface over time of PM1 when it has a small object as an initia
conditionl.

when 40 ≤ 𝑖, 𝑗 ≤ 88, the value of 𝜙𝑖𝑗 is 1, (2) when 56 ≤ 𝑖, 𝑗 ≤ 72, the
value of 𝜙𝑖𝑗 is 1, and otherwise the value of 𝜙𝑖𝑗 is 0 (see Fig. 6(a)).

Figs. 6(b), (c), and (d) show the steady state simulation results
of PM1, PM2, and PM3 with two different sizes square shape initial
conditions, respectively. We define steady state as a discrete 𝑙2 norm
(difference of 𝜙𝑛 and 𝜙𝑛+1) becomes less than 𝑡𝑜𝑙 = 1.0e-6 which is a
given tolerance. As shown in the top row numerical results of Fig. 6,
when the initial shape is large enough, all three models work well. On
the other hand, we obtain the results that the objects stay as shown
in the bottom row of Fig. 6(c) and (d), which are results of PM2 and
PM3, respectively. That is, when the object is small, in the case of PM1,
the object disappears (see the bottom row of Fig. 6(b)). The reason
why the small objects disappear is that in the case of PM1, a constant
value is equally corrected over the entire area to conserve the mass,
while PM2 and PM3 perform correction only around the interface,
therefore, the phenomenon appears differently. Fig. 7 shows the change
of the interface of PM1 over time when it has a small object as initial
condition.

Fig. 8(a) and 9(a) show the maximum and minimum values of each
model according to iteration for the different size of the initial object.
It should be noted that the value of 𝜙 is 0.009 for PM1, however, the
values are 0.0 for PM2 and PM3. In addition, it can be seen that the
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PM1 does not satisfy the maximum principle. The reason is that the
PM1 corrects the mass in the entire computational domain, but the PM2
and the PM3 are correct the mass only around the interface in Fig. 8(b)
and Fig. 9(b).

From the results of Figs. 8 and 9, it can be seen that our proposed
model PM3 satisfies the maximal principle and maintains its shape
better than the PM1, especially when the initial object is small. There
is a difference from the PM2 in the results of Figs. 8(b) and 9(b).
This shows that the results of our proposed method are more accurate
through the test of the radius, which changes with time when there are
two initial circle shapes in the next Section 3.2.

Next, in Fig. 10, we show the numerical results of the two previous
models and our proposed model when cubes of different sizes are used
as initial shapes. The initial conditions are (1) when 40 ≤ 𝑖, 𝑗, 𝑘 ≤ 88,
the value of 𝜙𝑖𝑗𝑘 is 1, (2) when 52 ≤ 𝑖, 𝑗, 𝑘 ≤ 76, the value of 𝜙𝑖𝑗𝑘 is
1, and otherwise the value of 𝜙𝑖𝑗𝑘 is 0, as shown in Fig. 10(a) for the
isosurface 𝜙 = 0.5 on 𝛺 = [0, 1]3 with ℎ = 1∕128. We use 𝛥𝑡 = 1.0e-5.
Figs. 10(b), (c), and (d) show the results at steady state of PM1, PM2,
and PM3, respectively. It can be seen that the 3D results are similar to
the two-dimensional results.

In Fig. 11, we compare the cross-sections of the 3D numerical results
of each model seen in Fig. 10. As with the 2D simulation results, it can
be seen that the PM1 does not satisfy the maximum principle when
the initial shape is large (Fig. 11(a)). Also, the PM1 could not maintain
its shape compared with the PM2 and PM3 for a small initial shape
(Fig. 11(b)).

As shown in Fig. 11, it can be seen that the PM2 satisfies the
maximum principle but preserves the shape more than the PM3 when
evolution proceeds to a steady state regardless of the initial shape size.
In the next Section 3.2, we check the analytic radii of two circles over
time to demonstrate our proposed method is more accurate.

3.2. Evolution of circles

The authors [49] computed the respective evolution laws for the
interfaces explicitly in the radial case. When 𝑚 circles(spheres) with
radii 𝑟𝑖 for 𝑖 = 1, 2,… , 𝑚 and 𝑟𝑗 < 𝑟𝑗+1 for 𝑗 = 1, 2,… , 𝑚 − 1 in 𝑛-
dimensional space, the change in radii with time can be computed by
the following equation

d𝑟𝑖 = (𝑛 − 1)

(
∑𝑚

𝑘=1 𝑟
𝑛−2
𝑘

∑𝑚 𝑛−1
− 1

)

, 𝑖 = 1, 2,… , 𝑚. (46)

d𝑡

𝑘=1 𝑟𝑘 𝑟𝑖
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Fig. 8. (a) Maximum and minimum values of each model according to iterations and (b) interface comparison of numerical results of each model at initial and final time with
large initial shapes.

Fig. 9. (a) Maximum and minimum values of each model according to iterations and (b) interface comparison of numerical results of each model at initial and final time with
small initial shapes.

Fig. 10. (a): Initial cube shapes with different sizes. (b)–(d): The numerical results at steady state of PM1, PM2, and PM3, respectively.
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Fig. 11. Interface comparison of numerical results of each model at initial and final time with (a) large, and (b) small initial shapes.
Fig. 12. The bottom result shows that the change of the radii (𝑟 and 𝑅) over time for PM1, PM2, PM3, and analytic solution. We present the analytic solution as the solid lines.
We take initial condition as two circle shapes with radii 𝑟 and 𝑅 (here,
𝑟 < 𝑅) in two-dimensional space and measure the change in radii over
time. From Eq. (46),
d𝑟
d𝑡

= 2
𝑟 + 𝑅

− 1
𝑟
, d𝑅

d𝑡
= 2

𝑟 + 𝑅
− 1

𝑅
. (47)

Using Eq. (47), we can obtain 𝑡𝑓 which is the time when the small circle
disappears [22]:

𝑡𝑓 = −0.5𝑟0𝑅0 + 0.25
(

𝑟20 + 𝑅2
0
)

ln

(

1 +
2𝑟0𝑅0

(

𝑅0 − 𝑟0
)2

)

, (48)

where 𝑟0 and 𝑅0 are the initial radii of circles. We set the 𝑟0 = 0.1,
𝑅0 = 0.15, 𝛥𝑡 = 1.1264𝑒−4, 𝛺 = [0.1]2 with 128 × 128 mesh grid. Then,
from Eq. (48), we obtain the 𝑡𝑓 = 0.0133. We numerically solve Eq. (46)
using the 4th order RK method [45] to get the reference solution of
radii (𝑟 and 𝑅).

Fig. 12 shows that PM3’s results predict well the radii 𝑟 and 𝑅
along the analytic solution line. The results of PM1 do not match the
analytic solution. It is because the Lagrangian multiplier acts on the
entire interface. Therefore, most of the mass diffuses into the bulk
phase. The results of the PM2 show that the shape of a small circle
is more preserved compared to the analytic solution line.
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3.3. Satisfying maximum principle and unconditional stability

In this section, we perform a numerical experiment to show that our
proposed scheme has practically unconditional stability. We use ran-
dom initial condition which has perturbation around 0.5 in Fig. 13(a):

𝜙(𝑥, 𝑦, 0) = 0.5 + 0.02rand(𝑥, 𝑦), (49)

here, rand(𝑥, 𝑦) is a random number in [−1, 1]. To show unconditional
stability, we use different 𝛥𝑡 as 0.01ℎ2, ℎ2, 10ℎ2, and 100ℎ2 on 𝛺 = [0, 1]2

with uniform mesh 1282.
Figs. 13(b), (c), and (d) demonstrate that the proposed method is un-

conditionally stable. To get an accurate numerical approximation, the
value of 𝛥𝑡 is usually used less than 0.1ℎ2. Otherwise, the numerical re-
sults can lead to large discretization errors. Therefore, we can use over
1,000 times larger time step than 𝛥𝑡 = 0.01ℎ2, which indicates that our
proposed method is unconditionally stable. In addition, the diffusion
and reaction terms in the proposed algorithm was theoretically proved
unconditionally stable in [43]. The term for mass conservation is also
unconditionally stable by construction of the procedure, therefore, the
entire step is unconditionally stable. Furthermore, it can be confirmed



Engineering Analysis with Boundary Elements 150 (2023) 111–119Y. Choi and J. Kim
Fig. 13. (a)–(d) Evolution results at 𝑇 = 100ℎ2 with four different 𝛥𝑡. (e)–(h) 0.5 level contour results for 𝛥𝑡 = ℎ2 at each time. (i) The maximum and minimum values of 𝜙
versus time 𝑡. (j) The change in mass over time for 𝛥𝑡 = ℎ2. The mass is defined as mass(t)/mass(1), i.e., (j) is drawn by dividing the mass at each time by the initial mass.
that the maximum and minimum values with arbitrary 𝛥𝑡 do not exceed
0 and 1 as shown in Fig. 13(e). Therefore, our proposed scheme has
unconditional stability and satisfies the maximum principle.

4. Conclusions

In this paper, we presented a maximum principle preserving and
unconditionally stable numerical method for the CAC equation. There
have been many research works for the numerical methods for the
CAC equation. To conserve the total mass, many methods introduced
Lagrange multipliers which are added to the Allen–Cahn equation.
Therefore, some of the methods do not preserve the maximum princi-
ple, i.e., it is possible to have values greater than one. In this paper,
we proposed a new time-dependent Lagrange multiplier which is a
power exponent to the concentration so that the maximum principle
strictly holds. We described the proposed numerical algorithm in detail
and presented several computational tests to demonstrate the superior
performance of the scheme.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.
118
Acknowledgments

The first author (Y. Choi) was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (2022R1I1A307282411). The cor-
responding author (J.S. Kim) was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2022R1A2C1003844). The authors are grateful to the
reviewers whose comments greatly improved the paper.

References

[1] Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and
its application to antiphase domain coarsening. Acta Metall 1979;27(6):1085–95.

[2] Mohammadi V, Mirzaei D, Dehghan M. Numerical simulation and error estima-
tion of the time-dependent Allen–Cahn equation on surfaces with radial basis
functions. J Sci Comp 2019;79:493–516.

[3] Tan Z, Zhang C. The discrete maximum principle and energy stability of a new
second-order difference scheme for Allen–Cahn equations. Appl Numer Math
2021;166:227–37.

[4] Hong Q, Gong Y, Zhao J, Wang Q. Arbitrarily high order structure-preserving
algorithms for the Allen–Cahn model with a nonlocal constraint. Appl Numer
Math 2021;170:321–39.

[5] Du J, Chung E, Yang Y. Maximum-principle-preserving local discontinu-
ous Galerkin methods for Allen–Cahn equations. Comm Appl Math Comput
2022;4(1):353–79.

[6] Poochinapan K, Wongsaijai B. Numerical analysis for solving Allen–Cahn equa-
tion in 1D and 2D based on higher-order compact structure-preserving difference
scheme. Appl Math Comput 2022;434:127374.

[7] Lee C, Choi Y, Kim J. An explicit stable finite difference method for the
Allen–Cahn equation. Appl Numer Math 2022;182:87–99.

http://refhub.elsevier.com/S0955-7997(23)00066-8/sb1
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb1
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb1
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb2
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb2
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb2
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb2
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb2
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb3
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb3
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb3
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb3
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb3
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb4
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb4
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb4
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb4
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb4
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb5
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb5
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb5
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb5
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb5
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb6
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb6
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb6
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb6
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb6
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb7
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb7
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb7


Engineering Analysis with Boundary Elements 150 (2023) 111–119Y. Choi and J. Kim
[8] Huang Z, Lin G, Ardekani AM. Consistent and conservative scheme for incom-
pressible two-phase flows using the conservative Allen–Cahn model. J Comput
Phys 2020;420:109718.

[9] Ren F, Song B, Sukop MC, Hu H. Improved lattice Boltzmann modeling
of binary flow based on the conservative Allen–Cahn equation. Phys Rev E
2016;94(2):023311.

[10] Yang J, Jeong D, Kim J. A fast and practical adaptive finite difference method
for the conservative Allen–Cahn model in two-phase flow system. Int J Multiph
Flow 2021;137:103561.

[11] Aihara S, Takaki T, Takada N. Multi-phase-field modeling using a conservative
Allen–Cahn equation for multiphase flow. Comput & Fluids 2019;178:141–51.

[12] Huang Z, Lin G, Ardekani AM. A consistent and conservative volume distribution
algorithm and its applications to multiphase flows using phase-field models. Int
J Multiph Flow 2021;142:103727.

[13] Wu J, Yang J, Tan Z. Unconditionally energy-stable time-marching methods for
the multi-phase conservative Allen–Cahn fluid models based on a modified SAV
approach. Comput Meth Appl Mech Eng 2022;398:115291.

[14] Kim J, Jeong D, Yang SD, Choi Y. A finite difference method for a conservative
Allen–Cahn equation on non-flat surfaces. J Comput Phys 2017;334:170–81.

[15] Yang J, Kim J. Numerical study of incompressible binary fluids on 3D curved
surfaces based on the conservative Allen–Cahn–Navier–Stokes model. Comput &
Fluids 2021;228:105094.

[16] Geng S, Li T, Ye T, Yang X. A new conservative Allen–Cahn type Ohta–Kawaski
phase-field model for diblock copolymers and its numerical approximations. Adv
Appl Math Mech 2022;14(1):101–24.

[17] Rubinstein J, Sternberg P. Nonlocal reaction–diffusion equations and nucleation.
IMA J Appl Math 1992;48(3):249–64.

[18] Okumura M. A stable and structure-preserving scheme for a non-local Allen–Cahn
equation. Jpn J Ind Appl Math 2018;35(3):1245–81.

[19] Wu J, Yang J, Tan Z. Unconditionally energy-stable time-marching methods for
the multi-phase conservative Allen–Cahn fluid models based on a modified SAV
approach. Comput Meth Appl Mech Eng 2022;398:115291.

[20] Lee HG, Shin J, Lee JY. A high-order and unconditionally energy stable scheme
for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier.
J Sci Comput 2022;90(1):1–12.

[21] Zhang Z, Tang H. An adaptive phase field method for the mixture of two
incompressible fluids. Comput & Fluids 2007;36(8):1307–18.

[22] Brassel M, Bretin E. A modified phase field approximation for mean cur-
vature flow with conservation of the volume. Math Methods Appl Sci
2011;10(34):1157–80.

[23] Lee HG. High-order and mass conservative methods for the conservative
Allen–Cahn equation. Comput Math Appl 2016;72(3):620–31.

[24] Jiang K, Ju L, Li J, Li X. Unconditionally stable exponential time differencing
schemes for the mass-conserving Allen–Cahn equation with nonlocal and local
effects. Numer Meth Part Differ Equ 2021.

[25] Kim J, Lee S, Choi Y. A conservative Allen–Cahn equation with a space–time
dependent Lagrange multiplier. Int J Eng Sci 2014;84:11–7.

[26] Chai Z, Sun D, Wang H, Shi B. A comparative study of local and nonlo-
cal Allen–Cahn equations with mass conservation. Int J Heat Mass Transf
2018;122:631–42.

[27] Kwak S, Yang J, Kim J. A conservative Allen–Cahn equation with a
curvature-dependent Lagrange multiplier. Appl Math Lett 2022;126:107838.

[28] Dehghan M, Mohammadi V. The numerical simulation of the phase field crystal
(PFC) and modified phase field crystal (MPFC) models via global and local
meshless methods. Comput Methods Appl Mech Engrg 2016;298:453–84.
119
[29] Choi Y, Jeong D, Kim J. A multigrid solution for the Cahn–Hilliard equation on
nonuniform grids. Appl Math Comput 2017;293:320–33.

[30] Dehghan M, Abbaszadeh M. The meshless local collocation method for solv-
ing multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal
equations. Eng Anal Bound Elem 2017;78:49–64.

[31] Jeong D, Choi Y, Kim J. A benchmark problem for the two-and three-dimensional
Cahn–Hilliard equations. Commun Nonlinear Sci Numer Simul 2018;61:149–59.

[32] Mohammadi V, Dehghan M. Simulation of the phase field Cahn–Hilliard and
Tumor growth models via a numerical scheme: Element-free Galerkin method.
Comput Methods Appl Mech Engrg 2019;345:919–50.

[33] Mohammadi V, Dehghan M. A meshless technique based on generalized moving
least squares combined with the second-order semi-implicit backward differential
formula for numerically solving time-dependent phase field models on the
spheres. Appl Numer Math 2020;153:248–75.

[34] Dehghan M, Gharibi Z. Numerical analysis of fully discrete energy stable
weak Galerkin finite element scheme for a coupled Cahn–Hilliard–Navier–Stokes
phase-field model. Appl Math Comput 2021;410:126487.

[35] Kim Y, Choi Y. Learning finite difference methods for reaction–diffusion type
equations with FCNN. Comput Math Appl 2022;123:115–22.

[36] Ju L, Li X, Qiao Z, Yang J. Maximum bound principle preserving integrating
factor Runge–Kutta methods for semilinear parabolic equations. J Comput Phys
2021;439:110405.

[37] Zhang H, Yan J, Qian X, Chen X, Song S. Explicit third-order uncondition-
ally structure-preserving schemes for conservative Allen–Cahn equations. J Sci
Comput 2022;90(1):1–29.

[38] Weng Z, Zhuang Q. Numerical approximation of the conservative Allen–
Cahn equation by operator splitting method. Math Methods Appl Sci
2017;40(12):4462–80.

[39] Lee HG, Lee JY. A second order operator splitting method for Allen–Cahn type
equations with nonlinear source terms. Physica A 2015;432:24–34.

[40] Mazloum J, Siahkal-Mahalle BH. An efficient operator-splitting radial basis
function-generated finite difference (RBF-FD) scheme for image noise re-
moval based on nonlinear total variation models. Eng Anal Bound Elem
2022;143:740–54.

[41] Li D, Quan C, Xu J. Stability and convergence of strang splitting. Part I: Scalar
Allen–Cahn equation. J Comput Phys 2022;458:111087.

[42] Li D, Quan C, Xu J. Stability and convergence of strang splitting. Part II: Tensorial
Allen–Cahn equations. J Comput Phys 2022;454:110985.

[43] Lee S. Non-iterative compact operator splitting scheme for Allen–Cahn equation.
Comput Appl Math 2021;40(7):1–9.

[44] Lee HG, Kim J. Accurate contact angle boundary conditions for the Cahn–Hilliard
equations. Comput & Fluids 2011;44(1):178–86.

[45] Faires JD, Burden RL. Numerical methods. 4th ed.. Cengage Learning; 2012.
[46] Wu C, Feng X, He Y, Qian L. A second-order strang splitting scheme with

exponential integrating factor for the Allen–Cahn equation with logarithmic
Flory–Huggins potential. Commun Nonlinear Sci Numer Simul 2023;117:106983.

[47] Park J, Lee C, Choi Y, Lee HG, Kwak S, Hwang Y, et al. An unconditionally stable
splitting method for the Allen–Cahn equation with logarithmic free energy. J Eng
Math 2022;132(1):1–18.

[48] Kim J. Phase-field models for multi-component fluid flows. Commun Comput
Phys 2012;12(3):613–61.

[49] Bronsard L, Stoth B. Volume-preserving mean curvature flow as a limit of a
nonlocal Ginzburg–Landau equation. SIAM J Math Anal 1997;28(4):769–807.

http://refhub.elsevier.com/S0955-7997(23)00066-8/sb8
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb8
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb8
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb8
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb8
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb9
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb9
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb9
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb9
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb9
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb10
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb10
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb10
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb10
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb10
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb11
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb11
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb11
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb12
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb12
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb12
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb12
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb12
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb13
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb13
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb13
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb13
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb13
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb14
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb14
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb14
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb15
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb15
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb15
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb15
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb15
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb16
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb16
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb16
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb16
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb16
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb17
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb17
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb17
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb18
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb18
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb18
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb19
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb19
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb19
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb19
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb19
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb20
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb20
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb20
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb20
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb20
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb21
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb21
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb21
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb22
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb22
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb22
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb22
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb22
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb23
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb23
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb23
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb24
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb24
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb24
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb24
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb24
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb25
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb25
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb25
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb26
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb26
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb26
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb26
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb26
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb27
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb27
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb27
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb28
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb28
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb28
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb28
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb28
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb29
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb29
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb29
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb30
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb30
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb30
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb30
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb30
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb31
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb31
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb31
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb32
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb32
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb32
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb32
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb32
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb33
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb34
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb34
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb34
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb34
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb34
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb35
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb35
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb35
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb36
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb36
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb36
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb36
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb36
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb37
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb37
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb37
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb37
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb37
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb38
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb38
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb38
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb38
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb38
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb39
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb39
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb39
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb40
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb41
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb41
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb41
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb42
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb42
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb42
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb43
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb43
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb43
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb44
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb44
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb44
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb45
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb46
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb46
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb46
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb46
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb46
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb47
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb47
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb47
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb47
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb47
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb48
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb48
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb48
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb49
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb49
http://refhub.elsevier.com/S0955-7997(23)00066-8/sb49

	Maximum principle preserving and unconditionally stable scheme for a conservative Allen–Cahn equation
	Introduction
	Description of the numerical scheme
	Numerical results
	Comparison of three models
	Evolution of circles
	Satisfying maximum principle and unconditional stability

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


