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We propose an explicit stable finite difference method (FDM) for the Allen–Cahn (AC) 
equation. The AC equation has been widely used for modeling various phenomena such 
as mean curvature flow, image processing, crystal growth, interfacial dynamics in material 
science, and so on. For practical use, an explicit method can be applied for the numerical 
approximation of the AC equation. However, there is a strict restriction on the time step 
size. To mitigate the disadvantage, we adopt the alternating direction explicit method for 
the diffusion term of the AC equation. As a result, we can use a relatively larger time 
step size than when the explicit method is used. Numerical experiments are performed 
to demonstrate that the proposed scheme preserves the intrinsic properties of the AC 
equation and it is stable compared to the explicit method.

© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We present an explicit stable finite difference method (FDM) for the Allen–Cahn (AC) equation [2]:

∂φ(x, t)

∂t
= − F ′(φ(x, t))

ε2
+ �φ(x, t), x ∈ �, t > 0, (1)

n · ∇φ(x, t) = 0 on ∂�,

where � ⊂ R2 or R3, φ(x, t) is an order parameter, F (φ) = 0.25(φ2 − 1)2 is a double-well potential, and ε is the positive 
gradient energy coefficient. Here, n is the outer unit normal vector to ∂�. The AC equation (1) is derived from the following 
total free energy functional [9]:

E(φ) =
∫
�

(
F (φ)

ε2
+ 1

2
|∇φ|2

)
dx. (2)

That is, the AC equation is the L2-gradient flow of Eq. (2). The AC equation has been used for modeling a variety of 
phenomena such as phase separation [2,16,20,34,38], mean curvature flow [12,14,21–23], image processing [4,26,29], volume 
reconstruction [28,39], two-phase fluid flows [17,30,35], crystal growth [42], grain growth [1], and vesicle membranes [10,

* Corresponding author.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: https://mathematicians.korea.ac.kr/cfdkim (J. Kim).
https://doi.org/10.1016/j.apnum.2022.08.006
0168-9274/© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2022.08.006&domain=pdf
mailto:cfdkim@korea.ac.kr
https://mathematicians.korea.ac.kr/cfdkim
https://doi.org/10.1016/j.apnum.2022.08.006


C. Lee, Y. Choi and J. Kim Applied Numerical Mathematics 182 (2022) 87–99
11], interfacial dynamics in material science [7]. For the above applications, it is important to study numerical methods 
because the analytic solution may be found only under very limited conditions, i.e., traveling wave solutions [25].

Many researchers have studied FDM for solving nonlinear partial differential equations numerically. An explicit Euler 
method is one of the classical methods. It is simple and accurate, however, there is a strict restriction on the time step size 
[3,18]. To overcome the time step limitation for practical use of the AC equation, implicit or semi-implicit methods [8,15,25]
have been proposed so that they allow the use of large time step sizes. In [8], Choi et al. presented an unconditionally 
gradient stable FDM for the AC equation applying Eyre’s nonlinearly stabilized splitting method, which is a semi-implicit 
method in time and centered difference method in space. Hence, the method is stable when the time step size is large. Guan 
et al. [15] solved the AC type equation using a convex splitting method, which is unconditionally energy stable and second-
order accurate in time. Li et al. [25] proposed a second-order accurate method both in time and space. Their method is also 
unconditionally stable and is based on an operator splitting method (OSM) dividing into the diffusion term and the free-
energy term, which are solved by using the Crank–Nicolson method and a closed-form solution, respectively. The methods 
above have the common advantage of being unconditionally stable, however, a multigrid method is used to solve some 
implicit parts of the nonlinear equation in their papers.

The main purpose of this study is to present an explicit stable method for the AC equation using asymmetric approxima-
tions for the second derivatives developed by Saul’yev [33]. Explicit-type methods require less computation in comparison 
with implicit methods because of simplicity [31]. However, there is a serious constraint on the time step sizes to use the 
explicit methods. Therefore, the Saul’yev’s method was proposed to overcome this limitation while maintaining the advan-
tage of simplicity, and has been used in many studies. Tavakli and Davami [32] applied the Saul’yev’s method to solve the 
diffusion equation more stably than when using an explicit method. The alternating direction explicit (ADE) method enables 
us to use larger time step sizes than the explicit method. In [6], Bučková et al. presented the ADE method for the Black–
Scholes equations owing to its clarity and fine stability. Yang et al. [40] introduced the conservative ADE method for the heat 
equation because the ADE method does not guarantee the mass conservation property. They developed a simple weighted 
correction step, however, we exclude the step in this paper because one of the representative properties of the AC equation 
we study is that it does not conserve mass. In [41], the ADE method is applied for the Cahn–Hilliard equation which is 
the fourth-order parabolic equation. In spite of the highly nonlinear term and the biharmonic operator, it can be solved 
efficiently and numerical solutions can be obtained simply in complex domains by using the ADE method. Moreover, it is 
easy to use for parallel computing so that there have been several follow-up studies [13,37]. Using our proposed method, 
the AC equation can be solved with larger time step sizes than the time step restriction of an explicit scheme, therefore, the 
method is fast.

The rest of the paper is structured as follows. In Section 2, numerical solution algorithm is described, which use an 
OSM and the ADE method. In Section 3, the numerical results for several examples are presented to demonstrate that the 
numerical solutions of the proposed method follow the properties of the AC equation. In Section 4, conclusion is discussed.

2. Numerical method

For simplicity, the numerical scheme for the AC equation is described in a two-dimensional (2D) space � = (xl, xr) ×
(yl, yr). Let �h = {xi = xl + (i − 0.5)h, y j = yl + ( j − 0.5)h)| 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y} be the discrete numerical domain, 
where h = (xr − xl)/Nx = (yr − yl)/N y is the uniform space step size; Nx and N y are the positive integers. Let φn

i j be the 
numerical approximations of φ(xi, y j, n�t), where �t is the time step. The OSM is used to solve the AC equation (1). That 
is, first, we solve the diffusion equation

∂φ(x, t)

∂t
= �φ(x, t) (3)

and next, we solve the nonlinear equation

∂φ(x, t)

∂t
= − F ′(φ(x, t))

ε2
. (4)

We use the following ADE scheme [32] for the diffusion equation (3):

For j = 1,2, . . . , N y, for i = 1,2, . . . , Nx, (5)

φ∗
i j − φn

i j

�t
= φ∗

i−1, j + φn
i+1, j − 2φn

i j − 2φ∗
i j + φ∗

i, j−1 + φn
i, j+1

h2
. (6)

Equation (6) can be rewritten as

φ∗
i j = rφ∗

i−1, j + rφn
i+1, j + (1 − 2r)φn

i j + rφ∗
i, j−1 + rφn

i, j+1

1 + 2r
, (7)

where r = �t/h2. In 2D space, we have 4 cases of nested loops including Eq. (5); and the other cases are
88
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Fig. 1. Schematic diagram for 4 cases of nested loops, Eqs. (5), (8)–(10).

For j = 1,2, . . . , N y, for i = Nx, Nx − 1, . . . ,1, (8)

For j = N y, N y − 1, . . . ,1, for i = 1,2, . . . , Nx, (9)

For j = N y, N y − 1, . . . ,1, for i = Nx, Nx − 1, . . . ,1, (10)

Fig. 1 illustrates the 4 cases of nested loops.
We use the zero Neumann boundary condition:

φ∗
0 j = φn

1 j, φ∗
Nx+1, j = φn

Nx, j, for j = 1, . . . , N y,

φ∗
i0 = φn

i1, φ∗
i,N y+1 = φn

i,N y
, for i = 1, . . . , Nx.

(11)

Using the numerical solution φ∗ from the first step, we analytically solve the nonlinear equation (4) using the separation 
of variables, as described in [19], and get the solution at the next time step:

φn+1
i j = φ∗

i j√
[1 − (φ∗

i j)
2]e−2�t/ε2 + (φ∗

i j)
2

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y . (12)

In a three-dimensional (3D) domain � = (xl, xr) × (yl, yr) × (zl, zr), similar to the description in a 2D domain, we define 
the uniform mesh grid size h = (xr − xl)/Nx = (yr − yl)/N y = (zr − zl)/Nz and the discrete domain �h = {(xi = xl + (i −
0.5)h, y j = yl + ( j − 0.5)h, zk = zl + (k − 0.5)h)| 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y, 1 ≤ k ≤ Nz}, and Nz is the numbers grid point 
in the z-direction. Let φn

i jk be the numerical approximations of φ(xi, y j, zk, n�t). By using OSM, we solve Eqs. (3) and (4)
in turn. In 3D, when solving Eq. (3) by applying ADE method, there are 8 cases of nested loops, which is an extension of 4 
nested loops in 2D to 3D. For instance, one case is

For k = 1,2, . . . , Nz, for j = 1,2, . . . , N y, for i = 1,2, . . . , Nx,

φ∗
i jk = rφ∗

i−1, jk + rφn
i+1, jk + (1 − 3r)φn

i jk + rφ∗
i, j−1,k + rφn

i, j+1,k + rφ∗
i j,k−1 + rφn

i j,k+1

1 + 3r
.

The Neumann boundary condition is also applied similar to Eq. (11) for simplicity. Next, the analytic solution of Eq. (4) is, 
for 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y, 1 ≤ k ≤ Nz ,

φn+1
i jk = φ∗

i jk√
[1 − (φ∗

i jk)
2]e−2�t/ε2 + (φ∗

i jk)
2
.

3. Computational tests

Now, some computational experiments are performed such as linear stability, energy decay, convergence test, traveling 
wave solutions, motion by mean curvature, and temporal evolution of many shapes to show that the proposed method 
preserves the properties of the AC equation and to has the advantage that can use relatively large time steps than an 
explicit method. All tests are performed on an Intel Core i5-6400 CPU at 2.70 GHz with 4 GB of RAM.

3.1. Linear stability analysis

The linearization of the 2D AC equation around φ ≡ 0 is as follows [27]:

∂φ

∂t
= φ

ε2
+ �φ. (13)

Let φ(x, y, t) = α(t) cos(k1πx) cos(k2π y) with an amplitude α(t) at wave numbers k1 and k2. Substituting φ into Eq. (13), 
we obtain
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Fig. 2. Analytic and numerical growth rates with respect to wave numbers, k1 and k2.

α′(t) =
[

1

ε2
− (k1π)2 − (k2π)2

]
α(t),

and the solution is α(t) = α(0) exp(λt), where λ = 1
ε2 − (k1π)2 − (k2π)2 is the analytic growth rate of perturbation [27]. Let

λ̃ = 1

T
log

( ||φNt ||∞
α(0)

)

be the numerical growth rate. Here, φNt is the numerical solution at final time T = Nt�t , Nt is a non-negative integer, and 
|| · ||∞ is the discrete maximum norm. To investigate the linear stability, the initial condition is defined as

φ = 0.01 cos(k1πx) cos(k2π y),

in a 2D domain � = (0, 1) × (0, 1). Here, k1 and k2 are 2, 4, . . . , 20, and α(0) = 0.01. Nx = N y = 200, h = 1/Nx , �t =
0.01h2, Nt = 1000, and ε = 0.02 are used. Fig. 2 illustrates the analytic and numerical growth rates with respect to different 
wave numbers, k1 and k2, and imply that the numerical results are in good agreement.

3.2. Decrease of the total energy

We can briefly prove the energy decreasing property [36] by differentiating Eq. (2) with respect to time t as follows:

d

dt
E(φ) =

∫
�

(
F ′(φ)

ε2

∂φ

∂t
+ ∇φ · ∇ ∂φ

∂t

)
dx

=
∫
∂�

(n · ∇φ)
∂φ

∂t
ds +

∫
�

(
F ′(φ)

ε2

∂φ

∂t
− �φ

∂φ

∂t

)
dx

= −
∫
�

(
∂φ

∂t

)2

dx ≤ 0.

Thus, the total energy decreases in time. Next, we demonstrate the discrete energy decay property. In this paper, the 
theoretical analysis of the energy stability of the proposed method still remains an open problem because the OSM is a 
method of dividing the governing equation based on the operators unlike the convex splitting method where the criterion 
for dividing the governing equation is the energy functional. Therefore, we numerically verify the energy decay property. 
The total energy functional (2) is discretized as

E(φn) = h2
Nx∑

i=1

N y∑
j=1

(
F (φn

i j)

ε2
+ (φn

i+1, j − φn
i j)

2

2h2
+ (φn

i, j+1 − φn
i j)

2

2h2

)
,

where the zero Neumann boundary condition is also used. On a 2D domain � = (−1, 1) × (−1, 1) with Nx = N y = 100, the 
initial condition is

φ(x, y,0) =
{

1 if |x| < 0.8 and |y| < 0.8,
−1 otherwise.
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Fig. 3. Discrete total energy E(φn)/E(φ0).

Fig. 4. Proposed and analytic traveling wave solutions at t = 0 and t = 0.032.

We use the following parameters: the space step size h = 2/Nx , the time step size �t = 0.1h2, and ε = 0.05. Fig. 3 shows 
that the temporal evolution of normalized discrete total energy E(φn)/E(φ0) and the discrete energy is decreasing.

3.3. Traveling wave solutions

When the ADE method is applied, this is also an explicit method, but the time step size �t can be used larger than 
when using the explicit hybrid method in [18], which differs from the ADE method only in solving Eq. (3). For one loop, Eq. 
(6) is replaced by

φ∗
i j − φn

i j

�t
= φn

i−1, j + φn
i+1, j − 4φn

i j + φn
i, j−1 + φn

i, j+1

h2
(14)

or

φ∗
i jk − φn

i jk

�t
= φn

i−1, j,k + φn
i+1, j,k − 6φn

i j + φn
i, j−1,k + φn

i, j+1,k + φn
i j,k−1 + φn

i j,k+1

h2
(15)

in 2D and 3D, respectively. We examine the range of possible �t using traveling wave solutions. The AC equation (1) has a 
traveling wave solution:

φ(x, y, t) = 0.5

(
1 − tanh

(
x − 0.4 − st

2
√

2ε

))
. (16)

Here, the speed of the traveling wave is s = 3/(
√

2ε) [8]. The initial condition is given as

φ(x, y,0) = 0.5

(
1 − tanh

(
x − 0.4

2
√

2ε

))
, (17)

on the domain � = (0, 5) × (0, 0.1) with Nx = 500 and N y = 10. h = 0.01, �t = 0.2h2, and ε = 0.03 are used. Fig. 4 shows 
the proposed and analytic traveling wave solutions which are the slices at y = 0.5h at t = 0.032.
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Table 1
Discrete l2-norm errors of the explicit hybrid 
method and the proposed method with respect 
to �t .

�t Discrete l2-norm error

Explicit Proposed

0.1h2 2.8145e-5 1.0073e-4
0.2h2 9.7731e-5 2.9321e-4
0.5h2 4.6118e-4 1.4176e-3
h2 unstable 6.2023e-3
2h2 unstable 2.3811e-2
4h2 unstable 7.3777e-2
8h2 unstable 2.0985e-1
10h2 unstable 2.7316e-1

Fig. 5. With �t = h2, the numerical solutions of (a) the explicit hybrid method and (b) the proposed method at t = 0.0016.

Now, a numerical test was conducted to investigate the accuracy and stability of the proposed method, compared with 
the explicit hybrid method. The same initial condition and parameters in Section 3.3 are used and the final time T is taken 
as 40�t . The discrete l2-norm error is defined as

||e||2 =
√√√√ Nx∑

i=1

(φ
Nt
i1 − φ(xi, y1, Nt))/Nx. (18)

Here, we compare the discrete l2-norm errors between the numerical and closed-form solutions with respect to �t . Table 1
lists the discrete l2-norm errors of the two numerical methods from �t = 0.1h2 to 10h2.

We compare the results of both methods using the time step size �t = h2. Other settings are the same as above. Fig. 5
shows the two numerical solutions at t = 0.0016. While oscillation is observed in Fig. 5(a) using the explicit method, it is 
numerically stable in Fig. 5(b) using our proposed method.

Next, we compare the proposed method with an implicit method. For a more accurate comparison, we use the implicit 
hybrid method, where the diffusion part is numerically solved by using an implicit method and a multigrid method, and the 
nonlinear part is analytically solved. It is the same as the explicit hybrid method, but all n on the right side of Eq. (14) and 
Eq. (15) are changed to (n + 1). On the computational domain � = (0, 4) × (0, 1), the initial condition and its exact solution 
are also defined as Eq. (17) and Eq. (16), respectively. The parameters are used as ε = 0.03, Nx = 512, N y = 128, h =
4/Nx = 1/N y, �t = h2, and T = 400h2. Fig. 6 illustrates the initial condition and the numerical and analytic solutions at 
the final time.

Table 2 lists the errors between the numerical and analytic solutions computed by using the discrete l2-norm error (18). 
With the fixed final time T , we compute the numerical solutions using the two methods as changing the time step size, and 
compare the errors and CPU time(s). It is observed that as �t increases, the proposed method has low accuracy than the 
implicit hybrid method, however, for an accurate numerical solution, a small �t should be used. In addition, the proposed 
method has less computational cost because its algorithm is simple.

As a final comparison, we consider the computational complexity of the two methods. Since the nonlinear part is solved 
using the analytic method in both methods, the comparison for that part can be omitted and only the diffusion part needs 
to be compared. The Gauss–Seidel type method, used in the proposed method, is widely adopted for the relaxation step in 
the multigrid method. The cost of performing one relaxation sweep is called a WU (work unit). Let each number of pre-
and post-smoothing relaxation be the integer ν ≥ 1. In a 2D domain, the computational complexity of the proposed method 
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Fig. 6. Comparison between the proposed and implicit hybrid methods using the traveling wave solutions.

Table 2
Discrete l2-norm errors and CPU time(s) of the proposed and im-
plicit hybrid methods with respect to �t .

�t l2-norm error (CPU time)

Proposed Implicit

0.2h2 7.0986e-4 (4.2325e+0) 2.0623e-3 (5.3984e+1)
h2 2.4606e-3 (0.8579e+0) 5.3359e-3 (1.0999e+1)
5h2 2.2606e-1 (0.1939e+0) 2.2519e-2 (0.3282e+1)

Table 3
Discrete l2-errors and rate of convergence.

(Nx, Nt ) (125, 60) Rate (250, 240) Rate (500, 960)

l2-error 2.9689-4 2.00 7.4322e-5 1.98 1.8791e-5

is estimated to be almost WU, whereas the computation cost of a V-cycle in the multigrid method is greater than 8νWU/3. 
Hence, the proposed method is much faster than the multigrid method. Please refer to [5,40] for more details.

3.4. Convergence test

We numerically verify the proposed method is convergent with first-order accuracy in time and second-order accuracy 
in space. On � = (0, 5) × (0, 0.2), the initial condition is defined as Eq. (17) with ε = 0.03 because in this case the exact 
solution is known as a traveling wave solution (16). With the fixed final time T = 1.0e-5, the time step size is defined as 
�t = T /Nt and the space step size is defined as h = 5/Nx = 0.2/N y . In this test, the discrete l2-norm is defined as:

‖e�t,h‖2 =

√√√√√ Nx∑
i=1

N y∑
j=1

1

NxN y
(φ

Nt
i j − φ(xi, y j, Nt�t))2,

where φNt
i j is the numerical solution and φ(xi, y j, Nt�t) is the analytic solution when the time and space step sizes are 

used as �t and h. The convergence rate is defined as log2
(‖e�t,h‖2/‖e�t/4,h/2‖2

)
. Here, the time step size �t is reduced by 

4 times and the space step size h is reduced by 2 times. Table 3 shows that the proposed scheme is temporally first-order 
and spatially second-order accurate.

3.5. Motion by mean curvature

Another property of the AC equation is that the interface of the solution φ evolves in the direction of the normal vector 
n in proportion to its mean curvature [21,25]. Thus, the zero level set of φ moves according to the property in the limit of 
small ε , and the normal velocity V of the zero level set at each point x is

V = −
(

1

R1
+ 1

R2

)
, (19)

where R1 and R2 are the principal radii of curvatures at x. Refer to [21] to see the derivation of Eq. (19). Let us consider 
the same radii R(t) for curvature. In a 2D space, because of R1 = R and R2 = 0, V = dR(t)/dt = −1/R , therefore, the radius 
93



C. Lee, Y. Choi and J. Kim Applied Numerical Mathematics 182 (2022) 87–99
Fig. 7. (a) Radius R(t) of circle in the 2D domain over time t . (b)–(d) Temporal evolutions of the numerical solution φ(x, y, t). The times are given below 
each figure.

R(t) = √
R(0)2 − 2t . In a 3D space, because of R1 = R2 = R , V = dR(t)/dt = −2/R , therefore, the radius R(t) = √

R(0)2 − 4t . 
In other words, R(t) = √

R(0)2 − 2t in 2D and R(t) = √
R(0)2 − 4t in 3D are called the asymptotic solutions, where the zero 

level set of the solution converges to the motion by mean curvature as ε approaches zero [24].
We compare the radii of the asymptotic solution, the proposed method, and the explicit hybrid method. First, we consider 

a 2D computational experiment with the initial condition

φ(x, y,0) = tanh

(
0.8 − √

x2 + y2
√

2ε

)
,

on the domain � = (−1, 1) × (−1, 1) with Nx = N y = 100. That is a circle with center (0, 0) and radius R(0) = 0.8. We 
take the parameters: h = 2/Nx , �t = 0.1h2, and ε = 0.05. Fig. 7(a) shows the temporal evolution of the radius R(t) of 
circle, which is the zero level contour of the numerical solution φ(x, y, t) in Fig. 7(b)–(d). When we use the small time step 
size such as �t = 0.1h2, the numerical results of both the proposed method and the explicit hybrid method are similar. 
Moreover, the numerical results are in good agreement to the asymptotic solution under the motion by mean curvature.

Now, we perform the same simulation on a 3D domain � = (−1, 1) × (−1, 1) × (−1, 1) with Nx = N y = Nz = 100. The 
initial condition is a sphere with center (0, 0, 0) and radius R(0) = 0.8:

φ(x, y, z,0) = tanh

(
0.8 − √

x2 + y2 + z2
√

2ε

)
.

We use the parameters: h = 2/Nx , �t = 0.1h2, and ε = 0.05. The behavior of 3D numerical results as shown in Fig. 8 is 
similar to the previous 2D results.

Let us consider temporal evolutions of a maze on a 2D domain � = (0, 1) × (0, 1) with Nx = N y = 100. Here, we use the 
parameters, h = 0.01 and ε = 0.02. The initial condition is φ(x, y, 0) = 1 inside the maze and otherwise φ(x, y, 0) = −1, see 
the first column in Fig. 9. Fig. 9(a) and (b) show the temporal evolutions using the explicit hybrid method and the proposed 
method, respectively. In this test, we set the time step size as �t = 0.2h2 for stability of the explicit hybrid method. In 
Fig. 9(c)–(e), using the proposed method, it is observed that we can use (c) twice, (d) four times, and (e) eight times large 
time step sizes than �t = 0.2h2.

A similar test is conducted in a 3D domain � = (0, 1) × (0, 1) × (0, 1) with Nx = N y = Nz = 100. The parameters used are 
h = 0.01 and ε = 0.03. The first column in Fig. 10 shows the initial states. Fig. 10(a) and (b) show the temporal evolutions 
using the explicit hybrid method and the proposed method, respectively. In this test, we set the time step size as �t = 0.1h2
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Fig. 8. Temporal evolutions of the radius R(t) of sphere in the 3D domain over time t .

Fig. 9. Temporal evolutions from t = 0 to t = 0.0384 using (a) the explicit hybrid method and (b)–(e) the proposed method. (a) and (b) are the results with 
�t = 0.2h2. (c)–(e) When the proposed method is used, the time step sizes can be used as 2, 4, or 8 times larger than that when the explicit method is 
used, respectively. The times are given below the figures.

for stability of the explicit hybrid method. In Fig. 10(c), using the proposed method, it is observed that we can use eight 
times large time step sizes than �t = 0.1h2.

Table 4 lists the relative CPU times of the proposed method with several �t to the explicit hybrid method with the fixed 
time step size �te in Figs. 9 and 10. Here, the CPU times are averaged over 10 trials. Table 4 lists the relative CPU times 
and suggests that the proposed method is faster when we use larger time steps than the explicit hybrid method. Fig. 11
illustrates the results of Table 4.
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Fig. 10. Temporal evolutions from t = 0 to t = 0.01536 using (a) the explicit hybrid method and (b)–(c) the proposed method. (a) and (b) are the results 
with �t = 0.1h2. (c) When the proposed method is used, the time step sizes can be used as 8 times larger than that when the explicit method is used, 
respectively. The times are given below the figures.

Table 4
Relative CPU time of the proposed method (�t) to the explicit hybrid 
method (�te ).

�t/�te 1 2 4 8

CPU times Fig. 9 1.0251 0.4763 0.2418 0.1265
Fig. 10 0.9603 0.4729 0.2436 0.1230

Fig. 11. Relative CPU time of the proposed method in Figs. 9–10.

3.6. Temporal evolution of various initial conditions

We simulate with various initial conditions such as star shape in 2D and perturbed, torus shape in 3D. The initial 
condition of star shape in 2D is given as follows:
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Fig. 12. Temporal evolution of star shape. The evolution time is presented on the bottom of each figure, and the evolutions are shown along with the 
motion by mean curvature.

Fig. 13. Temporal evolution of perturbed shape. The evolution time is presented on the bottom of each figure, and the evolutions are shown along with the 
motion by mean curvature.

Fig. 14. Temporal evolution of torus shape. The evolution time is presented on the bottom of the figures.

φ(x, y,0) = tanh

(
0.5 + 0.4 cos(6θ) − √

x2 + y2
√

2ε

)
,

where θ = tan−1(y/x) for (x, y) ∈ (−1, 1) × (−1, 1), ε = 0.02. Other parameters are used Nx = N y = 200, h = 0.01, and 
�t = 0.1h2. Fig. 12 shows the evolution of star shape with each time. The shape is changed as following the motion by 
mean curvature.

We conduct the computational tests for the perturbed and torus shape in 3D. The initial conditions are

φ(x, y, z,0) = tanh

(
0.7 + 0.2 cos(6θ) − √

x2 + 2y2 + z2
√

2ε

)
,

where θ = tan−1(z/x) for (x, y, z) ∈ (−1, 1) × (−1, 1) × (−1, 1), ε = 0.03. Nx = N y = Nz = 200, h = 0.01, and �t = 0.1h2 are 
used. Fig. 13 displays the temporal evolution (b)–(d) of perturbed shape (a).

Fig. 14 displays the temporal evolutions of torus and which the initial condition is given as:

φ(x, y, z,0) = z2 + (

√
x2 + y2 − r1)

2 − r2,

where the major radius r1 = 0.6 and the minor radius r2 = 0.3. The computational domain � = (−1, 1)3 with 200 × 200 ×
200 mesh, h = 0.01, and �t = 0.1h2. The inner circle increases in size and outer circle shrinks because the motion by mean 
curvature in Fig. 14.
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4. Conclusions

We proposed an explicit stable finite difference method for the AC equation by using the ADE method for the diffusion 
evolution and the closed-form solution for the free-energy evolution of the AC equation. It reduces the severe restriction on 
time step sizes when using an explicit method. Therefore, the proposed method is useful when applying the AC equation to 
various practical applications because the method is faster and more stable than an explicit method. Through the numerical 
experiments, we demonstrated that the proposed method can use larger time step sizes than an explicit method and it 
preserves the intrinsic properties of the AC equation.
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