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Abstract
We present a novel, straightforward, robust, and precise calibration algorithm for 
local volatility surfaces based on observed market call and put option prices. The pro-
posed local volatility reconstruction method is based on the widely recognized gener-
alized Black–Scholes partial differential equation, which is numerically solved using 
a finite difference scheme. In the proposed method, sample points are strategically 
placed in the underlying and time domains. The unknown local volatility function 
is represented using the scattered interpolant function. The primary contribution of 
this study is that our proposed algorithm not only optimizes the volatility values at 
the sample points but also optimizes the positions of the sample positions using a 
least squares method. This optimization process improves the accuracy and robust-
ness of our calibration method. Furthermore, we do not use the Tikhonov regulariza-
tion technique, which was frequently used to obtain smooth solutions. To validate the 
practical efficiency and superior performance of the proposed reconstruction method 
for local volatility functions, we conduct a series of computational experiments using 
real-world market option prices such as the KOSPI 200, S &P 500, Hang Seng, and 
Euro Stoxx 50 indices. The proposed algorithm offers financial market practitioners 
a reliable tool for calibrating local volatility surfaces using only market option prices, 
enabling more accurate pricing and risk management of financial derivatives.

Keywords Local volatility calibration · Generalized Black–Scholes equation · Call 
and put options

1 Introduction

We present a novel, straightforward, robust, and precise calibration algorithm for 
local volatility surfaces based on observed market call and put option prices. A local 
volatility surface is a mathematical representation of the volatility of an underlying 
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asset as a function of both time and the underlying asset. It is a key component in the 
pricing and risk management of financial derivatives (Deng et al., 2016; Georgiev 
& Vulkov, 2020; Gong & Xu, 2023; Nabubie & Wang, 2023). The local volatil-
ity surface is typically represented as a three-dimensional graph, with time on one 
axis, the price of the underlying asset on another axis, and volatility on the third 
axis. It provides a detailed view of how volatility varies across different time and 
underlying price levels. Calibrating the local volatility surface is an important task 
in quantitative finance, as it allows for more accurate pricing and risk assessment of 
complex derivative products. Despite the numerous advantages of the local volatility 
surface, reconstructing the local volatility surface from market prices poses a signifi-
cant challenge. Small fluctuations in option prices have a large impact on volatility, 
making it difficult to reconstruct the local volatility surface using insufficient market 
price data. Various mathematical and numerical techniques have been developed to 
model and approximate the local volatility surface based on observed market prices 
of options. Gong and Xu (2023) developed the process of reconstructing the local 
volatility surface based on American option prices computed using a finite differ-
ence method (FDM), which includes formulating an optimization problem to derive 
the local volatility by minimizing the disparity between theoretical and market 
option prices. Nabubie and Wang (2023) considered an inverse problem of deter-
mining the time-dependent variable volatility (Kim et al., 2023) from the observed 
market option prices. Cuomo et al. (2022) presented an algorithm for reconstruct-
ing the local volatility surface through multiple procedures using the radial basis 
function (RBF) method. First, the local volatility surface is reconstructed by evalu-
ating the error resulting from removing points on a globally reconstructed surface. 
Moreover, local methodologies are employed, including the RBF-partition of unity 
technique, with variations in subdomain sizes and shape parameters. To price Euro-
pean options and find the volatility surface, they used the proposed model, stochastic 
differential calculations, and martingale technique.

Georgiev and Vulkov (2021) developed a simple and efficient algorithm that 
numerically approximates time-dependent implied volatility for jump-diffusion 
models in option pricing that generalize the Black–Scholes (BS) equation. Kim and 
Lee (2018) proposed a more effective and efficient algorithm of estimating option 
prices by combining the local volatility model with the jump-diffusion model. This 
method estimates the optimal parameter set of the constant volatility jump model 
and estimates the local volatility surface from the BS implied volatility surface. 
Wang et  al. (2022) used the explicit and Crank–Nicolson method for solving the 
fractional BS equation. They also used the operator splitting method to implement 
the semi-implicit method for the multidimensional fractional BS equation. They 
simulated numerical experiments for option prices, and the numerical results with 
Greeks behave differently with different Hurst exponents. Cen et al. (2022) applied 
the adapted posteriori grid method to solve a time-fractional BS equation govern-
ing European options. Zhao and Xu (2022) calibrated the time-dependent volatil-
ity function for European options. Yan et  al. (2022) studied the Heston stochastic 
volatility model using the explicit finite difference method. They considered Ameri-
can option pricing and proposed transaction costs as small nonlinear price impacts. 
Ferreiro-Ferreiro et  al. (2020) developed a technique for calibrating the whole set 
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of parameters of the Heston stochastic local volatility model in the framework of 
foreign exchange rate options. This technique involved the Monte–Carlo methods for 
the Heston stochastic local volatility model and efficient global stochastic optimiza-
tion algorithms.

The proposed algorithm is based on the widely recognized generalized BS partial 
differential equation (PDE) (Bustamante & Contreras, 2016; Khodayari & Ranjbar, 
2019), an FDM, the least squares method, and observed market call and put option 
prices. The generalized BS partial differential equation for the European option pre-
mium is expressed as follows:

where r is the risk-neutral interest rate and the variables u(S,  t) and �(S, t) denote 
the option value and the local volatility function, respectively. These variables are 
associated with the underlying asset price S and time t. It is worth noting that Eq. 
(1) becomes the standard BS PDE if �(S, t) is constant (Lee et  al., 2023). In the 
proposed method, sample points are strategically placed in the underlying and time 
domains. Our proposed algorithm not only optimizes the volatility values at the 
sample points but also optimizes the positions of the sample points using the least 
squares method.

The main purpose of this study is to present a novel, straightforward, robust, and 
precise calibration algorithm for local volatility surfaces based on observed market 
call and put option prices so that practitioners can use the proposed method for cali-
brating local volatility surfaces, enabling more accurate pricing and risk manage-
ment of financial derivatives.

The paper is organized as follows. In Sect. 2, we propose a methodology for the 
optimization problem of the local volatility function for call and put options. Fur-
thermore, in Sect. 3, in order to demonstrate the superior performance of the pro-
posed reconstruction algorithm for local volatility functions, we conduct a series of 
computational experiments using real-world market option prices such as KOSPI 
200, S &P 500, Hang Seng, and Euro Stoxx 50 indices. Lastly, we dedicate to dis-
cussing the conclusions in Sect. 4.

2  Method

Now, we present a concise overview of the proposed novel method for the optimiza-
tion problem of the local volatility surface for a European call option. The case of a 
put option is similarly defined. Let � = T − t , then we can express Eq. (1) as follows:

which is solved using the FDM on a finite domain Ω = [0, Smax] . We apply the Dir-
ichlet boundary condition at S = 0 and the linear boundary condition at S = Smax for 
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the European call option. For the European put option, we apply the linear boundary 
condition at both S = 0 and S = Smax.

First, we define the underlying domain step size h = Smax∕(NS − 1) for some 
positive integer NS , and let Si = (i − 1)h for i = 1, 2,… , NS − 1 (Fig. 1).

For simplicity of notation, let us denote u(Si, nΔ�) by un
i
 , where Δ� is a time 

step. Let �n
i
≡ �(Si, nΔ�) . By applying the implicit Euler scheme (Kim et  al., 

2021) to Eq. (2), we obtain

We can rewrite the above Eq. (3) as

where

We solve the tridiagonal system (4) using the Thomas algorithm. In this study, we 
apply the following boundary conditions for the European call and put options:

and

respectively. Let {U�
�
} represent the market option prices at time T� for � = 1,… ,M� 

and K� denote the exercise prices for � = 1,… ,M� . Here, T1 < … < TM𝛼
 and 

K1 < ⋯ < KM𝛽
 . Using {U�

�
} , we calculate �(S, t) by minimizing the following 

expression (Kim & Kim, 2021):
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Fig. 1  Discrete underlying domain with an interval size, h 
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where uK�
(�;S0, T�) is the numerical solution of Eq. (2) with u0

i
= max(Si − K� , 0) . 

In this study, we use the lsqcurvefit function in MATLAB R2023a (MATLAB, 
2021), to calculate the argument minimum � for E(�).

In this study, we propose a novel, straightforward, robust, and accurate calibration 
algorithm for local volatility surfaces based on observed market call and put option 
prices. The rationale behind our proposed algorithm stems from the lack of unique-
ness of local volatility surfaces and the presence of the volatility smile. To prevent 
the occurrence of highly oscillatory volatility over time, we strategically place sam-
ple points at the average times of expiration dates, as demonstrated in (Jin et  al., 
2018), where the focus was exclusively on reconstructing the time-dependent vola-
tility function using the BS equation. To incorporate the volatility smile and main-
tain simplicity, we position only three sample points which guarantee the convexity 
of the volatility function over the underlying asset at each time level.

Specifically, let t1 = 0 ; tq = (Tq−1 + Tq)∕2 for q = 2,… ,M� − 1 ; and tM�
= TM�

 as 
shown in Fig. 2a. Let us define the volatility values at the sample points as follows: 

(5)E(�) =
1

M�M�

M�
∑

�=1

M�
∑

�=1

[uK�
(�;S0, T�) − U�

�
]2,

Fig. 2  Schematic diagrams of the proposed local volatility surface: Black–Schole sample point positions, 
b volatility values at the sample points, c discretization of the computational domain, and d interpolated 
volatility surface
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�(Xq, tq) = �q, �(0, tq) = �M�+1
, and �(Smax, tq) = �M�+2

for q = 1,… ,M� , where 
Xq , �q , �M�+1

 , and �M�+2
 for q = 1,… ,M� are parameters that we need to optimize, 

see Fig. 2b. Figure 2c, d display the discretization of the computational domain and 
the interpolated volatility surface, respectively. Here, Xq for q = 1,… ,M� represents 
the position of the sample points. The primary contribution of this study is that our 
proposed algorithm not only optimizes the volatility values at the sample points but 
also optimizes the positions of the sample points using a least squares method.

3  Numerical Tests

In this section, we conduct various computational tests to validate the superior 
performance of the proposed calibration method for local volatility surfaces using 
observed market call and put option prices.

3.1  Robustness of the Numerical Method

We first test the robustness of the proposed numerical method. It is well known that 
there is no uniqueness of the volatility surface. To effectively and fairly compare the 
constructed local volatility surfaces on an effective domain, we consider the follow-
ing probability density function of a log-normal distribution (Kim & Kim, 2021).

We use strike prices K� = 352.5 + 2.5(� − 1) for � = 1, 2,⋯ , 5 and maturities 
T1 = 14Δ� , T2 = 42Δ� , and T3 = 77Δ� , where Δ� = 1∕365 . The present value of 
the KOSPI 200 index is S0 = 357.99 , with an interest rate of r = 0.0383 , � = 0.3 , 
the underlying domain Ω = (0, 3S0) , and NS = 1074 . The premiums for KOSPI 200 
index call options at different strikes and maturities are given in Table 1.

The initial parameters are Xq = S0 , �q = �∗ , �M�+1
= �∗ , and �M�+2

= �∗ for 
q = 1,⋯ ,M� . Here, we test various initial values of �∗ to validate the robustness of 
the proposed numerical algorithm. Figure 3a shows the reconstructed local volatility 
surfaces with initial volatility values �∗ = 0.1, 0.2,⋯ , 0.5 and Fig. 3b displays the 
reconstructed local volatility surfaces of Fig. 3a on the effective domain. The effec-
tive domain is defined as inside the contour of f(S,  t) at a level 0.0001 in Eq. (6). 

(6)

f (S, t) =
1

�S
√

2�t
exp

�

−
[ln(S∕S0) − (r − �2∕2)t]2

2�2t

�

, S ∈ (0, 3S0), t ∈ (0, 77∕365).

Table 1  Premiums for KOSPI 200 index call options at different strikes and maturities on 28 December 
2023

Case K
1
= 352.5 K

2
= 355 K

3
= 357.5 K

4
= 360 K

5
= 362.5

T
1
= 14Δ� 9.46 7.64 6.13 4.76 3.61

T
2
= 42Δ� 12.93 11.35 9.85 8.51 7.29

T
3
= 77Δ� 15.78 14.10 12.57 11.20 9.97
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Based on these results, it is evident that the proposed local volatility reconstruction 
method is robust with respect to the initial guess of the volatility.

3.2  Construction of �(S, t) Using the Market Data from KOSPI 200 Index Options

We test the proposed method by computing a local volatility surface with real market 
data from KOSPI 200 index call options on 28 December 2023. In this test, we use 
strike prices K� = 352.5 + 2.5(� − 1) for � = 1, 2,⋯ , 5 and maturities T1 = 14Δ� , 
T2 = 42Δ� , and T3 = 77Δ� , where Δ� = 1∕365 . The present value of the KOSPI 
200 index is S0 = 357.99 , and we use an interest rate of r = 0.0383 . The underly-
ing domain is Ω = (0, 3S0) with NS = 1074 . The initial parameters are Xq = S0 , 
�q = 0.3 , �M�+1

= 0.3 , and �M�+2
= 0.3 for q = 1,⋯ ,M� . The premiums for KOSPI 

200 index call options at different strikes and maturities are given in Table 1. Fig. 4a 
shows the local volatility surface reconstructed from the proposed algorithm using 
real market data from KOSPI 200 index call options. Figure  4b displays the call 
option market prices (represented by circle symbol) and the computed call option 
prices (represented by plus symbol) using the reconstructed local volatility surface. 
We can observe that some market prices deviate from the theoretical prices due to 
market frictions such as a lack of trading volume and transaction costs. We can also 
interpret these deviations as either overestimated or underestimated prices compared 
to the theoretical prices.

Next, we consider the construction of a local volatility surface using 
real market data from KOSPI 200 index put options. We use strike prices 
K� = 352.5 + 2.5(� − 1) for � = 1, 2,⋯ , 5 , maturities T1 = 14Δ� , T2 = 42Δ� , and 
T3 = 77Δ� , S0 = 357.99 , and r = 0.0383 . The underlying domain is Ω = (0, 3S0) 
with NS = 1074 . The initial parameters are Xq = S0 , �q = 0.3 , �M�+1

= 0.3 , and 
�M�+2

= 0.3 for q = 1,⋯ ,M� . The premiums for KOSPI 200 index put options at 
different strikes and maturities are given in Table 2.

Figure  5b displays the reconstructed local volatility surface obtained from the 
proposed method using the KOSPI 200 index put options. Figure  5c shows the 

Fig. 3  a Reconstructed local volatility surfaces with initial volatility values �∗ = 0.1, 0.2,⋯ , 0.5 from 
KOSPI 200 index call options on 28 December 2023. b Reconstructed local volatility surfaces of (a) on 
the effective domain
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market prices of put options (circle symbol) and the computed put option prices 
(plus symbol) using the reconstructed local volatility surface. It is evident that some 
market prices deviate from the theoretical prices. We can also interpret these devia-
tions as either overestimated or underestimated prices compared to the theoretical 
prices.

3.3  Construction of �(S, t) Using the Market Data from S &P 500 Index Options

We apply the proposed approach to construct a local volatility surface using real 
market data from S &P 500 index call options on 29 December 2023. For this 

Fig. 4  a Positions of reconstructed points. b Reconstructed local volatility surface from KOSPI 200 
index call options on 28 December 2023. c Call option market prices and computed call option prices 
using the reconstructed local volatility surface

Table 2  Premiums for KOSPI 200 index put options at different strikes and maturities on 28 December 
2023

Case K
1
= 352.5 K

2
= 355 K

3
= 357.5 K

4
= 360 K

5
= 362.5

T
1
= 14Δ� 1.95 2.68 3.62 4.75 6.10

T
2
= 42Δ� 4.38 5.24 6.22 7.38 8.63

T
3
= 77Δ� 6.31 7.21 8.19 9.30 10.50
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test, we use strike prices K� = 4760 + 5(� − 1) for � = 1, 2,⋯ , 5 and maturities 
T1 = 21Δ� , T2 = 49Δ� , and T3 = 77Δ� . The current value of the S &P 500 index 
is S0 = 4769.83 , and we use an interest rate of r = 0.052 . The underlying domain 
is Ω = (0, 3S0) with NS = 2862 . The initial parameters are Xq = S0 , �q = 0.3 , 
�M�+1

= 0.3 , and �M�+2
= 0.3 for q = 1,⋯ ,M� . The premiums for S &P 500 index 

call options at different strikes and maturities are listed in Table 3.
Figure 6b shows the local volatility surface reconstructed from the proposed 

algorithm based on the real market data from S &P 500 index call options. Fig-
ure 6c displays the market prices of call options (represented by circle symbol) 
and the computed call option prices (represented by plus symbol) using the 

Fig. 5  a Reconstructed local volatility surface from KOSPI 200 index put options on 28 December 2023. 
b Positions of reconstructed points. c Put option market prices and computed put option prices using the 
reconstructed local volatility surface

Table 3  Premiums for S &P 500 index call options at different strikes and maturities on 29 December 
2023

Case K
1
= 4760 K

2
= 4765 K

3
= 4770 K

4
= 4775 K

5
= 4780

T
1
= 21Δ� 58.20 55.10 52.10 49.20 46.55

T
2
= 49Δ� 101.30 98.15 94.95 91.85 88.80

T
3
= 77Δ� 135.35 132.05 128.80 125.60 122.40
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reconstructed local volatility surface. We can observe that some market prices 
deviate from the theoretical prices due to market frictions such as limited trad-
ing volume and transaction costs. These deviations can be interpreted as either 
overestimated or underestimated prices compared to the theoretical prices.

Next, we consider the construction of a local volatility surface using 
real market data from S &P 500 index put options. We use strike prices 
K� = 4760 + 5(� − 1) for � = 1, 2,⋯ , 5 , maturities T1 = 21Δ� , T2 = 49Δ� , and 
T3 = 77Δ� , S0 = 4769.83 , and r = 0.052 . The underlying domain Ω = (0, 3S0) 
and NS = 2862 . The initial parameters are Xq = S0 , �q = 0.3 , �M�+1

= 0.3 , and 
�M�+2

= 0.3 for q = 1,⋯ ,M� . The premiums for S &P 500 index put options at 
different strikes and maturities can be found in Table 4.

Figure 7b displays the reconstructed local volatility surface obtained from the 
proposed algorithm using S &P 500 index put options. Figure 7c shows the mar-
ket prices of put options (circle symbol) and the computed put option prices 
(plus symbol) using the reconstructed local volatility surface. It is evident that 
some market prices deviate from the theoretical prices. We can also interpret 
these deviations as either overestimated or underestimated prices compared to 
the theoretical prices.

Fig. 6  a Reconstructed local volatility surface from S &P 500 index call options on 29 December 2023. 
b Positions of reconstructed points. c Call option market prices and computed call option prices using the 
reconstructed local volatility surface
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3.4  Construction of �(S, t) Using the Market Data from Hang Seng Index Options

We conduct a numerical simulation to validate the performance of the pro-
posed method by computing a local volatility surface using real market data 
from Hang Seng index call options on 29 December 2023. We use strike prices 
K� = 16800 + 100(� − 1) for � = 1, 2,⋯ , 5 and maturities T1 = 32Δ� , T2 = 61Δ� , 
and T3 = 89Δ� , where Δ� = 1∕365 . The present value of the Hang Seng index 
is set at S0 = 17047.39 , and we use an interest rate of r = 0.0446 . The underly-
ing domain is Ω = (0, 3S0) with NS = 5114 . The initial parameters are Xq = S0 , 

Table 4  Premiums for S &P 500 index put options at different strikes and maturities on 29 December 
2023

Case K
1
= 4760 K

2
= 4765 K

3
= 4770 K

4
= 4775 K

5
= 4780

T
1
= 21Δ� 35.35 37.20 39.20 41.30 43.45

T
2
= 49Δ� 62.80 64.55 66.40 68.20 70.10

T
3
= 77Δ� 82.55 84.15 85.85 87.60 89.35

Fig. 7  a Reconstructed local volatility surface from S &P 500 index put options on 29 December 2023. 
b Positions of reconstructed points. c Put option market prices and computed put option prices using the 
reconstructed local volatility surface
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�q = 0.3 , �M�+1
= 0.3 , and �M�+2

= 0.3 for q = 1,⋯ ,M� . The premiums for call 
options at different strikes and maturities are listed in Table 5.

Figure  8b shows the local volatility surface reconstructed using the proposed 
algorithm with real market data from Hang Seng index call options. Figure 8c dis-
plays the Hang Seng index call option market prices (represented by circle symbol) 
and the computed Hang Seng index call option prices (represented by plus symbol) 
using the reconstructed local volatility surface. We can observe that some market 
prices deviate from the theoretical prices due to market frictions such as a lack of 
trading volume and transaction costs. These deviations can also be interpreted as 
either overestimated or underestimated prices compared to the theoretical prices.

Table 5  Premiums for Hang Seng index call options at different strikes and maturities on 29 December 
2023

Case K
1
= 16800 K

2
= 16900 K

3
= 17000 K

4
= 17100 K

5
= 17200

T
1
= 32Δ� 601 541 485 433 386

T
2
= 61Δ� 811 751 696 643 592

T
3
= 89Δ� 942 885 831 778 727

Fig. 8  a Reconstructed local volatility surface from Hang Seng index call options on 29 December 2023. 
b Positions of reconstructed points. c Call option market prices and computed call option prices using the 
reconstructed local volatility surface
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Next, we consider the creation of a local volatility surface using actual mar-
ket data from Hang Seng index put options on 10 July 2023. We use strike prices 
K� = 16800 + 100(� − 1) for � = 1, 2,⋯ , 5 , maturities T1 = 32Δ� , T2 = 61Δ� , 
and T3 = 89Δ� , where Δ� = 1∕365 , S0 = 17047.39 , and r = 0.0446 . The under-
lying domain is Ω = (0, 3S0) with NS = 5114 . The initial parameters are Xq = S0 , 
�q = 0.3 , �M�+1

= 0.3 , and �M�+2
= 0.3 for q = 1,⋯ ,M� . The premiums for Hang 

Seng index put options at different strikes and maturities are given in Table 6.
Figure  9b displays the reconstructed local volatility surface obtained from the 

proposed method using Hang Seng index put options. Figure 9c shows the market 

Table 6  Premiums for Hang Seng index put options at different strikes and maturities on 29 December 
2023

Case K
1
= 16800 K

2
= 16900 K

3
= 17000 K

4
= 17100 K

5
= 17200

T
1
= 32Δ� 273 313 357 401 459

T
2
= 61Δ� 409 450 493 539 589

T
3
= 89Δ� 550 593 638 685 735

Fig. 9  a Reconstructed local volatility surface from Hang Seng index put options on 29 December 2023. 
b Positions of reconstructed points. c Put option market prices and computed put option prices using the 
reconstructed local volatility surface
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prices of Hang Seng index put options (circle symbol) and the computed prices of 
Hang Seng index put options (plus symbol) using the reconstructed local volatility 
surface. Clearly, there are discrepancies between some market prices and the theo-
retical prices. These disparities can be interpreted as either overestimated or under-
estimated prices compared to the theoretical prices.

3.5  Construction of �(S, t) Using the Market Data from Euro Stoxx 50 Index 
Options

We compute a local volatility surface with real market data from Euro Stoxx 50 
index call options on 29 December 2023. In this test, we use NS = 1356 , strike 
prices K� = 4475 + 25(� − 1) for � = 1, 2,⋯ , 5 , and maturities T1 = 21Δ� , 
T2 = 49Δ� , and T3 = 77Δ� , where Δ� = 1∕365 . The present value of the Euro Stoxx 
50 index is S0 = 4521.65 , and we use an interest rate of r = 0.03909 . The underlying 
domain Ω = (0, 3S0) . The initial parameters are Xq = S0 , �q = 0.3 , �M�+1

= 0.3 , and 
�M�+2

= 0.3 for q = 1,⋯ ,M� . The premiums for Euro Stoxx 50 index call options at 
different strikes and maturities are listed in Table 7.

Figure  10b shows the local volatility surface reconstructed from the proposed 
algorithm using real market data from Euro Stoxx 50 index call options. Figure 10c 
displays call option market prices (circle symbol) and computed call option prices 
(plus symbol) using the reconstructed local volatility surface. We can observe that 
when the strike price is K = 4475 , the market prices are lower than the theoretical 
values for a call option, indicating that the option price is undervalued. On the other 
hand, when K = 4575 and T = 77Δ� , the market price is higher than the theoretical 
value. Thus, we can conclude that the option price is overvalued.

Next, we consider the construction of a local volatility surface using real 
market data from Euro Stoxx 50 index put options. We use strike prices 
K� = 4475 + 25(� − 1) for � = 1, 2,⋯ , 5 , maturities T1 = 21Δ� , T2 = 49Δ� , and 
T3 = 77Δ� , where Δ� = 1∕365 , S0 = 4521.65 , and r = 0.03909 . The underlying 
domain Ω = (0, 3S0) and NS = 1356 . The initial parameters are Xq = S0 , �q = 0.3 , 
�M�+1

= 0.3 , and �M�+2
= 0.3 for q = 1,⋯ ,M� . The premiums for Euro Stoxx 50 

index put options at different strikes and maturities are given in Table 8.
Figure  11b illustrates the reconstructed local volatility surface obtained from 

the proposed method using Euro Stoxx 50 index put options. Figure  11c displays 
Euro Stoxx 50 put option market prices (circle symbol) and computed Euro Stoxx 
50 put option prices (plus symbol) using the reconstructed local volatility surface. It 

Table 7  Premiums for Euro Stoxx 50 index call options at different strikes and maturities on 29 Decem-
ber 2023

Case K
1
= 4475 K

2
= 4500 K

3
= 4525 K

4
= 4550 K

5
= 4575

T
1
= 21Δ� 78.4 61.9 47.5 35.3 25.4

T
2
= 49Δ� 114.8 98.8 84.1 70.6 58.6

T
3
= 77Δ� 149.1 132.8 117.6 103.3 90.1
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is evident that some market prices deviate from the theoretical prices. We can also 
interpret these deviations as either overestimated or underestimated prices compared 
to the theoretical prices.

Next, let us now turn our attention to the comparison of the volatility surfaces 
for the four different stock indexes. We consider the local volatility surfaces recon-
structed from the four different stock indices. This comparative test provides valu-
able insights into their respective behavior patterns and dynamic characteristics 
exhibited by each index and helps our understanding of their respective dynamics. 
We scale the underlying asset price for each stock index to compare different stock 
indices as S̄ = S∕S0, for S ∈ (0, 3S0) . Figure 12a and b show the reconstructed local 

Fig. 10  a Reconstructed local volatility surface from Euro Stoxx 50 index call options on 29 December 
2023. b Positions of reconstructed points. c Call option market prices and computed call option prices 
using the reconstructed local volatility surface

Table 8  Premiums for Euro Stoxx 50 index put options at different strikes and maturities on 29 Decem-
ber 2023

Case K
1
= 4475 K

2
= 4500 K

3
= 4525 K

4
= 4550 K

5
= 4575

T
1
= 21Δ� 30.1 38.5 49.0 61.8 76.9

T
2
= 49Δ� 59.3 68.2 78.3 89.8 102.6

T
3
= 77Δ� 80.5 89.1 98.6 109.1 120.6
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volatility surfaces 𝜎(S̄, t) of the call and put options on stock indices with a contour 
of the probability density function, respectively. Here, we use the � = 0.18 , r = 0.03 , 
and S0 = 1 for probability density function. The effective domain is defined as the 
inside the contours of f (S̄, t) at a level 0.0001 in Eq. (6). We observe variations in 
the local volatility surfaces among the different stock indices, with some displaying 
higher values while others exhibit lower levels compared to their counterparts.

Fig. 11  a Reconstructed local volatility surface from Euro Stoxx 50 index put options on 29 December 
2023. b Positions of reconstructed points. c Put option market prices and computed put option prices 
using the reconstructed local volatility surface

Fig. 12  Reconstructed local volatility surfaces of the call a and put b options on the four different stock 
indices
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3.6  Sharp Fluctuation of the Stock Index

We perform a numerical simulation demonstrating the capability of the proposed 
volatility surface calibration algorithm in handling sharp fluctuations of the KOSPI 
200 index. For the numerical experiment, we use call option price data from the day 
of sharp fluctuations in the KOSPI 200 index, as indicated by the red dot in Fig. 13a. 
The call option prices for the KOSPI 200 index are listed in Table 9.

Table 9  Premiums for KOSPI 200 index call options at different strikes and maturities on 4 October 
2023

Case K
1
= 315 K

2
= 317.5 K

3
= 320 K

4
= 322.5 K

5
= 325

T
1
= 8Δ� 5.73 4.18 2.73 1.67 0.93

T
2
= 36Δ� 9.10 7.90 6.60 5.28 4.04

T
3
= 64Δ� 12.40 10.85 9.45 8.39 7.13

Fig. 13  a KOSPI 200 index. b Call option market prices and computed call option prices using the 
reconstructed local volatility surface. c Positions of reconstructed points. d Reconstructed local volatility 
surface from KOSPI 200 index call options on 04 October 2023
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Figure 13a–d show the KOSPI 200 index, call option market prices, computed 
prices by the proposed method, positions of reconstructed points, and reconstructed 
local volatility function using the KOSPI 200 index call option prices, respectively. 
In this test, we used the same model and numerical parameter values as in the previ-
ous case of the KOSPI 200 index. The computational results indicate that the pro-
posed volatility surface calibration can effectively handle relatively sharp changes in 
the underlying index.

3.7  Historical Market Data

In this section, we consider the construction of local volatility surfaces using two 
sets of historical market data and conduct a comparative analysis. The primary 
objective of this test is to explore the predictive capability of the proposed model. 
For the numerical simulation, we use the KOSPI 200 index call option prices on 28 
December 2023 and 4 January 2024. The call option prices for the KOSPI 200 index 
on 28 December 2023 are identical to the data used in Sec.  3.2. The call option 
prices for the KOSPI 200 index on 4 January 2024 are listed in Table 10.

Table 10  Premiums for KOSPI 200 index call options at different strikes and maturities on 4 January 
2024

Case K
1
= 352.5 K

2
= 355 K

3
= 357.5 K

4
= 360 K

5
= 362.5

T
1
= 8Δ� 1.98 1.35 0.92 0.61 0.40

T
2
= 36Δ� 5.82 4.79 3.25 3.25 2.60

T
3
= 64Δ� 10.00 7.48 5.71 5.71 4.69

Fig. 14  Reconstructed local volatility surfaces of the call options on 28 December 2023 and 4 January 
2024
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Figure 14 shows the reconstructed local volatility surfaces on the effective domains 
of the call options on 28 December 2023 and 4 January 2024. Here, we used strike 
prices K� = 352.5 + 2.5(� − 1) for � = 1, 2,⋯ , 5 , Δ� = 1∕365 , � = 0.3 , an interest 
rate of r = 0.0383 , and the underlying domain Ω = (0, 3S0) . The KOSPI 200 indices 
on 28 December 2023 and 4 January 2024 are 357.99 and 348.07, respectively.

The local volatility surface on 4 January 2024 is slightly tilted compared to that on 
28 December 2023. However, the overall shape is similar to each other in the common 
region. Based on this observation, we can predict the future behavior of the local vola-
tility surface from its current state.

4  Conclusions

In this paper, we proposed a simple, robust, and efficient computational algorithm 
for reconstructing the local volatility surface using the generalized BS equation. We 
reconstructed the local volatility function that best fits the theoretical and market option 
prices. We conducted a computational experiment on the reconstruction of the local 
volatility functions for the KOSPI 200 index, S &P 500 index, Hang Seng index, and 
Euro Stoxx 50 index options. The numerical experiments validated the high perfor-
mance of the proposed algorithm for reconstructing the local volatility surface. In addi-
tion, we will extend the proposed method in the future to reconstruct the local volatility 
function for Bitcoin, one of the most volatile cryptocurrencies as a virtual currency 
(Azizi et al., 2023). Volatility plays a crucial role in financial economics and investment 
theory. Scholars in this area study volatility to understand the risk and return profiles 
of financial assets. They analyze volatility patterns to make informed investment deci-
sions, construct portfolio strategies, and develop pricing models for options and deriva-
tives. Hence, the analysis of volatility provides a prominent position in contemporary 
finance and drives innovation and influencing the development of investment strategies 
and financial decision-making frameworks.

5  Use of AI Tools Declaration

The authors have not used Artificial Intelligence (AI) tools in the creation of this article.

Appendix

The following MATLAB source code is also available from the corresponding author’s 
webpage: https:// mathe matic ians. korea. ac. kr/ cfdkim/ open- source- codes/

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
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