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a b s t r a c t

In this paper we perform a comparison study of alternating direction implicit (ADI) and
operator splitting (OS) methods on multi-dimensional Black–Scholes option pricing mod-
els. The ADI method is used extensively in mathematical finance for numerically solving
multi-factor option pricing problems. However, numerical results from the ADI scheme
show oscillatory solution behaviors with nonsmooth payoffs or discontinuous derivatives
at the exercise price with large time steps. In the ADI scheme, there are source termswhich
include y-derivatives when we solve x-derivative involving equations. Then, due to the
nonsmooth payoffs, source terms contain abrupt changes which are not in the range of
implicit discrete operators and this leads to difficulty in solving the problem. On the other
hand, the OS method does not contain the other variable’s derivatives in the source terms.
We provide computational results showing the performance of the methods for two-asset
option pricing problems. The results show that the OS method is very efficient and gives
better accuracy and robustness than the ADI method with large time steps.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In today’s financial markets, options are the most common securities that are frequently bought and sold. Under the
Black–Scholes partial differential equation (BS PDE) framework, various numerical methods (see e.g., [1–5]) have been
presented by using the finite difference method (FDM) to solve the option pricing problems (see e.g., [6–12]). However
most option pricing problems have nonsmooth payoffs or discontinuous derivatives at the exercise price. Standard finite
difference schemes used to solve the problems with nonsmooth payoffs and large time steps do not work well because
of discontinuities introduced in the source terms. Moreover, these unwanted oscillations become problematic when we
estimate the Greeks, the hedging parameters such as Delta, Gamma, Rho, Theta, and Vega.

Let si(t), i = 1, 2, . . . , d denote the value of the underlying i-th asset at time t and u(s, t) denote the price of an option.
Here, s = (s1, s2, . . . , sd). In the Black–Scholes model [13], each underlying asset si(t) satisfies the following stochastic
differential equation:

dsi(t) = µisi(t)dt + σisi(t)dWi(t), i = 1, 2, . . . , d,

whereµi, σi, andWi(t) are the expected instantaneous rate of return, constant volatility, and standard Brownianmotion on
the underlying asset si, respectively. And the term dW contains the randomness which is certainly a feature of asset prices
and is assumed to be a Wiener process. The Wiener processes are correlated by


dWidWj


= ρijdt . Then the generalized BS
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PDE can be derived by using Ito’s lemma and the no-arbitrage principle:

∂u(s, t)
∂t

+

d
i=1

rsi
∂u(s, t)

∂si
+

1
2

d
i,j=1

ρijσiσjsisj
∂2u(s, t)
∂si∂sj

− ru(s, t) = 0,

u(s, T ) = Λ(s),

where r > 0 is a constant riskless interest rate and Λ(s) is the payoff function.
This paper is organized as follows. In Section 2, we introduce the Black–Scholes model in two-dimensional space and

describe the ADI and OS numerical methods for the BS PDE. In Section 3, we present several numerical results showing the
performance of the standard ADI and OS methods. Then we summarize our results in Section 4.

2. ADI and OS methods for the BS equation

In this paper, we focus on the two-dimensional Black–Scholes equation. Let LBS be the operator

LBS =
1
2
σ 2
1 x

2 ∂2u
∂x2

+
1
2
σ 2
2 y

2 ∂2u
∂y2

+ ρσ1σ2xy
∂2u
∂x∂y

+ rx
∂u
∂x

+ ry
∂u
∂y

− ru.

Then the Black–Scholes equation can be written as

∂u
∂τ

= LBS for (x, y, τ ) ∈ Ω × (0, T ], (1)

where τ = T − t . Originally, the option pricing problems are defined in the unbounded domain Ω × (0, T ] = {(x, y, t) |

x > 0, y > 0, τ ∈ (0, T ]}. However, we need to truncate this unbounded domain into a finite computational domain
in order to solve Eq. (1) numerically by a finite difference method. Therefore, we consider Eq. (1) on a finite domain:
(0, L)×(0,M)×(0, T ], where L andM are large enough so that the error in the price u is negligible. Let us first discretize the
given computational domainΩ = (0, L)× (0,M)with a uniform space step h = L/Nx = M/Ny and a time step1τ = T/Nτ .
Here, Nx,Ny, and Nτ are the number of grid points in the x-, y-, and τ -direction, respectively. Furthermore, let us denote
the numerical approximation of the solution by un

ij ≡ u(xi, yj, τ n) = u (ih, jh, n1τ), where i = 0, . . . ,Nx, j = 0, . . . ,Ny,
and n = 0, . . . ,Nτ . We use the vertex-centered discretization since we will use a linear boundary condition [7,14–16]:
∂2u
∂x2

(0, y, τ ) =
∂2u
∂x2

(L, y, τ ) =
∂2u
∂y2

(x, 0, τ ) =
∂2u
∂y2

(x,M, τ ) = 0, for 0 ≤ x ≤ L, 0 ≤ y ≤ M, 0 ≤ τ ≤ T .

2.1. Alternating directions implicit method

The main idea of the ADI method (see e.g., [17,18]) is to proceed in two stages, treating only one operator implicitly at
each stage. First, a half-step is taken implicitly in x and explicitly in y. Then, the other half-step is taken implicitly in y and
explicitly in x. The full scheme is

u
n+ 1

2
ij − un

ij

1τ
= Lx

ADIu
n+ 1

2
ij , (2)

un+1
ij − u

n+ 1
2

ij

1τ
= L

y
ADIu

n+1
ij , (3)

where the discrete difference operators Lx
ADI and L

y
ADI are defined by

Lx
ADIu

n+ 1
2

ij =
(σ1xi)2

4

u
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2
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4
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Note that the addition of Eqs. (2) and (3) results in Eq. (4):

un+1
ij − un

ij

1τ
= Lx

ADIu
n+ 1

2
ij + L

y
ADIu

n+1
ij . (4)

Algorithm ADI.

• Step 1: The first stage of the ADI method, Eq. (2), can be rewritten as

αiu
n+ 1

2
i−1,j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1,j = fij, (5)

where

αi = −
(σ1xi)2

4h2
, βi =

1
1τ

+
(σ1xi)2

2h2
+

rxi
2h

+
r
2
, γi = −

(σ1xi)2

4h2
−

rxi
2h

, (6)

fij =
un
ij

1τ
+

1
4
(σ2yj)2

un
i,j+1 − 2un

ij + un
i,j−1

h2
+

1
2
ryj

un
i,j+1 − un

i,j

h

+
1
2
ρσ1σ2xiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
. (7)

For a fixed index j, the vector u
n+ 1

2
0:Nx,j can be found by solving the tridiagonal system

Axu
n+ 1

2
0:Nx,j = f0:Nx,j,

where Ax is a tridiagonal matrix constructed from Eq. (5) with a linear boundary condition, i.e.,

Ax =



2α0 + β0 γ0 − α0 0 · · · 0 0
α1 β1 γ1 · · · 0 0
0 α2 β2 · · · 0 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · βNx−1 γNx−1
0 0 0 · · · αNx − γNx βNx + 2γNx

 .

Step 1 of the ADI method is then implemented in a loop over the y-direction:

for j = 0 : Ny

for i = 0 : Nx

Set αi, βi, γi, and fij by Eqs. (6) and (7)
end

Solve Axu
n+ 1

2
0:Nx,j = f0:Nx,j by using the Thomas algorithm

end

• Step 2: The second stage of the ADI method, given by Eq. (3), is rewritten as

αjun+1
i,j−1 + βjun+1

ij + γjun+1
i,j+1 = gij, (8)

where

αj = −
(σ2yj)2

4h2
, βj =

1
1τ

+
(σ2yj)2

2h2
+

ryj
2h

+
r
2
, γj = −

(σ2yj)2

4h2
−

ryj
2h

, (9)

gij =
u
n+ 1

2
ij

1τ
+

(σ1xi)2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2
+

1
2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

i,j

h

+
1
2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

i−1,j−1 − u
n+ 1

2
i−1,j+1 − u

n+ 1
2

i+1,j−1

4h2
. (10)

For a fixed index i, the vector un+1
i,0:Ny

can be found by solving the tridiagonal system

Ayun+1
i,0:Ny

= gi,0:Ny ,
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where the matrix Ay is a tridiagonal matrix from Eq. (8):

Ay =



2α0 + β0 −α0 + γ0 0 · · · 0 0
α1 β1 γ1 · · · 0 0
0 α2 β2 · · · 0 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · βNy−1 γNy−1
0 0 0 · · · αNy − γNy βNy + 2γNy

 .

Step 2 is then implemented in a loop over the x-direction:

for i = 0 : Nx

for j = 0 : Ny

Set αj, βj, γj, and gij by Eqs. (9) and (10)
end
Solve Ayun+1

i,0:Ny
= gi,0:Ny by using the Thomas algorithm

end

Execution of Step 1 followed by Step 2 advances the solution with a 1τ -step in time.

2.2. Operator splitting method

The idea of the OS method is to divide each time step into fractional time steps with simpler operators (see e.g., [11,19]).
We shall introduce the basic OS scheme for the two-dimensional BS equation. The first leg is implicit in x while the second
leg is implicit in y. The full scheme is

u
n+ 1

2
ij − un

ij

1τ
= Lx

OSu
n+ 1

2
ij , (11)

un+1
ij − u

n+ 1
2

ij

1τ
= L

y
OSu

n+1
ij , (12)

where the discrete difference operators Lx
OS and L

y
OS are defined by

Lx
OSu

n+ 1
2

ij =
(σ1xi)2

2
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2
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2

ij + u
n+ 1

2
i+1,j

h2
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u
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2
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2

ij

h
−

r
2
u
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2
ij

+
1
2
σ1σ2ρxiyj
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i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
, (13)

L
y
OSu

n+1
ij =


σ2yj

2
2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
+ ryj

un+1
i,j+1 − un+1

ij

h
−

r
2
un+1
ij

+
1
2
σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

i−1,j−1 − u
n+ 1

2
i−1,j+1 − u

n+ 1
2

i+1,j−1

4h2
. (14)

The OS scheme moves from the time level n to an intermediate time level n +
1
2 and then to the time level n + 1. The

addition of Eqs. (11) and (12) results in Eq. (15):

un+1
ij − un

ij

1τ
= Lx

OSu
n+ 1

2
ij + L

y
OSu

n+1
ij . (15)

Algorithm OS.
• Step 1: Eq. (11) is rewritten as follows:

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij,

where

αi = −
σ 2
1 x

2
i

2h2
, βi =

1
1τ

+
σ 2
1 x

2
i

h2
+

rxi
h

+
r
2
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σ 2
1 x

2
i

2h2
−
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h

,

fij =
1
2
ρσ1σ2xiyj
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i+1,j+1 − un

i+1,j−1 − un
i−1,j+1 + un

i−1,j−1

4h2
+

un
i,j

1τ
.

We note that in the OS method we do not have ∂2u/∂y2 and ∂u/∂y terms in the source fij. Then the solution procedure
is the same as the ADI method.
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Fig. 1. RMSE is calculated on the gray region.

• Step 2: Eq. (12) is rewritten as follows:

αjun+1
ij−1 + βjun+1

ij + γjun+1
ij+1 = gij,

where

αj = −
σ 2
2 y

2
j

2h2
, βj =

1
1τ

+
σ 2
2 y

2
j

h2
+

ryj
h

+
r
2
, γj = −

σ 2
2 y

2
j

2h2
−

ryj
h

,

gij =
1
2
ρσ1σ2xiyj

u
n+ 1

2
i+1j+1 − u

n+ 1
2

i+1j − u
n+ 1

2
ij+1 + u

n+ 1
2

ij

4h2
+

u
n+ 1

2
ij

1τ
.

We also note that we do not have ∂2u/∂x2 and ∂u/∂x terms in the source gij and the solution procedure is the same as
the ADI method.

3. Numerical experiments

In this section, various numerical examples are presented to compare the performance of the two different numerical
schemes, the ADI and OS methods, for the BS equation. All computations were performed using MATLAB version 7.6 [20].
The error of the numerical solution was defined as eij = ue

ij − uij, where ue
ij is the exact solution and uij is the numerical

solution. To compare the errors of the ADI and OS methods, we computed discrete l2 norm ∥e∥2 and maximum norm ∥e∥∞

of the error. We also used the root mean square error (RMSE) on a specific region. The RMSE is defined as

RMSE =

 1
N

N
i,j


ue
ij − uij

2
,

whereN is the number of points on the gray region as shown in Fig. 1 and the region indicates a neighborhood of the exercise
prices X1 and X2.

3.1. Two-asset cash or nothing option

First, let us consider the two-asset cash or nothing call option [21]. Given two assets x and y, the payoff of the call option
is given as

Λ(x, y) =


Cash if x ≥ X1 and y ≥ X2,
0 otherwise,

where X1 and X2 are the strike prices of x and y, respectively (see Fig. 2).
The exact solution is obtained from a closed-form solution, which is provided in Appendix A.1.
The parameters used are σ1 = σ2 = 0.3, r = 0.03, ρ = 0.5, T = 0.5, Cash = 1, and X1 = X2 = 100. The computational

domain is Ω = [0, 300] × [0, 300].
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Fig. 2. Payoff of a two-asset cash or nothing call option.

Table 1
Numerical results of a two-asset cash or nothing call option with different time step 1τ and space step h. Here, ∥e∥2 and ∥e∥∞ are measured in a quarter
of the domain, [0, 150] × [0, 150].

Time 1τ Space h ADI OSM
∥e∥2 ∥e∥∞ RMSE ∥e∥2 ∥e∥∞ RMSE

0.05 5.0 0.000506 0.001952 0.000023 0.002411 0.010449 0.000147
0.025 2.5 0.000346 0.001266 0.000006 0.001043 0.004569 0.000028
0.0125 1.25 0.000207 0.000944 0.000003 0.000483 0.002136 0.000006
0.00625 0.625 N/A N/A N/A 0.000232 0.001030 0.000001

Table 2
Numerical results in the case of European option on the maximum of two-asset with respect to the time step 1τ and space step h. Here, ∥e∥2 and ∥e∥∞

are measured in a quarter of the domain, [0, 150] × [0, 150] and the RMSEs are evaluated in the gray region which is represented in Fig. 1.

Time 1τ Space h ADI OSM
∥e∥2 ∥e∥∞ RMSE ∥e∥2 ∥e∥∞ RMSE

0.05 5.0 0.057677 0.120848 0.006319 0.059967 0.175874 0.002286
0.025 2.5 0.027863 0.059866 0.001581 0.029001 0.085344 0.000610
0.0125 1.25 0.013713 0.029731 0.000395 0.014248 0.041703 0.000158
0.00625 0.625 N/A N/A N/A 0.007060 0.020569 0.000040

As shown in Table 1, the ADI shows better convergence results than the OSmethod with relatively large space step sizes.
However, with smaller space step size (equivalently with large temporal step size), the ADI shows blowup solutions while
the OS method produces convergent results.

To investigate what made blowup solutions for the ADI scheme, we compare solutions, u
1
2 and u1, and source terms,

f and g , generated from the ADI and OS methods. We used time step size, 1τ = 0.5, and space step size, h = 5.
In Fig. 3, the first and the second columns show the numerical results at each step of the ADI and OSM for a two-asset

cash or nothing option, respectively. As we can see from the figure, the numerical result of the ADI with a relatively large
time step shows oscillatory solution along the lines x = X1 and y = X2. In Fig. 3(a), source terms in the first steps are shown.
The source term in the ADImethod exhibits oscillation around y = X2 which is from the y-derivatives in the source term. On
the other hand, for the OSmethod, we do not have the y-derivatives in the source term and solution u

1
2 is monotone around

y = X2. Therefore, for the ADI we have an oscillatory solution at the first step. After one complete time step, the result with
the ADI shows a nonsmooth numerical solution. However, the OS method results in a smooth numerical solution.

3.2. Call option on the maximum of two assets

Next, we consider a vanilla call option whose payoff is given as

Λ(x, y) = max{x − X, y − X, 0}. (16)

Fig. 4 shows the payoff function (16).
In this case, we use the Dirichlet boundary condition at x = L and y = M and the linear boundary condition at x = 0 and

y = 0. The parameters used are σ1 = σ2 = 0.3, r = 0.03, ρ = 0.5, T = 0.5, and X = 100. The computational domain is
Ω = [0, 300] × [0, 300].

Table 2 shows the comparison of errors for the ADI and OS methods at time T . The exact solutions are obtained from
a closed-form solution, which is provided in Appendix A.2. The errors are similar in magnitude for the two methods until
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a

b

c

d

Fig. 3. Numerical results of cash or nothing option using the ADI and OSM. (a) Source term f at Step 1, (b) solution u
1
2 at Step 1, (c) source term g at Step 2,

and (d) solution u1 at Step 2.

space step h = 1.25. However, after that, the results from the ADI with smaller space steps show the blowup phenomenon
of solutions. On the other hand, the errors with the OSmethod do decrease with respect to time and space step refinements.

Fig. 5 shows numerical results using the ADI and OS methods with 1τ = 0.5 and h = 3. The first and second columns
are results with the ADI and OSmethods, respectively. In Fig. 5(a), source terms in the first steps are shown. The source term
in the ADI method exhibits oscillation around y = X which is from the y-derivatives in the source term. On the other hand,
for the OS method, we do not have the y-derivatives in the source term and solution u

1
2 is smooth around y = X . After one

complete time step, the result from the ADI shows a nonsmooth numerical solution. However, the OS method results in a
smooth numerical solution.

4. Conclusion

In this paper we performed a comparison study of alternating direction implicit and operator splitting methods on two-
dimensional Black–Scholes option pricing models. In the ADI scheme, there are source terms which include y-derivatives
when we solve x-derivative involving equations. The source terms contain abrupt changes due to the nonsmooth payoffs
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Fig. 4. European call option payoff on the maximum of two assets.

and are not in the range of implicit discrete operators, which leads to difficulty in solving the problem. On the other hand,
the OS method does not contain the other variable’s derivatives in the source terms. We provided computational results
showing the performance of the methods for two-asset option pricing problems. The results showed that the OS method is
very efficient and robust than the ADI method with large time steps.
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Appendix. MATLAB code for closed-form solutions

A.1. Cash or nothing option

sigma1=0.3; sigma2=0.3; r=0.03; rho=0.5; T=0.5; Cash=1;
X1=100; X2=100; L=300; M=300; Nx=60; Ny=60;
x=linspace(0,L,Nx+1); y=linspace(0,M,Ny+1);
for i=1:Nx+1

for j=1:Ny+1
y1=(log(x(i)/X1)+(r-sigma{1}^{2}/2)*T)/(sigma1*sqrt(T));
y2=(log(y(j)/X2)+(r-sigma{2}^{2}/2)*T)/(sigma2*sqrt(T));
V(i,j)=Cash*exp(-r*T)*mvncdf([y1 y2],[0 0],[1 rho; rho 1]);

end
end; surf(x,y, V)

A.2. Max max option

sigma1=0.3; sigma2=0.3; r=0.03; rho=0.5; T=0.5; X=100; L=300;
M=300; Nx=60; Ny=60;x=linspace(0,L,Nx+1); y=linspace(0,M,Ny+1);
sig=sqrt(sigma{1}^{2}+sigma{2}^{2}-2*rho*sigma1*sigma2);
rho1=(sigma1-rho*sigma2)/sig; rho2=(sigma2-rho*sigma1)/sig;
for i=1:Nx+1

for j=1:Ny+1
d=(log(x(i)/y(j))+0.5*sig^2*T)/(sig*sqrt(T));
y1=(log(x(i)/X)+0.5*sigma{1}^{2}*T)/(sig*sqrt(T));
y2=(log(y(j)/X)+0.5*sigma{2}^{2}*T)/(sig*sqrt(T));
V(i,j)=x(i)*mvncdf([y1 d],[0 0],[1 rho1; rho1 1]) ...
+y(j)*mvncdf([y2 -d+sig*sqrt(T)],[0 0],[1 rho2; rho2 1]) ...

-X*exp(-r*T)*(1-mvncdf([-y1+sigma1*sqrt(T) ...
-y2+sigma2*sqrt(T)],[0 0],[1 rho; rho 1]));

end
end; surf(x,y, V)
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a

b

c

d

Fig. 5. Numerical results using the ADI and OS methods with European call option on the maximum of two assets. (a) Source term f at Step 1, (b) solution
u

1
2 at Step 1, (c) source term g at Step 2, and (d) solution u1 at Step 2.
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