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Cahn-Hilliard equation stable scheme. Various numerical experiments are performed on arbitrary domains. The
Complex domain numerical results show that the proposed algorithm can deal with the complex domains
Phase separation efficiently.

Multigrid method X .
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1. Introduction

A phase-field model is a mathematical model for describing and solving interfacial problems such as solidification, motion
by mean curvature, image segmentation, microstructure evolution, viscous fingering, fracture, multiphase fluid flow, and
vesicle dynamics [1]. In the phase-field model, boundary conditions at the interface is replaced by a partial differential
equation for the evolution of an order parameter, which is also called by the phase-field. This phase-field has two different
values (for example, 0 and 1) in each of the phases and there is a smooth and finite transition layer between both values
along the interface. The position of the interface can be defined as a level set of the phase-field function. A phase-field model
is typically constructed to recover the correct interfacial dynamics as the interface width approaches zero. With this phase-
field model, we can deal with the interfacial problems by solving partial differential equations for the whole domain and
avoid the explicit treatment of the boundary conditions at the interface. Typically, the Cahn-Hilliard (CH) [2] and the Allen-
Cahn (AC) [3] equations are used for the conserved and non-conservative phase-fields, respectively. As a similar approach,
there is density-gradient theory for interfacial problems. Kou and Sun [4] proposed thermodynamically consistent modeling
and presented simulation of multi-component two-phase fluid flow with partial miscibility

In this study, we consider a new simple numerical method for the CH equation in complex domains. The CH equation is
a mathematical model to describe phase separation in a binary alloy and has been applied to many areas of scientific fields
[5-10]. See [11] for the physical, mathematical, and numerical derivations of the CH equation. See [12] for a benchmark
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problem for the CH equation. Areias et al. [13] developed an efficient staggered algorithm for the CH equation and finite
strain elasticity. They also presented isogeometric analysis with strong multipatch C!-coupling for the CH equation in [14].
The numerical methods for the CH equation in irregular domains have been developed [15-17]. Shin et al. [15] proposed a
numerical method for the CH equation in non-regular domains by imposing a boundary control function. Li et al. [16] de-
veloped a conservative numerical method for the CH equation with Dirichlet boundary conditions in arbitrary domains.
Aland et al. [17] combined a diffuse-domain method with a phase-field method for studying the two-phase flow in complex
geometries, the complex internal boundary conditions are imposed on implicit solid domain by using source terms.

Unlike the previous numerical methods, our proposed method is very simple to treat the CH equation in complex do-
mains. In this study, the proposed mathematical model for the binary mixture is based on the ternary CH system which
models the phase separation of a three-component mixture. Here, a complex domain is defined by a level-set of the third
phase, which is fixed during the temporal evolution of the other two phases. By the locally conservative property of the
sum of the three phases, we only need to solve a binary CH equation with a source term.

Furthermore, after a small modification (i.e., adding the source term) of the pre-existing codes (e.g., Fourier spectral
method [18-20], finite element method [21-24], and isogeometric method [25-27]) for the CH equation, the proposed algo-
rithm can be straightforwardly implemented.

The contents of this paper are organized as follows. In Section 2, we describe the proposed governing equation for phase
separation in the arbitrary domains. In Section 3, we present a nonlinear splitting finite difference scheme for the modified
CH equation. We present computational experiments in Section 4. Finally, conclusions are drawn in Section 5.

2. Modified Cahn-Hilliard equation

To derive the modified CH equation in the complex domain, we first consider the evolution of the ternary CH system in a
domain Q c RY, where d = 2 and 3 are space dimensions. Let c;(x, t) for i = 1,2, 3 be the mole fraction of each component
in the ternary mixture as a function of space x and time t. By the mass conservation, the total sum of mole fractions must
be to 1, i.e.,

axt)+cxt)+c3(x,t)=1. (1)
We consider the Helmholtz free energy functional from the generalized Ginzburg-Landau form [28] as follows:
3 2
€
F(c1.62,63) =/ Z(F(Ci)+2|vci|2)d& (2)
iz

where F(¢;) = 0.25(:1»2 (¢c;—1)2 and € >0 is the gradient energy coefficient. The temporal evolution equation of ¢; is given by
the following ternary CH system:

a¢;
a—t’ = AI,LI', (3)
wi = f(c;) —€*Aci+ B(cr. ca.03), fori=1,23, (4)

where f(c;) = F'(¢;) = ¢i(c; —0.5)(c; — 1) and B(c1, ¢z, ¢3) = —% 2?11 f(ci) = —cicac3. More details about the Lagrangian
multiplier B(cq, ¢, ¢3) can be found in [29,30] and references therein. At boundary, the homogeneous Neumann conditions
are used as follows:

n-Vg=0andn-Vu;=0 on 9, (5)

where n is the unit normal vector to 9.

In the proposed method, we utilize c; to represent an arbitrary domain, € c Q. That is, c;~0 on  and c3~1 on Q\ .
As shown in Fig. 1, we consider the 0.5-level set of c; as the domain boundary, 9€2.

In fact, we only need to solve the equation for the phase c; because c3 is fixed and ¢, can be defined as ¢c; =1 —-¢; —c3
by the condition (1). Therefore, the proposed modified CH equation is simplified as

8C]
Fri A, (6)
1 = f(c1) —€*Acy — (1 —¢1 — ¢3)¢3, (7)

which is the classical binary CH equation with a nonlinear source term.

3. Numerical solution

The governing equation is the classical binary CH equation with a nonlinear source term. Therefore, we can use many
available numerical methods such as finite element method [21-24,31,32], finite difference method [15-17], Fourier spec-
tral method [18-20], isogeometric method [25-27], multigrid method [33,34], and smoothed particle hydrodynamics (SPH)
method [35]. In this paper, we use the finite difference scheme with a nonlinear multigrid method.
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Fig. 1. Schematic illustrations of (a) the computational domain 2 and the arbitrary domain €2; (b) c3(x, y) in the two-dimensional space 2 = (a, b) x (c, d).

Let Q = (a,b) x (c,d) be the two-dimensional computational domain. Let Ny and Ny be positive even integers, h = (b —
a)/Nx = (d — ¢)/Ny be the uniform mesh size, At be the time step size, and Q2 = {(x;,y;) : Xx;=a+ (i—05)h, y;=c+ (j -
0.5)h, 1 <i<Ny, 1<j=<N,} be the set of cell-centers. Let c;?j and ,u?j be approximations of c(x;, y;, nAt) and u(x; yj, nAt)
with the time level n. Then, Eqgs. (6) and (7) are discretized by using a nonlinear convex splitting type scheme [36,37]:

n+1 _
C1-ij

€1 n+1
AL = Apl1g; s (8)

1 1
n+1 __ n+1 n+1 n 2 n+1
M i f(cl,ij )+ZC1,U - ZCI,,‘]‘_G AhCLU

—c1 (1= fj— a3 ies 9)

where the discrete Laplacian is given as Ap@;; = (Piy1,j + Pic1,j + @i jr1 + Pij1 — 4¢ij)/h2 fori=1,..., Nyand j=1,..., Ny.
We solve Egs. (8) and (9) as a coupled system of Cl,?f'l and ,U«L?f'l- At the computational domain boundary 92, we use
the zero Neumann boundary condition (5) as follows:

Cloj=C1j Clns1j=Clngj Clio =Clit CLing1 = CLin,»
Hioj = H11j HiNg1j=HiN 5 Mo = M1 BN = RN,

The above discrete systems are solved by a full approximation storage (FAS) multigrid method with a Gauss-Seidel relaxation
[38]. For more details about the multigrid method for the CH equation, we refer the reader to [39].

Similarly to the two-dimensional space, we define the computational domain 2 = (a, b) x (c,d) x (e, f) in the three-
dimensional space. Let Ny, Ny, and N; be positive even integers, h = (b—a)/Nx = (d — ¢)/Ny = (f — e)/N; be the uniform
mesh size, and Qj = {(xi,yj,zk) :x;=a+ (i-0.5)h, yj=c+ (j—05)h, zy=e+(k—05)h, 1T<i<Ny, 1<j=<Ny, 1<k=<
N;} be the set of cell-centers. Let c}}k and /Ll’.ljk be approximations of c(x;, y;, zy, nAt) and u(x;, yj, z, nAt). Egs. (6) and
(7) are also discretized by using a nonlinear convex splitting type scheme as

n+1 _ n
G, +ijk G, +ijk

AL = Aw! (10)

Sijk

1
n+1 n+1 n+1 n 2 n+1
M = flefy )+ 20k~ 7 ik~ € Anci

_Cl,ijk(l _Cl,ijk_c3,:‘1jk)c3,%ka (11)
where the discrete Laplacian is given as Ay = (Pir1 jk + i1 jk + Piji1k + Dijo1.x + Bijkr1 + Pijk_1 — 6¢ij)/h? for i=
1,...,Ny, j=1,...,Ny, and k=1,...,N;. At the boundary, we implement the zero Neumann boundary condition (5) as
follows:

Clojk = Clajke CLNet1.jk = Clngjke Cliok = Cl.itp
CLiN+1.k = CLinko C1.ijo = CLijn> ClijN+1 = CLijn,

Hi0jk = H11jk: H1Ns1jk = BNk M0k = M1,k
H1ing+1.k = M1 iNks H1ijo = M14j1» H1ij N1 = Mg,
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4. Numerical experiments

In this section, we investigate the numerical solution in the two- and three-dimensional complex domains. Unless oth-
erwise specified, we use the value of € as ¢y, = hm/[4«/§tanh_l(0.9)] to define that the number of grid points across the
interfacial regions is approximately m [40].

4.1. Effect of mesh size

First, we investigate the effect of mesh size on an artificial layer on a disk domain. We use four mesh grids: h =1/32, h=
1/64, h=1/128, and h = 1/256 on the whole domain 2 = (-0.5,0.5) x (0.5, 0.5). Other parameters are At = 1.5259¢ — 5
and € = €4. The computation is preformed until the numerical solution is in the numerical equilibrium state. We defined
the numerical equilibrium state if

Ny N,V

eyt —cill = B35 (i —cfyp)? <ol

i=1 j=1

where tol is a given tolerance. Here, we use tol = 1e — 5. The initial conditions are taken as

24+y2-04
c3(x,y) = 0.5+ 0.5tanh (%)
€
_J1-caxy) ify<0,
a(x.y.0) = {O otherwise,

0(X.¥.0) =1-c1(x,5,0) —c3(x.y).

Fig. 2(a)-(d) show the numerical equilibrium state results for h = 1/32, h=1/64, h =1/128, and h = 1/256, respectively.
Fig. 2(e)-(h) are the corresponding enlarged views of the box regions in (a), (b), (c), and (d), respectively. As we can see, an
artificial layer is getting smaller as we refine the grid. Here, we alternatively solve the governing equations (see Section 4.7).

4.2. Two-dimensional disk domain

In this test, we consider the phase separation in the following disk domain, € = {(x,¥)|\/x2 + y? < 0.45}. To do this, we
set the computational domain as the unit square Q = (0.5, 0.5) x (—0.5,0.5), which embeds the disk domain £, with zero

() (b) (c) (d)

(e) (f) () (h)

Fig. 2. Phase evolutions at numerical equilibrium state for various mesh size.
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Fig. 3. Temporal evolutions of ¢; (the red region) and ¢, (the blue region) in a disk domain with (a) zero Neumann and (b) periodic boundary conditions.
(c) corresponding cross sections at y = 0. For interpretation of the references to color in this figure, the reader is referred to the web version of this article.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Neumann boundary condition. Now, the initial conditions for each component are taken to be

X2 +y2-045
2/2¢ ’
c1(x,,0) =[1 —c3(x,¥)][0.5+ 0.5rand (x, y)],
(X*.y.0)=1-c(xy0) —c3(x.y),

c3(x,y) = 0.5+ 0.5tanh

where rand(x, y) denotes a random number between —1 and 1. Note that the disk domain is expressed by =
{(x,¥)|c3(x,y) < 0.5}. For this numerical test, we use h = 1/256, At = 10h2, and € = ¢,4. First, we investigate the effect of
the boundary condition at 2. For comparison, we implement additional test with periodic boundary condition at d€2 un-
der the same parameters of the above test. Numerical results with the zero Neumann and the periodic boundary conditions
are shown in the first and second rows in Fig. 3, respectively. Both of numerical temporal phase separations are almost
identical as shown in Fig. 3(a) and (b) at time t = 0, 50At, and 500At. We can ensure these facts in Fig. 3(c), that is, the
corresponding cross sections at y = 0 of the numerical solutions with zero Nuemann and periodic boundary conditions are
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)t=0 ) t = 50A¢t ) t = 500A¢

Fig. 4. Phase separations in a disk domain (the first row) and a rectangle domain (the second row) at time t = 0, 50At, and 500At.

in good agreement with each other. We can see that the boundary conditions do not affect the phase separation in the disk
domain. Therefore, in this study, we will use the zero Neumann boundary condition.

Furthermore, in order to confirm the general dynamics of CH equation in a complex domain, we compare the temporal
evolutions of CH equation with Neumann boundary condition in a disk domain and a rectangle domain. In the case of
rectangle domain, we set c3(x,y) = 0, the initial conditions for c;(x, ¥, 0) and c,(x, y, 0) are the same as above, and the
other parameters are unchanged. The first and second rows in Fig. 4 show the temporal evolutions of ¢; and c, in the disk
and the rectangle domains, respectively. We can find the phase separations are almost same, therefore, the general dynamics
of CH equation in a complex domain is conserved.

4.3. Two-dimensional brain section domain

Next, we explore the phase separation in a more complex two-dimensional domain. As an example, we consider the
following brain section image [41] (see Fig. 5(a)) as a complex domain 2. The computational domain is defined by Q =
(—0.5,0.5) x (=0.5,0.5). The parameters are chosen as follows: h = 1/256, At = 10h2, and € = €4. To define c3, we first
segment the gray scale brain section image by a threshold into zero or one. Then, we smooth the step function by using
the CH equation without the source term. That is, we evolve the CH equation with the initial profile of c3 for 10 time step
iterations and then take the final result as c3(x, y) (see Fig. 5(b) for & = {(x,y)|c3(x,y) < 0.5}). The gray colored region in
Fig. 5(b) represents the complex domain €2. Therefore, in this problem, the initial conditions are

c1(x,y,0) = [1 —c3(x,¥)][0.5+ 0.5rand (x, y)],
0xy,0)=1-c(xy0) -c3xY).

As shown in Fig. 5(c)—(e), we can see the temporal evolutions of the phase c; in the complex brain domain 2 at time t = 0,
50At, and 500At, respectively. Although the given brain domain is complicated, the phase separations are well done. In
particular, because this method does not need to explicitly treat the boundary condition at boundary of brain domain, it is
very efficient and simple to solve the CH equation.

4.4. Three-dimensional spherical domain

Now, we consider numerical tests in the three-dimensional domain. We examine the phase separation in a sim-
ple three-dimensional spherical domain € = {(x,y.z)|/x? +y2 + z2 < 0.45}. The whole computational domain is given as
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Fig. 5. Phase separation in the two-dimensional complex domain: (a) Brain section image obtained from [41] with permission from Hindawi Publishing
Corporation, (b) computational domain, and (c)-(e) temporal evolutions of ¢; (the red region) and c, (the blue region) at t =0, 50At, 500At, respectively.
For interpretation of the references to color in this figure, the reader is referred to the web version of this article.. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Q = (-0.5,0.5) x (-0.5,0.5) x (—0.5,0.5). The initial condition is taken to be:
X2 +y2+22-045
24/2¢ ’

c1(x,¥,2,0) = [1 —c3(x,y,2)][0.5 + 0.5rand (x, y, 2)],
C2(X1y7zv 0) = 1 —C (X’y! Z, O) - C3(X1y7z)7

c3(x,¥,z) = 0.5+ 0.5tanh

where rand(x, y, z) denotes a random number between —1 and 1. In this test, we use h = 1/128, At = 10h2, and € = ¢,.
Fig. 6(a)-(c) represent the phase separation in the spherical domain at t = 0, 25At, and 500At, respectively.

4.5. Three-dimensional torus domain

We consider the phase separation in a three-dimensional torus region £ = {(x,y, z)|\/(./x2 +y2-0.3)2 +22 <0.15}

in the computational domain Q2 = (-0.5,0.5) x (-0.5,0.5) x (-0.25,0.25). Here, we use 256 x 256 x 128 mesh grid, h =
1/256, At = 10h2, and € = ¢4. The initial conditions are set to

\/(./x2 +y?2-03)2+22-0.15
2V/2¢ ’

c3(x,y,z) = 0.5+ 0.5tanh




224 D. Jeong, ]. Yang and J. Kim/Commun Nonlinear Sci Numer Simulat 73 (2019) 217-228

(a) Initial condition (b) t = 25At (c) t = 500At

Fig. 6. Phase separation in a spherical domain.

(a) Initial condition (b) t = THAt (c) t = 500At

Fig. 7. Phase separation in a torus domain.

1(x,y.2,0) = [1-c3(x,¥,2)][0.5+ 0.5rand (x, y, 2)],
x,y,2,0)=1—-c1(x,¥,2,0) —c3(x,y, 2).
Fig. 7(a)-(c) show the phase separation in the torus domain at t =0, 75At, and 500At, respectively.

4.6. Three-dimensional Schwarz B, Schwarz D, and Schoen G domains

Next, we consider some more complex three-dimensional domains such as Schwarz P, Schwarz D, and Schoen G domains
[42]. In the computational domain € = (0,1) x (0,1) x (0, 1), the parameters used are the same with the above three-
dimensional tests. We define the initial conditions as

d(x,y,2)
c3(x,y,z) = 0.5+ 05tanh | =—2—2 ),
3(.3.2) (zoﬁe

1(x,y,2,0) = [1-c3(x,¥,2)][0.5+0.5rand (x, y, 2)],
Cz(xsyﬂz! 0) =1- C](Xuva’ O) - C3(X,y,Z),
where

¢(X,y,2) = COS27X + COS 2Ty + COS 27 Z,
¢(x,y,z) = cos2mxcos2mycos2mz— sin2mwxsin2wysin2mwz, and
¢(x,y,z) = sin2wxcos 2wy + sin 27wz cos 2w x + Sin 2wy cos 2wz

are for Schwarz P, Schwarz D, and Schoen G domains, respectively. Fig. 8 shows phase separation in (a) the Schwarz P, (b)
the Schwarz D, and (c) the Schoen G domains. Here, the first, second, and third rows are snapshots of the numerical results
at t =0, 10At, 290At, respectively, on the given complex domain €2.

4.7. Three-dimensional Menger sponge domain

As the final example, we consider a three-dimensional complex domain, the Menger sponge domain [43] (see Fig. 9).
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(a) (b) (c)

Fig. 8. Phase separation in (a) Schwarz P, (b) Schwarz D, and (c) Schoen G domains. Here, the first, second, and third rows are snapshots of numerical
result on each complex domain €2 at t =0, 10At, 290At, respectively.

(b)

Fig. 9. Menger cube with level (a) 0, (b) 1, and (c) 2.
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(©) (d)

Fig. 10. Phase separation in the Menger cube domain. (a) Level-2 Menger sponge, (b)-(d): Isosurface of numerical solution c; at 0.5-level at time t =0,
50At, and 500At, respectively.

We use the Menger sponge domain with level 2 as shown in Fig. 9(c) and the length of one side of the Menger sponge
domain is 234/256. We embed this Menger sponge domain in the computational domain 2 = (0,1) x (0,1) x (0,1). We
use the following parameters: h = 1/256, At = 10h%, and € = €,4. The initial conditions are

_JO inside the Menger sponge domain,
G(xy.2) = {1 otherwise,

c1(%,y,2,0) =[1 -c3(x,y,2)][0.5+ 0.5rand (x, y, 2)],
(x,¥,2,0) =1-c¢1(x,y,2,0) —c3(x,¥,2).

If the initial condition of c3 is not smooth and is given by a step function, the numerical solution c; has a bias result nearby
the boundary of the domain 2. Therefore, to remove this bias problem, we alternatively solve Eqs. (10) and (11) for ¢
and c,. That is, we solve the equations for c¢;; and then set ¢c; =1 — ¢y —c3 and solve the equations for c,. Next, we set
¢1 =1 —cy —c3 and solve the equations for c;. By alternatively solving the equations for ¢; and c,, we successively remove
the bias problem. As shown in Fig. 10, the proposed numerical algorithm performs well in the complex domain with sharp
curvatures.

Until now, we implement the several numerical test on various complex domains. Through these test, we can see that
our method is very simple and efficient to solve the CH equation in a complex domain because we do not explicitly treat
the boundary conditions at the complex domain.
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5. Conclusions

In this study, we proposed an efficient numerical method for the CH equation in the two- and three-dimensional arbitrary
domains. The proposed mathematical model is based on the ternary CH system. The main idea is that we represent arbitrary
domains with the third phase in the ternary system and solve the binary CH equation with a source term. The numerical
results demonstrated that the proposed algorithm can deal with the complex domains efficiently. Furthermore, after a small
modification of the pre-existing codes such as Fourier spectral method, finite element method, and isogeometric method for
the CH equation, the proposed algorithm can be straightforwardly implemented. The methodology proposed in this paper
can be used in generating three-dimensional bio-scaffolds and multiphase fluid flows with arbitrary structures. As future
work, we will improve the proposed method by controlling the contact angle in the complex domain with the free energy
functional.

Acknowledgments

The authors thank the reviewers for their constructive and helpful comments on the revision of this article. The first
author (D. Jeong) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (NRF-2017R1E1A1A03070953). The corresponding author (Junseok Kim) was supported by Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B03933243).

References

[1] Li Y, Kim J. Multiphase image segmentation using a phase-field model. Comput Math Appl 2011;62(2):737-45.
[2] Cahn JW. On spinodal decomposition. Acta Metall 1961;9:795-801.
[3] Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall
1979;27:1085-95.
[4] Kou ], Sun S. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput Meth Appl
Mech Eng 2018;331:623-49.
[5] Kim ], Lee S, Choi Y, Lee SM, Jeong D. Basic principles and practical applications of the Cahn-Hilliard equation. Math Probl Eng 2016:1-11. Article ID
9532608
[6] Li Y, Kim ], Wang N. An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces. Commun Non-
linear Sci Numer Simul 2017;53:213-27.
[7] Dehghan M, Mohammadi V. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species
tumor growth model. Commun Nonlinear Sci Numer Simul 2017;44:204-19.
[8] Haji AH, Mahzoon M, Javadpour S. Pattern formation and geometry of the manifold. Commun Nonlinear Sci Numer Simul 2011;16:1424-32.
[9] Jaensson NO, Hulsen MA, Anderson PD. Stokes-Cahn-Hilliard formulations and simulations of two-phase flows with suspended rigid particles. Comput
Fluids 2015;111:1-17.
[10] Bai F, He X, Yang X, Zhou R, Wang C. Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with
experimental validation. Int ] Multiphase Flow 2017;93:130-41.
[11] Lee D, Huh JY, Jeong D, Shin ], Yun A, Kim J. Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation. Comput Mater Sci
2014;81:216-25.
[12] Jeong D, Choi Y, Kim J. A benchmark problem for the two-and three-dimensional Cahn-Hilliard equations. Commun Nonlinear Sci Numer Simul
2018;61:149-59.
[13] Areias P, Samaniego E, Rabczuk T. A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity. Comput Mech
2016;57:339-51.
[14] Chan C, Anitescu C, Rabczuk T. Isogeometric analysis with strong multipatch c¢'-coupling. Comput Aided Geom D 2018;62:294-310.
[15] Shin ], Jeong D, Kim J. A conservative numerical method for the Cahn-Hilliard equation in complex domains. ] Comput Phys 2011;230:7441-55.
[16] Li Y, Jeong D, Shin ], Kim ]. A conservative numerical method for the Cahn-Hilliard equation with dirichlet boundary conditions in complex domains.
Comput Math Appl 2013;65:102-15.
[17] Aland S, Lowengrub ], Voigt A. Two-phase flow in complex geometries: a diffuse domain approach. Comput Model Eng Sci 2010;57:77-106.
[18] Li D, Qiao Z. On second order semi-implicit fourier spectral methods for 2d Cahn-Hilliard equations. ] Sci Comput 2017;70:301-41.
[19] Li D, Qiao Z, Tang T. Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations. SIAM ] Numer Anal
2016;54:1653-81.
[20] Li D, Qiao Z. On the stabilization size of semi-implicit fourier-spectral methods for 3d Cahn-Hilliard equations. Commun Math Sci 2017;15:1489-506.
[21] Diegel A, Wang C, Wise SM. Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation. IMA | Numer
Anal 2016;36:1867-97.
[22] Diegel A, Feng X, Wise SM. Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system. SIAM J Numer Anal 2015;53:127-52.
[23] Diegel A, Wang C, Wang X, Wise SM. Convergence analysis and error estimates for a second order accurate finite element method for the Cah-
n-Hilliard-Navier-Stokes system. Numer Math 2017;137:495-534.
[24] Sariaydin-Filibelioglu A, Karasézen B, Uzunca M. Energy stable interior penalty discontinuous Galerkin finite element method for Cahn-Hilliard equa-
tion. Commun Nonlinear Sci Numer Simul 2017;18:303-14.
[25] Kdstner M, Metsch P, de Borst R. Isogeometric analysis of the Cahn-Hilliardequation-a convergence study. ] Comput Phys 2016;305:360-71.
[26] Bartezzaghi A, Dedé L, Quarteroni A. Isogeometric analysis of high order partial differential equations on surfaces. Comput Methods Appl Mech Eng
2015;295:446-69.
[27] Zhao Y, Schillinger D, Xu BX. Variational boundary conditions based on the Nitsche method for fitted and unfitted isogeometric discretizations of the
mechanically coupled Cahn-Hilliard equation. ] Comput Phys 2017;340:177-99.
[28] Elliott CM, Garcke H. Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Phys D
1997;109(3-4):242-56.
[29] Garcke H, Nestler B, Stoth B. On anisotropic order parameter models for multiphase systems and their sharp interface limits. Phys D 1998;115:87-108.
[30] Lee HG, Kim J. A second-order accurate non-linear difference scheme for the n-component Cahn-Hilliard system. Phys A 2008;387:19-20.
[31] Chockalingam K, Kouznetsova VG, van der SO, Geers MGD. 2D phase field modeling of sintering of silver nanoparticles. Comput Methods Appl Mech
Eng 2016;312:492-508.
[32] Vignal P, Collier N, Dalcin L, Brown DL, Calo VM. An energy-stable time-integrator for phase-field models. Comput Methods Appl Mech Eng
2017;316:1179-214.


https://doi.org/10.13039/501100003725
https://doi.org/10.13039/501100012167
https://doi.org/10.13039/501100003725
https://doi.org/10.13039/501100006667
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0001
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0001
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0001
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0002
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0002
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0003
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0003
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0003
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0004
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0004
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0004
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0005
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0006
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0007
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0008
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0009
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0010
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0011
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0012
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0013
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0014
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0015
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0016
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0016
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0016
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0016
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0016
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0017
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0018
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0019
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0020
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0021
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0022
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0023
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0024
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0025
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0026
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0027
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0027
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0027
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0027
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0028
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0028
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0028
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0029
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0029
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0029
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0029
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0030
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0030
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0030
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0031
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0031
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0031
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0031
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0031
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0032

228 D. Jeong, J. Yang and ]. Kim/Commun Nonlinear Sci Numer Simulat 73 (2019) 217-228

[33] Guo Z, Lin P, Lowengrub ], Wise SM. Mass conservative and energy stable finite difference methods for the quasi-incompressible navier-stokes-Cah-
n-Hilliard system: primitive variable and projection type schemes. Comput Methods Appl Mech Eng 2017;326:144-74.

[34] Baskaran A, Guan Z, Lowengrub ]. Energy stable multigrid method for local and non-local hydrodynamic models for freezing. Comput Methods Appl
Mech Eng 2016;299:22-56.

[35] Hirschler M, Huber M, Sdackel W, Kunz P, Nieken U. An application of the Cahn-Hilliard approach to smoothed particle hydrodynamics. Math Probl
Eng 2014:1-10. Article ID 694894

[36] Eyre DJ. Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard JW, Chen LQ, editors. Computational and mathematical
models of microstructural evolution, in: MRS proceedings, vol. 529. Cambridge University Press; 1998. p. 39-46.

[37] Lee HG, Choi JW, Kim J. A practically unconditionally gradient stable scheme for the n-component Cahn-Hilliard system. Phys A 2012;391:1009-19.

[38] Trottenberg U, Oosterlee C, Schiiller A. Multigrid. London: Academic Press; 2001.

[39] Kim ]. A numerical method for the Cahn-Hilliard equation with a variable mobility. Commun Nonlinear Sci Numer Simul 2007;12:1560-71.

[40] Kim ]. Phase-field models for multi-component fluid flows. Commun Comput Phys 2012;12:613-61.

[41] Despotovic 1, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med
2015:1-23. Article ID 450341

[42] Gandy PJ, Bardhan S, Mackay AL, Klinowski J. Nodal surface approximations to the p, g, d and i-WP triply periodic minimal surfaces. Chem Phys Lett
2001;336:187-95.

[43] Feder J. Fractals. New York: Plenum Press; 1988.


http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0033
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0033
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0033
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0033
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0033
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0034
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0034
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0034
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0034
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0035
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0036
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0036
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0037
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0037
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0037
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0037
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0038
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0038
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0038
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0038
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0039
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0039
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0040
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0040
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0041
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0041
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0041
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0041
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0041
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0042
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0042
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0042
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0042
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0042
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0043
http://refhub.elsevier.com/S1007-5704(19)30042-5/sbref0043

	A practical and efficient numerical method for the Cahn-Hilliard equation in complex domains
	1 Introduction
	2 Modified Cahn-Hilliard equation
	3 Numerical solution
	4 Numerical experiments
	4.1 Effect of mesh size
	4.2 Two-dimensional disk domain
	4.3 Two-dimensional brain section domain
	4.4 Three-dimensional spherical domain
	4.5 Three-dimensional torus domain
	4.6 Three-dimensional Schwarz P, Schwarz D, and Schoen G domains
	4.7 Three-dimensional Menger sponge domain

	5 Conclusions
	Acknowledgments
	References


