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This work extends the previous two-dimensional compact scheme for the Cahn-Hilliard equation (Lee
et al.,, 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula
and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in
space. The discrete system is conservative and practically stable. We also implement the compact scheme
in a three-dimensional adaptive mesh refinement framework. The resulting system of discrete equations
is solved by using a multigrid. We demonstrate the performance of our proposed algorithm by several
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1. Introduction

In this paper, our goal is to develop a high-order accurate com-
pact scheme, i.e., second-order accurate in time and fourth-order
accurate in space, for the three-dimensional Cahn-Hilliard (CH)
equation [1,2]:

%(x,t):MAu(x,t), Xe,0<t<T, (1)
/“L(Xv t) = F/(¢(X7 t)) - 62A¢(X, t)» (2)

where the order parameter ¢ (X, t) is the difference of two concen-
trations in a binary mixture in a domain £2 C R3. Further, M is the
mobility, i is the chemical potential, F(¢) = 0.25(¢> — 1)? is the
free energy density, and ¢ is a positive constant related to the in-
terfacial thickness. For the sake of convenience, we let M = 1. To
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simplify the presentation, here we consider the periodic boundary
condition for both the order parameter and the chemical potential.
The CH equation was introduced to model phase separation phe-
nomena in binary alloys [1,2] and it can be derived from the con-
strained gradient flow in the H~! Hilbert space of the Helmholtz
free energy functional:

2
€<¢)=/ (F(¢)+%|v¢|2> ix.
2

The properties of the solution ¢ (x, t) of the CH Egs. (1) and (2) are
such that the total mass f o ¢ dx s conserved

d 9
—/(bdx:/q}[dx:M/ Apdx=M | Hdas=o0
dt Jo 12 Q a0 On

and the total energy &(t) decreases with time
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Here, nis the outward normal vector at the boundary. The CH equa-
tion has been widely used in many fields such as in the physical and
materials sciences [3-5], fluid dynamics [6-9], biological simula-
tions [10,11], image processing [12,13] and surface/volume recon-
struction [14]. Therefore, it is very important to develop accurate
and efficient numerical schemes to solve the CH equation.

Many research papers have been published on the numerical
methods for the CH equation [ 15-24]. Regarding time discretiza-
tion, most of the schemes referenced above have used explicit,
implicit-explicit, Crank-Nicolson or Adams-Bashforth methods.
However, as the CH equation has fourth-order spatial derivatives
and a nonlinear term, the use of an explicit time scheme leads to
severe time step restrictions to ensure stability. Although the fully
implicit approach can use a large time step, it only has first-order
accuracy in time and therefore requires small time steps to guar-
antee accuracy. On the other hand, for higher-order numerical so-
lutions, the Crank-Nicolson and Adams-Bashforth methods would
be better choices.

Regarding space discretization, most of these numerical so-
lutions have second-order accuracy in spatial discretizations.
Compact difference methods have been developed for bihar-
monic [25,26], convection-diffusion [27,28], Poisson [29-31],
Navier-Stokes [32], and Helmholtz [33] equations. These meth-
ods achieve high-order accuracy without a significant increase in
the number of grid points in each coordinate direction. It should
be pointed out that in the finite difference framework, we can
straightforwardly derive high-order schemes by increasing the
number of grid points in each coordinate direction. However, this
may be problematic when those points are close to the domain
boundary. Possible ways in which to overcome this challenge
would either be to switch to a different solver in proximity of the
boundary or to introduce a second boundary layer by interpola-
tion [31]. This, however, generally lowers the overall accuracy of
the solution. Furthermore, when multigrid or adaptive mesh re-
finement (AMR) methods are used, this problem becomes more
obvious, because the same spatial operators would have to be per-
formed on both coarse and fine grid levels, which is much more
difficult. Therefore, compact high-order schemes, which need less
information from neighboring grid points, are better choices.

To date, there are few studies of the CH equation, which have
used the high-order difference method. Li et al. [34] established
a three-level linearized compact difference scheme for the CH
equation. Song [35] discretized the CH equation by using a fourth-
order compact difference scheme in space and first-order, second-
order, or third-order implicit-explicit Runge-Kutta schemes in
time. Lee et al. [36] presented a fourth-order spatially accurate and
practically stable compact difference scheme for the CH equation
in two-dimensional space. However, we are not aware of any
results for the three-dimensional CH equation on second-order
time and fourth-order space discretization, a combination known
to exhibit excellent stability.

The objective of this paper is to propose a high-order compact
scheme for the CH equation in three-dimensional space. We
demonstrate that our scheme has second-order accuracy in time
and fourth-order accuracy in space, which is an extension of
the previous results for two-dimensional space [36]. The discrete
system has the ability to preserve mass conservation, uses large-
size time steps and exhibits excellent stability. We solve the
resulting system of discrete equations by a linear multigrid. In
addition, we implement our approach in the AMR framework.
We demonstrate the performance of our proposed algorithm by
conducting several numerical experiments.

This paper is organized as follows. In Section 2, we derive the
fourth-order compact finite difference scheme and its properties
are proved. In Section 3, we present the numerical experiments.
Finally, conclusions are drawn in Section 4.

2. Numerical solution

2.1. Compact finite difference scheme

We discretize the CH equation in three-dimensional domain
£2 = (0,Ly) x (0,L)) x (0,L,). Let Ny, Ny, and N, be positive
even integers, h = L/Ny = L,/N, = L;/N, be the uniform
mesh size. We denote a discrete computational domain by 2, =
{(X,‘,yj,Zk) 1 x; = (i—0.5)h, yi= (G—0.5)h, zy = (k—0.5)h, 1 <
i <Ny, 1<j<N,1=<k <N,},whichis the set of cell-centers. Let
qbl?}k be the approximation of ¢ (x;, y;, zx, nAt), where At = T /N; is
the time step, T is the final time, and N; is the total number of time
steps.

We use the 27-point discrete Laplacian operator in three-
dimensional space [37], i.e.,

Actije = [14(Gir1jk + i1k + Pijrrk + Dij-1.k
+ Gij k1 + Dijk—1) + 3(Diy1jr1.k T Pir1j-1,k + Pit1kt1
+ Pirtjk—1 + Pic1jrik T Dic1j-1k
+ Gic1jk+1 + Pic1jk—1 F+ Pijr1k+1 + Dij—1,k—1
+ Pijr1k—1 + Dij—1ht+1) F Pimtjt 1.1 + Pim1jm1,k—1
F Pt jr1k—1 F Dictjm k1 T Pig1j+1.k+1

+ Pistjoth-1 F Birtj+1k-1 + Pis1jo1kr1 — 128ul/(30h%). (3)

The stencil numbering for the three-dimensional Laplacian opera-
tor is also labeled according to the diagram in Fig. 1. By the Taylor
series in three variables, we can obtain

¢(x+h,y+h,z+h)

> 1/ 9 9 a\"
=y = (h— +h— +h—> P(x,y,2) + O(h°). (4)
= m! ox ay 0z

Substituting (4) into (3), we obtain the high-order Laplace
approximation at node ijk:

3¢ 2 9%
Adin = | — + — 4+ — =
P <3x2 + ay? + Bzz)ﬁk

P 4
= Acdijk — EA dijx +0(h™). (5)

Here A’¢p = A(A¢) is the biharmonic operator. Now, we
derive the fourth-order spatially accurate and practically stable
compact finite difference scheme for the CH equation. At node ijk,
we can discretize Eq. (1) as

h2
— Ay + O(h*)

(P = Ak = Ac ik — 12

h2
= AcMijk — E(Aqf?r)ijk + 0(h%)
h2
= Aclijk — E(Ac(bt)ijk + 0(h%). (6)

Because A. is the second-order approximation of the Laplacian
operator, Eq. (6) is sufficient to guarantee fourth-order accuracy
of the solution. Furthermore, the backward differentiation formula
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Fig. 1. Stencil numbering for the three-dimensional Laplacian operator.

offers a convenient choice to obtain second-order accuracy in time.
Thus, the discretization of Eq. (6) is written as [38]:

1(3 ..., 1.,
E(gﬁﬂ}zf _2¢5k+5¢:}k )

h* (3 1
1 1 ~1

+0(At? + 1Y, (7)

where ¢~! = ¢°. To obtain a high-order stable scheme, we use a
linearly stabilized splitting scheme of Eq. (2) [39]:

pwt = 2(F'(¢") — 2¢™) — (F'(¢" ") — 29" 1)
+2¢n+1 _ 62A¢"+]. (8)

Substituting Eq. (5) into Eq. (8), we obtain the fourth-order form
for Eq. (8) at node ijk,

ui = 2(F' (@) — 2¢)5, — (F(¢) — 20)f ' + 2601

€0 1
— AR + ?A%;}; + 0(h*)
= 2(F () — 20)}, — (F'(¢) — 20)}y."
+205 — A + 0(h*)
2

h
+ 54 (F (@) = 200 — (F(9) — 200"

+1 +1
+ 2¢i,]7'k - /’Lg'k )

Finally, our proposed schemes are written as:

1 /3 1
E(g‘ﬁi}/f _2¢3k+£¢i?k )

= A,

h? (3 1
1 1 -1
- TN, <5AC¢;}; — 2495, + EACq)}}k ) (10)

=2(F(¢) — 20)} — (F'(¢) — 20}

n+1
Mg

h2
+205 — AP + 54 (2(F ()

— 20 — (F(¢) — 205 + 200" — i) (n
Here, we consider the periodic boundary conditions to sim-
plify the presentation. We use an approximation storage multigrid
method to solve the linear discrete system (10) and (11) at the im-
plicit time level. For additional details and background information
pertaining to the multigrid method, please refer to the reference
text [40]. We define the discrete total energy functional by

2
EM(g") = (F(¢"). D + %(W”, Vede.

Here 1 is a vector with all entries equal to 1 and the notation
(¢, ¥)p is the discrete L,-inner products, which is defined as

Ny Ny Ny

@ =1 D" bt

i=1 j=1 k=1

(12)

The inner product for V¢ on the staggered grid is defined by

Ny Ny N

(Vc(b» ch)e = h3 Z Z Z <Dx¢,»+%,jka1ﬁ,~+%,jk

i=1 j=1 k=1

+ Dy¢ij 11Dyt Dzd’ij,k+%DZ¢ij,k+%) , (13)

where the discrete differentiation operators Dy, 1 i Dy, i+l
2" AT

and qub,.!j!k% are defined as

Dx¢,'+%'jk = [128(¢it1,jk — Gijk) + 11(Pir1j+1.k — Pijr1k
+ Pir1j-1.k — Dij—1,k

+ Pirtjkr1 — Dijhr1 + Pirtjk—1 — Dijk—1)
+2(Pi1j+1.k+1 — Pijr1kt1

+ Pirtj-1kr1 — Pij—1,k+1

+ Pirtjr1k—1 — Pijrik—1

+ Pir1j-1.k-1 — Dij—1,k—1)1/(180h),
[128(¢i j+1.k — Gijk) + 11(Pir1j+1.k — Pit1jik
+ Pic1jr1.k — Dic1jk

+ Gijr1k+1 — Pijk+1 + Pijr1.k—1 — Pijk—1)
+ 2(it1j41.k+1 — Pit1k+1

+ Pic1jt1.k+1 — Dic1jk+1

DY¢i,j+%.k =

+ Pit1j+1,k=1 — Dit1,jk—1

+ Gimt1jr1k—1 — Pi-1,k-1)]1/(180h),
and
[128(eijk+1 — Pijk) + 11(Dijr1.k+1 — Pija1.k
+ Gij—1,k+1 — Pijo1,k
+ Gittjkt1 — Pirrjk + Pic1jk+1 — Dim1jk)
+ 2(Pig1,j+1,k41 — Di1,j41,k

D2¢i,j.k+% =

+ Pirtj-1.k+1 — Pir1j-1.k
+ Pi-tjr1h+1 — Pim1jr1k
+ Pic1j-1,k+1 — Pi—1,j—1,k)]/(180h).

Using these definitions, we can rewrite the discrete Laplacian
Aciji as
DX¢i+%.j,k - Dx¢i7%,j,k DY¢i,j+%,k - qubi,j—%,k
h h
Dz¢i,j,k+% - qubi,j,k—%
p .

Acije =

2.2. Mass conservation

The ability to conserve the total mass is an important property
of the CH equation. Here, we will prove that our proposed method
satisfies the mass conservation, ie., (¢"', 1), = (¢, 1);. By
combining Eq. (10) and the discrete version of the integration by
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parts, we are able to obtain

3 1
<5¢"+1 —2¢" + 5¢”‘1, 1) = At(Ap"™ T, Dy
h

R <§A P — 249" + 1A " ! 1> (14)
C Cc Cc k] .
12\2 2 N

For (A ™1, 1), we can obtain that

Nx Ny Nz

Q™ Dp =12 % > Acpiy!

i=1 j=1 k=1

Nx N}’ Nz
— Do™1 Doyt D!
202 T P e

i=1 j=1 k=1

_ n+1 D n+1 —D,u"
y“f,j—%,kJr Hijrrd — Pt

Ny N

12 n+1 _ n+1
=h Zlkz (DXMNX+%,j.k D"“%,j,k)
Jj= =
Nx Nz
2 n+1 _ n+1
#1033 (g, o)

i=1 k=1

Nx NJ’
+n? 21: Zl: (Dzugﬁﬁ% — Dzu;f;) =0,
i=1 j=

where we have used the periodic boundary conditions for the
chemical potential and telescoping cancellation. Using proofs
similar to those above and summing by parts for Eq. (14), we obtain
(3™, 1)y = (49", 1), — (@™ 1, 1) Then we have (¢" 1, 1), =
@", D, if (@™, Dy = (¢"", Dp. Since (8%, Dy = (¢, Dy,
we have the chain of equalities (¢"*1, 1), = (", 1), = --- =
(¢°, 1);. Thus, our proposed method satisfies the conservation of
total mass.

3. Numerical results

This section presents details of the following numerical ex-
periments: non-increasing of discrete energy and mass conser-
vation, a convergence test, a test of the stability of the proposed
scheme, spinodal decompositions, an extension to the adaptive
mesh refinement method, an application for triply-periodic min-
imal surfaces, and an application for volume reconstruction from
slice data. Unless otherwise specified, we consider ¢ = ¢, =
hm/ [2+/2 tanh~1(0.9)] to ensure that the number of grid points
across the interfacial regions is approximately m.

3.1. Non-increasing of discrete energy and mass conservation

We start with a numerical simulation to show the non-
increasing of discrete energy and mass conservation of our pro-
posed method. The initial condition is set as ¢(x,y,z,0) = 0.1 +
0.5rand(x, y, z) on the unit domain, where rand(x, y, z) is a ran-
dom number between —1 and 1. The calculationisrunup tot =
0.9847 with the time step At = 0.1h and mesh size h = 1/128.
Here €5 is used. The results shown in Fig. 2 suggest the phases are
gathered together and the surface becomes smooth due to the CH
equation. In Fig. 2, we also observe that with our proposed scheme,
the total discrete energy is non-increasing and the mass concentra-
tion of the numerical solution remains.

3.2. Convergence test

Here we consider the spatial and temporal convergence tests of
the proposed method. We obtained the spatial convergence rate by

1

— Total energy
Fieigi Mass

0.75

0.5

0 0.25 0.5 0.75 1
time

Fig. 2. Non-increasing of discrete energy and mass conservation of our proposed
method. The inscribed small figures are the zero surfaces of the phase field at the
indicated times. Note that we have normalized the total energy by using the total
energy at the initial time.

Table 1
Error and convergence results with various mesh grids. At = 0.01h? is fixed. Here
323-64% means [|e" ||, with h = 1/32.

Grid 323-64° 64>-1283 1283-2563
l,-error 4763E—3 3.015E—4 1.974E—-5
Rate 3.982 3.933

performing a number of simulations with increasingly finer grids
h = 1/2" 1 forn = 5,6, 7, and 8 on a unit domain. The initial
condition is ¢ (x, y, z, 0) = cos(2xm) cos(2ym) cos(2zm). For each
grid we integrate over time t = 1.953E-5 with time step At =
0.01h? and € = 0.02. Because there is no closed-form analytical
solution for this problem, we define the error of the numerical
solution on a grid as the discrete I,-norm of the difference between
the numerical solution uj and the next finer grid cells covering it as
[y
follows: eijiz = ¢gk_(¢gi/éj,2k +¢21‘/—21,2j,2k+¢gi/.gj—1,2k+¢gi/§j,2k—1 +
21/721,2'71,% + ¢£li/éj—1.2k—1 + ¢;i/—21,2j -1t ¢gi/—21,2j—1.2k—1)/8' The
rate of convergence is defined as the ratio of successive errors:

h . . .
log,(lle"||2/lle2 ||,). Here ||e||§ is a discrete I, norm and is defined

asflefl2 = Y, ¥, So), €2/ (NxNyNz). Because we refined the
spatial and temporal grids by a factor of 4 and 2, respectively, the
ratio of successive errors should increase by a factor of 4. The errors
and rates of convergence obtained by these definitions are given
in Table 1. The results suggest that the scheme has fourth-order
accuracy in space and second-order accuracy in time, as expected

from the discretization.
3.3. Stability of the proposed scheme

We demonstrate the stability of our proposed scheme (10) and
(11) by performing a numerical experiment using a set of different
time steps At = 0.01h, 0.1h, h, and 10h. The initial condition
and parameters are set as in Section 3.1. The calculations are run
up to time t = 7.812 and the numerical solutions at time t =
1.562 and 7.812 (from top to bottom) are shown in Fig. 3(a)-(d).
Fig. 4 shows the total energy evolution, which suggests that our
proposed scheme allows the use of large time steps. In addition,
the evolving patterns are similar when At = 0.01hand At = 0.1h
are used. Although a larger time step At = 10h can be used, the
evolution is less accurate.

3.4. Efficiency of multigrid solver

The efficiency of the multigrid method was investigated by
measuring the CPU time required to solve the following problem:
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(a) At = 0.01h.

(b) At =0.1h.

(c)At =h.

Fig. 3. (a)-(d) Numerical solutions with different time steps at time t = 1.562 (top row) and 7.812 (bottom row).

1F
] —At=0.01h
- - -At=0.1h
————— At=h
0.751, At=10h ||
>
o
8 !
S 05} il
- '
o
'_
025\, e 1
% 2 4 6 8

Fig. 4. Total energy evolution with different time steps At = 0.01h, 0.1h, h, and
10h. Here we have normalized the total energy by the total energy at t = 0.

¢(x,y,2z,00 = cos(8xm) cos(8ym)cos(8zxr) on the domain
(0,2™7) x (0,2"7) x (0,2™7) with 2" x 2" x 2" meshes for
n = 5, 6, 7, and 8. With these definitions, h = 1/128 is fixed.
And € = 0.01 and At = 0.1h are chosen. We record the time by
the CPU after ten time steps. Note that each iteration is run until
the maximum error of the residual is less than 1076, Because we
refined the spatial grids by a factor of eight, computational times
should ideally also be increased by a factor of eight due to the
discretizations (10) and (11) and the multigrid method that was
used. Fig. 5 shows the averaged CPU times versus the number of
points on the mesh grid (NxNyN; ). The linearity of the plot implies
that the multigrid solver achieves the O(NxNyN,) efficiency.

3.5. Spinodal decomposition

Next, we performed a numerical experiment using an exam-
ple of spinodal decomposition of a binary mixture. Spinodal de-
composition is a mechanism by which a solution of two or more
components separates into different phases [1,2,41]. Here, we will
consider this problem for the CH equation with the initial condi-
tion ¢(x,y,z,0) = ¢qe + 0.5rand(x, y, z) on the unit domain.
Then, the initial condition is a random perturbation from the aver-
age ¢gye. Simulations with ¢ = —0.5, 0, and 0.5 are run up to

2

10 T T T
o Numerical data
— Fitting plot
. 10'} 1
L
[}
£
2
o 10°F 1
o
5}
)]
@
g
< 1071 |
o
10_2 4 : 5 : 6 ’ 7 8
10 10 10 10 10

Number of mesh grid

Fig. 5. Logarithm of averaged CPU time versus number of mesh grid points
(NxNyN;) in multigrid solver.

time t = 156.25. Here h = 1/128 and €g are chosen. The depic-
tions in Fig. 6(a)-(c) show the evolutions of spinodal decomposi-
tion with ¢q,e = —0.5, 0, and 0.5. Observing these results, we can
see that the positive phases are separated and gathered together.
Furthermore, an increase in the initial average ¢,. causes the vol-
ume of the positive phases to become larger, because of the con-
servation of mass. Fig. 6(a), for the case ¢4, = —0.5, shows that
the four equivalent positive phases remain, whereas Fig. 6(c), for
the case ¢4y = 0.5, presents the continuity of the positive phases.
When ¢, is zero, which means the positive and negative phases
are equal, the positive phase converges to a bar shape.

3.6. Adaptive mesh refinement with high order

The AMR method [42,43] is more efficient than a method based
on uniform mesh because it allows multi-resolution in interesting
regions without requiring a fine grid resolution across the whole
domain. This advantage has been widely exploited [44-46]. Our
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Fig. 6. Spinodal decomposition with different average ¢gye. (3) Pave = —0.5. (b) Pgve = 0. () Pave = 0.5. The gray domain corresponds to the positive phase. From left to
right, the computational times are t = 0.156, 1.563, 15.625, 46.875, and 156.25, respectively.

method can be straightforwardly applied to an AMR framework.
The initial condition is chosen as ¢ (x, y, z, 0) = 0.5rand(x, y, z).
We performed the simulation on the unit domain with the base
mesh grids 16 x 16 x 16. There are four levels of refinement on
the computational domain, with a respective mesh spacing of 1/16,
1/32,1/64, 1/128, and 1/256. The other parameters are taken as
At = 0.1/256 and € = 0.01. Fig. 7 shows the evolution resulting
from the use of the AMR method and the consequent dynamical
adjustment of the hierarchical structure of the grid around the
interface transition region. This simulation demonstrates that our
proposed higher-order numerical scheme can be straightforwardly
applied to AMR framework.

3.7. Triply-periodic minimal surfaces

One of the applications of the CH equation is to obtain triply-
periodic minimal surfaces. The surfaces, which have a constant
mean curvature everywhere on the surface and are periodic
in three independent directions, are often referred to as triply
periodic minimal surfaces. Triply-periodic minimal surfaces [47]
are of special interest to physical scientists, materials scientists
and mathematicians, because the geometry of triply periodic
minimal surfaces strongly influences the physical properties of the
material. Yang et al. [5] generated triply periodic constant mean
curvature surfaces using a Cahn-Hilliard method. Starting from
the periodic nodal surface approximation to minimal surfaces,
they generated various constant mean curvature surfaces with
given volume fractions. We generate initial configurations with the
desired topology by taking the following explicit approximations
of the Schwarz primitive (P), Schwarz diamond (D), and Schoen
gyroid (G) [5,47] on the unit domain:

¢(x,y,2z,0) = 0.25 (cos(2mx) + cos(2ry) + cos(2nz)),

¢(x,y,z,0) = 0.25 (cos(2mx) cos(2my) cos(2mz)

— sin(2wx) sin(2wy) sin(2wz)) ,

0.25 (sin(2wx) cos(2my)

+ sin(2mwz) cos(2mx) + sin(2wy) cos(2mz)) .

¢(x.y.z,0)

It should be pointed out that the above explicit forms are neither
minimal nor constant mean curvature surfaces [5]. For each case,
we perform three tests of which the first two are performed with
our proposed fourth-order scheme. In these two tests, the values of
€ = 0.01 and At = 0.1h are chosen to be the same, but different
spatial step sizes, namely h = 1/64 and h = 1/128 are used. In the
third test, we use second-order schemes such as those introduced
in [5] and choose the following parameters: ¢ = 0.01,h = 1/128,
and At = h?.

Fig. 8(a)-(c) shows the Schwarz Primitive, Schwarz Diamond
and Schwarz Gyroid at time t = 0.1563, respectively. Fig. 8(b)
shows the zero contours of ¢(x,0.5,z) and Fig. 8(c) is the
closed view of Fig. 8(b). These results suggest that our proposed
method can generate a family of the triply periodic constant
mean curvature surfaces. Furthermore, we find that the agreement
between the solutions computed by second-order schemes with
h = 1/128 and our proposed method with h = 1/64 is good.
We also list the CPU time for the three cases in Table 2. These
results indicate that the accuracy of the numerical solutions can be
improved by using smaller time steps in the second-order scheme.
Therefore, this approach required much more computational time
than a fourth-order scheme.

3.8. Volume reconstruction from slice

We extend our proposed method to volume reconstruction
from slice. Three-dimensional volume reconstruction from a se-
quence of medical images has numerous applications such as med-
ical diagnostics, plastic and artificial limb surgery, and treatment
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Fig. 7. Snapshots showing the adaptive mesh from the three-dimensional evolution. The zero-level grid has 16 x 16 x 16 points and four levels of mesh refinement are
used in the unit domain. (a) Zero isosurface of ¢ at time 1.26 and 10.08 from left to right. (b) Zero isosurface of ¢ with the adaptive mesh.

Table 2

Comparisons of CPU time using a second-order scheme [5] and our proposed fourth-order scheme.

Cases Second-order scheme Fourth-order scheme Fourth-order scheme
Mesh size h=1/128 h=1/64 h=1/128

Time step At =h? At =0.1h At =0.1h

P surface 101 min 4 min 59 min

D surface 132 min 6 min 90 min

G surface 64 min 2 min 29 min

planning [48]. For three-dimensional volume reconstruction using
slice data, we considered a modified Cahn-Hilliard equation con-
taining a fidelity term [14]:

a )
% = Ap, ) + AW (X) — B, ), (15)
p(x, ) = F(p(x, 1)) — €2 Ap(x, 1), (16)
where

Mo, ifxisin the given slice data,
AX) = {OfJ otherwise.

Here, ¢(x, t) is a phase-field function close to 1 or —1 for the
respective interior and exterior of the reconstructed volume. The
surface of the volume is represented by the zero-level set of ¢. A
is a positive value and v (x) is the segmented image information
from the input slice data obtained by using an image segmentation
algorithm [49-51]. Further, A(x)(¥y — ¢) enforces ¢ to be the
known data  in the input slice. The algorithms (15) and (16) have
two features. One of which is that the values in the input slice are
close to those in the original input slice. The second feature is that
in the non-input slice, the values are obtained by curvature-driven
diffusions and utilizing the volume information from the original

(known) input slice data. Our proposed scheme can be extended to
discretize Egs. (15) and (16) as:

1 /3 1
E <§¢n+1 _ 2¢n + 5¢n—1> — Ac//Ln+]

. h2 §A¢n+1_2A¢n+lA¢n—1
12At \2°°¢ ¢ 27

h? "
5 A = ), (17)

ut = 2(F'(¢) = 20)" — (F/(¢) — 2¢)" ' + 29"
2
A+ LA R @)~ 29"

— (F/(¢) —2¢)" " 429" — ") (18)

The size of slice image is 216 x 216 and we removed some
similar slices (the empty boxes in Fig. 9(a)), see also [14]. There
are seven slices between any two consecutive known slices. We
perform the reconstruction on the domain (0,1) x (0,1) x
(0, 4.120) with a 216 x 216 x 890 mesh grid. €4 and Ao = 1000 are
chosen. Note that in this section, we use a homogeneous Neumann
boundary condition to ensure that both the concentration and the
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Fig. 8. Minimal surface of Schwarz Primitive, Schwarz diamond and Schwarz gyroid (from top to bottom) at time t = 0.1563. (a) Zero isosurfaces obtained by our proposed
method with h = 1/128. (b) The zero contours of ¢(x, 0.5, z). (c) Closed view of (b).

| - -
HE BN BN BN N
H-N-N- -

Fig.9. Volume reconstruction from medical images of a human bone (tibia and fibula): (a) Slice data (ordered left to right and top to bottom), in which empty boxes represent
skipped data, see also [ 14]. (b) Segmented images. Note that for improved visualization purposes, few segmented images from the slice data are displayed. (c) Reconstructed
volume.

chemical potential corresponding to match the requirement of 4. Conclusions

the volume reconstruction from slice. Fig. 9(c) shows the result

of volume reconstruction from medical images of a human bone In this paper, we extended the previous two-dimensional
(tibia and fibula). As can be seen, our algorithm renders a good  compact scheme for the Cahn-Hilliard equation to the three-
representation of the bone image and produces good visual quality.  dimensional space. The proposed scheme, derived by combining
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a compact formula and linearly stabilized splitting scheme, has
second-order accurate in time and fourth-order accurate in space.
The discrete system can preserve the total mass and can use
large time step sizes and exhibits excellent stability. In addition,
our approach also provides a framework that can be extended
to discretize most existing modified Cahn-Hilliard equations
and adaptive mesh refinement framework. Several numerical
experiments were performed to demonstrate the performance of
the proposed algorithm.
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