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Abstract

A fourth-order accurate and practically stable compact finite difference method
is proposed for the Cahn—Hilliard equation.

We present a compact finite difference stencil of the Laplacian operator in two-
dimension. It is applied to the Poisson and heat equations and perform numerical
experiments to verify their fourth-order accuracy. And, we present the compact
scheme for the linearly stabilized splitting scheme for the Cahn—Hilliard equation.
It is fourth-order accurate and practically stable. We solve the resulting system
of discrete equations by a multigrid method. There are a variety of numerical ex-
periments to show the fourth-order convergence, non-increase of total energy, mass
conservation, linear stability analysis, robustness of the scheme, and evolution up
to the steady state. Also, we demonstrate that the proposed scheme is more robust
and efficient than the non-compact fourth-order scheme.

This thesis includes the contents in the following publication: “A fourth-order

spatial accurate and practically stable compact scheme for the Cahn—Hilliard equa-

tion.” Physica A: Statistical Mechanics and its Applications 409 (2014)
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Chapter 1

Introduction

The Cahn—Hilliard equation was originally introduced as a phenomenological
model of phase separation in a binary alloy [1, 2] and has been widely applied in
many areas such as image processing [3, 4], microstructure [5], multi-phase fluid
flows [6], planet formation [7], and tumor growth [8, 9]. The Cahn-Hilliard equation
is

9¢(x, 1)
at

wo(x,t)) = F(g(x,1) - €A¢(x,1), (1.2)

= V. [M(o(x,1))Vulo(x,t)], xe€, t>0, (1.1)

where () is a bounded domain that satisfies periodic boundary conditions for ¢ and
p. The quantity ¢(x,t) is a phase-field order parameter, which is defined as the
difference of mass concentrations of the components in a binary mixture. p is a

chemical potential and M is a mobility. The free energy density

F(g) = 3(¢* 17

has a double-well potential that has two local minima at the minimum and maxi




is defined as

0.25
0.2
F9)) 45
0.1

0.05

S5 57 05 0 05 1 15
¢ : composition

FIGURE 1.1. Free energy density F(¢)

)= [ (F6)+ 5IVo )i

We differentiate the energy £(t) with respect to ¢ and the total mass [, ¢dx using

the boundary condition,

d

d
Bl < — =0.
dtS(t) <0 and o /Slqﬁdx 0

Therefore, the total energy is non-increasing in time ¢ and the total mass is conserved.

The Cahn-Hilliard equation has fourth-order spatial derivatives and a Laplacian

acting on the nonlinear term F’(¢). In general, explicit time discretizations require

small time step sizes for stability. To overcome constraints of the time step sizes,

—9_




the Cahn—Hilliard equation can be approximated to arbitrary accuracy. However,
there are advantages and disadvantages to each numerical method.

In recent years, high-order compact difference methods have been developed
for simulating computational fluid dynamics [22], acoustics [23], electromagnetic
(24, 25], and option pricing in stochastic volatility models [26]. Moreover, there
are various studies about fourth-order compact schemes for the Poisson [27, 28, 29,
heat [30], Navier-Stokes [31, 32, 33|, biharmonic [34, 35], reaction-diffusion [36], and
convection-diffusion [37, 38] equations. Also, sixth-order compact schemes for the
Poisson [29, 39], Helmholtz [24], and convection-diffusion equations [22] have been
developed. Up to now, there are many works on the second-order finite difference
method but few works on the high-order difference method for the Cahn—Hilliard
equation. Li et al. [40] established a three-level linearized compact difference scheme
for the Cahn—Hilliard equation. In this thesis, we propose the compact scheme by
combining a compact nine-point formula and linearly stabilized splitting scheme [41].

This thesis is organized as follows. In Chapter 2, we derive a fourth-order com-
pact finite difference scheme. We consider the compact scheme for the Poisson

and heat equations. In Chapter 3, the fourth-order accurate and practically sta-

ble compact scheme is presented for the Cahn-Hilliard equation. And, we describe

the multigrid algorithm for the resulting system. In Chapter 4, there are various




Chapter 2

Fourth-order compact finite difference scheme

2.1. Numerical discretization

We consider discretizations in two-dimensional domain Q = (a,b) % (¢,d). Let
N, and Ny be positive even integers, h = (b —a)/N; = (d — ¢)/N, be the uniform
mesh size. We denote a discrete computational domain by Qp = {(zs,y;) @ z; =
a+ (i —05)h, yj =c+(j —05)h, 1 <i < Ng, 1< j < Ny}, which is the set
of cell-centers. Let ¢}, be the approximation of (x4, y5, nAt), where At = T /Ny is
the time step, T is the final time, and N, is the total number of time steps. We use

periodic boundary conditions for ¢ and u as follows:

®i0 = GiNas PiNz+1 = Pi1, Poj = ONy,j, PNy+1,5 = P1j-

The discrete differentiation operators are

1 Gig1541 = Gij+1  Ddivrj—dij 1 Giv1j-1 — i1
D . . — —_— 3. ) — 3 — 3, 3,
Pirts T T3 h 5T h 12 h ’
1 div1j41 — Git1,j | OPijr1 — b5 . 1 dic1 a1 — i1y
D . — _— 3. 3. — 3. —_— 9, 3,
Wigrt T 1 h 5 n 12 h ’

and we use the notation V. ¢;; = (quﬁi +1 j,qubi i+l ) to represent £he discrete
p . 2 =

L
’ﬁt -
1 : h
a%

gradient of ¢ (see Figure 2.1). The discrete divergence operator is defined

_ 4




2.1. NUMERICAL DISCRETIZATION

Yj+1

Yi+1

Yj $ ¢
Yj
Ti—1 Z; Tit1
Yj—1
Z; Ti4+1
(a) quﬁi_,.%’j (b) Dy¢i’j+%

FIGURE 2.1. Discrete gradient of ¢ at a point (¢) is a combination
of six circles (e).

center point as

Yirtg T Y-t n Yig+y T Yig-3

h h

Vd . (u, ’U)ij =

We then define the discrete lo-inner products as

Nm N?J
(B W)n=h"> > dijihis,
i=1 j=1
Ny N?J
(Veh, Ver)) =02 Y > (Dm¢i+%,jD$¢i+%J * Dy¢i,j+%Dy¢iaj+%) ’
i=1 j=1

and the discrete norms as ||¢||? = (¢, ¢)» and || V¢|2 = (Ved, Ved),.

The compact nine-point Laplacian operator A, [42] is defined as

Acpij = Vg Ve

1

o2 (Pim1,j+1 + 405 j41 + Pig1j41 + 40i—1j (2.1)

—20¢;5 + 4dip1,5 + Gim1-1 + 40 j—1 + Pit1



2.1. NUMERICAL DISCRETIZATION

Yj+ Yj+2 Yj+2
Yi+1 Yj+1 Yj+1
Ys I Yi
Yj—1 Yj—1 Yj-1
Yj— Yj—2 Yj—2
Ti—2 Li—1 i Ti+l Ti42 Ti—2 Ti—-1 Ty LTi+l Tit2 Ti-2 Ti—1 Ty  Titl Tip2
(a) (b) (c)

FIGURE 2.2. Two-dimensional computational grids indicate (a) the
five-point stencil, (b) the standard nine-point stencil, and (c) the
compact nine-point stencil for the Laplacian operator at (x;,y;).

By using the Taylor series in two variables, we can obtain

5 k

1 0

T+ Az, y+ Ay) = ———(Aa:———-l—A ~) T,
&( y + Ay) Z%M 52+ ovg, | @)

+0((Az)® + (Ay)9).
By replacing Ax and Ay with different values +£h, we get

¢(x + h,y) + d(z — h,y) + oz, y — h) + d(z,y + h)

h* ht
= 4¢ + h2¢mm + h2¢yy + 1“2"¢zw:m: + ‘ﬁ(byyyy + O(he)a (2-2)

¢(x—h,y—h)+d(xz—hy+h)+¢(@+hy—h)+¢(x+hy+h)

R4 R
= 46 + 2 Gue + 20°6yy + = buaan + B Gamyy + - byyy + O(R°). (23)
From Equations (2.2) and (2.3), we have
¢z —hy—h)+¢(z—h,y+h)+d(x+hy—h)+o(x+hy+h)

h4
= 6h? (e + byy) (z,y) + 0} (zzze + 2Pzayy + Dyyyy) (T, Y

-6 -




2.1. NUMERICAL DISCRETIZATION

Finally, we have
h* 4
where A2¢ = A(A¢) is the biharmonic operator. For the sake of convenience, we

call this approximation compact nine-point formula (CNPF).

Note that the standard fourth-order nine-point Laplacian operator Ay is defined

as
1
AS¢7J 1942 (_¢’£—2,j + 16¢i—1,j — 30¢U + 16¢i+1,j . ¢i+2’j)
T2 (=6ij—2 + 166151 = 3064j + 1664541 — ij42),

and its stencil is shown in Figure 2.2(b). In a similar manner, we can derive
Astij = Ad(w5,y;) + O(h?).
We call this approximation nine-point formula (NPF).
In Figure 2.2(a), a second-order five-point stencil is represented for the discrete
Laplacian operator Aggij = (pit1,j+Gi—1,;+ i j—1+Pi j+1—4¢pi;)/h?, and we define

fiwe-point formula (FPF) as

Agdij = Ag(zi,y;) + O(h?).




2.2. THE POISSON EQUATION

2.2. The Poisson equation

We consider the two-dimensional Poisson equation with a periodic boundary

condition,
Au(z,y) = f(z,y), (z,y) € (2.5)

Now, applying CNPF (2.4) to Equation (2.5), we obtain

2 2
Acuij = Au+ %A% + O = f+ %Af +O(hh)

2
i+ = (Befig + O(12) + O(h)

h2
= fij + ﬁAcfz'j +O(h%). (2.6)
Using Equations (2.1) and (2.6), the compact scheme for solving Equation (2.5) is
gz [t i1+ i+ uien)
+ (Uit g1+ Wig1j-1 + Uiergen + wie1-1) — 20u4]
1
= fij + w5 [4figr1 + fig-1 + fisrg + fie1g)

+ (fir1,j4+1 + fir1,j—1 + ficr i1 + fim1,5-1) — 20f35]. (2.7)

For instance, we take f(z,y) = —872 cos (27x) cos (27y) in the Poisson equation
(2.5) and its domain is = (0,1) x (0,1). Then the exact solution for the equation

is
u®(z,y) = cos (27z) cos (27y)

as shown in Figure 2.3.




2.2. THE POISSON EQUATION

H /,
/), 04
N\ /I/; P75
ST {{“

N X
S eso s S
IR Z=\Y

/ %
o

F1GURE 2.3. The exact solution of the Poisson equation.

We denote the error by e;; := u;; — 7. The convergence rate is defined as the
ratio of successive errors, logy(|lenl|/llen/2ll), where |les| is the discrete lz-norm of
error function e,. The numerical convergence tests for Equation (2.7) using the three
schemes are performed with increasingly finer grids h =1/2", forn=3, ---, 8.

Table 2.1 lists the discrete lg-norm of errors and convergence rates with three
different formulas. Using CNPF, we have the fourth-order accuracy in space as we

expect from the discretization.

TABLE 2.1. lp-norm errors and convergence rates for FPF and CNPF

FPF CNPF
h error order error order
1/8  2.651 x 1072 5.065 x 10~*

1/16 6.475x 1073 2.034 3.272x 107°  3.952
1/32  1.609 x 1072 2.008 2.060 x 1078 3.990
1/64 4.018 x 107% 2.002 1.289 x 10~7  3.997
1/128 1.004 x 107 2.001  8.063 x 1072  3.999
1/256 2.510 x 107° 2.000 5.069 x 107  3.991




2.3. HEAT EQUATION

2.3. Heat equation

We consider the two-dimensional heat equation with a periodic boundary con-

dition,
u(z,y,t) = Au(z,y.t), (z,y) e, 0<t<T. (2.8)

Now, applying CNPF (2.4) to Equation (2.8), we obtain

h? h?
Acuij = Au+ f—ZA% + O(h) = u; + 75 8u; + O(h?)

2

h
= w+ 5 (Acu + O(h)) + O(h)
2

h
= u + ﬁAcut + 0(114) (29)

We apply backward time difference to Equation (2.9), then

n+l n 2 n+1 n
Ayt — Uy ug; h_Acuij Acuw

Y At 12 At

By arranging the above equation, we get

_1_u’3+1 —(1- 2 At = __l_un, n _hZ__A u™ (2.10)
At Y 12At) ~°7U At 12AE ST '

For example, we use the initial condition for heat equation (2.8)
u(z,y,0) = cos(2rz) cos(27y),
in a domain Q = (0,1) x (0,1) and the exact solution is
u(z,y,t) = e 8% cos (27z) cos (2my)

as shown in Figure 2.4.
10 -




2.3. HEAT EQUATION

RN

T IRRXN,
,{!3223“‘:\
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FIGURE 2.4. (a) Initial condition u(z,y,0) and (b) exact solution
u®(z,y,T) at time T = 0.025 for heat equation.

We take convergence tests for Equation (2.10). Table 4.1 lists the discrete lp-
norm of errors and convergence rates with three different formulas. Using CNPF,

we have the fourth-order accuracy in space as we expect from the discretization.

TABLE 2.2. [y-norm errors and convergence rates for FPF and CNPF

FPF CNPF

h Lo error order L9 error order
1/8 1.988 x 1077 1.676 x 10711
1/16 5.049 x 1078  1.977 1.045 x 1072 4.003
1/32 1.268 x 1078  1.993 6.522 x 107*  4.002
1/64 3.185x 107% 1.993 4.061 x 10~%5  4.005
1/128 8.082 x 1071% 1.979 2.515x 1071  4.013
1/256 2.138 x 10719 1.919 6.301 x 10717 1.997

- 11 -




Chapter 3

Numerical method for the Cahn—Hilliard equation

For the sake of convenience, the constant mobility is taken as M = 1 throughout

this thesis. Then the Cahn-Hilliard equation (1.1) and (1.2) is rewritten as

WL Auolx.0), (3)
WG, 0) = F(60x,1) ~ A6(x, 1), 3.2)

where ) C R? is a domain, x = (z,y) € Q, t > 0.

3.1. Numerical solution

We derive the fourth-order accurate and practically stable compact finite dif-
ference scheme for the Cahn-Hilliard equation (3.1) and (3.2). Beginning with the

compact nine-point Laplacian operator for u;;, we have

h2
Acpiy = Aplws,y;) + ﬁAQM(% yj) + O(h%)
h?
= (i, y;) + EA@,(% y;) + O(h?)
B2 )
= (¢¢)ij + EAC(¢t)ij + O(h%).

—12 -




3.1. NUMERICAL SOLUTION

Note that Equation (3.1) is used for the second equality in Equation (3.3). We ap-

proximate the temporal operator ¢, to first-order accuracy by treating it implicitly:

n+1 n 2 TL+1 n
4 h2 A i3
Acpiit™ = % — oy > it o B0, O(AL) + O(hY). (3.4)

We apply the linearly stabilized splitting scheme [41] to Equation (3.2):
,uJ”+1 — (¢3 _ 3¢>n + 2¢n+1 _ €2A¢n+1' (3.5)

By applying CNPF (2.4) to Equation (3.5), we get

(¢° = 30)5 + 207 — i

n-1
Ac¢ij+ = =
h2 3 _ n 2 n+l _ , ntl
12 €2 i
(6% = 3¢)5 + 200 — st
L (A (6% = 38)5 + 2897t - ”+1) +O(hY).  (3.6)
12¢2 \7° g ¢ Aefts; : :

Finally, from Equation (3.4) and Equation (3.6), we have the fourth-order accu-

rate and practically stable compact finite difference scheme for the Cahn—Hilliard

equation:
¢Z}+1 h’2 n+1l _ n+1l _ ZJ h2

AT T oAt TRy = 1 T aar et (3:7)

h 1 h?

+1 4 +1 e +1
2¢“ <1 - W) O T @k T et

1 3 n h2 3 n

= ;5(<75 —3¢)5 + Ezgﬁc(ﬁb —3¢)5- (3-8)

- 13 -




3.2. MASS CONSERVATION

3.2. Mass conservation

We verify that the compact scheme inherits the total mass conservation. Taking

the inner product to Equation (3.7) with a constant grid function 1, we get

h?
(¢n+1’1) +I7’_2_( c¢n+1,1)h_At(Ac/ln+l,1)h:(¢n+171) +_( C¢n )

For (A.¢", 1),, we have

Nz Ny
(21,1233 st
i=1 j=1
N, Ny Deo? 1 . — Dm¢’ll,, qu”’ _ Dmdff B
_h2zz< +]h i35 ity i ij >
i=1 j=1
Na
- Z( Snpr1y — Dedl )+hZ( o8 x, 13— Dadiy) =0

i=1

Here, we have used the periodic boundary condition for ¢, and (Ac¢”+1, 1) B =

(Acp™, 1), = 0 can be proved in a similar manner. Thus, we have the mass conserv-

ing property, i.e., (¢™, 1), = (¢"1, 1)h'

— 14 —




3.3. MULTIGRID ALGORITHM

3.3. Multigrid algorithm

We briefly describe the multigrid method and implementation to solve the re-

sulting system. We represent the discrete Cahn—Hilliard system as

Ly (@™, ) = (&7, y™),

where the linear operator Ly is defined as

n+1l |, n+1 _ ¢n+1 ’7’2 A n+1 n+1
Ly (¢ y H ) = AL +12At c¢¢j ’“Acl%j )

2 1 hQ 1 1 1 h2 1
.___6_2_¢?j+ <1 _ 6_5) ¢n+ 2 ;’;—i— 4 5 QAC/“LZL]-i— )

and the source term is

n o ,.n 1] h2 3 n h2 3 n
("™ = (Z—f + = ToA7 Aoy, 2( — 3¢)3; +‘12—65Ac(¢ “3¢)ij> .

3.3.1. Smoothing. Compute (Q_SA, ﬂk) by applying v smoothing procedures to

(¢k>/1'k)~
((ﬁk: ﬁ'k) = SMOOTH" (¢k7 Kk, Lha gka wk)

on a mesh grid Q. The SMOOTH" function means that it performs a SMOOTH
relaxation operator with approximations ¢ and pg, and source terms & and .
The superscript v denotes how many times the given relaxation operator is applied

to obtain the updated approximations (qgk, ﬁk). This relaxation step is evalua




3.3. MULTIGRID ALGORITHM

3.3.2. V-cycle. One V-cycle step comprises the presmoothing, coarse grid cor-
rection, and postsmoothing steps. Please refer to the reference text for additional

details and background [13].
<¢n+1 m+1 Z+1,m+1) V-cycle(k, ¢n+1 m HZH m Ly, €8, 97, 01, 1)

where qb"“ 1 and ¢"+1 " are the approximations of gb"“ before and after the
V-cycle. Next, we define the V-cycle.

Presmoothing
(G, mTN™) = SMOOTHY (7™, 1 ™™ Ly, €7, 47).

Coarse grid correction

1) Find the defect: ( T A3 ) (EF.Wp) — Ly, <¢"+1m JTians m)

2) Restrict the defect: df’,_; = =1 tdn o Aoy = =1 1d
3) Evaluate approximations (v’fj;l{n Dy "k'l T ) of the following coarse grid sys-
tem on Qp_1: Lo (v?zlr,ﬁgf{n) = (J’l’?k_l,d_g?k_l). If £k > 1, then we

can solve the coarse the grid system using the zero grid functions as initial

approximations and the defect functions as source terms

~n+1m An—}—lm _ Fm m
(vl fLm gL ) — V-cycle (k — 1,0,0, Lo, 7% _1, dg%_1, 11, v2) -

Otherwise, we apply the smoothing procedure to obtain the approximations.

~n+1l _ 1k ~ntlm  ~ndlm k
4) Interpolate the correction: Uy =L g0y Oy = I

~16 -



3.3. MULTIGRID ALGORITHM

5) Compute the corrected approximation on {2:
<¢n+1 m’ ~n+1, m) <¢n+1 m’ —n+1, m) + (6?’:1 m) '[g_;;l m) ]
Postsmoothing
n+lm+1  n+lm+1) vo [ Tn+1l,m ~n—|—1 m
grriml — SMOOTH? (grH4m, it m 1, en yr) .

This completes the description of the V-cycle.

—17 -




Chapter 4

Numerical results for the Cahn—Hilliard equation

Various numerical experiments are given to demonstrate the fourth-order con-
vergence, non-increase of total energy, mass conservation, linear stability analysis,
robustness of the scheme, and evolution up to the steady state. In addition, it is
performed to verify that the compact scheme is more robust and efficient than the

non-compact fourth-order scheme.

4.1. Convergence test

A numerical convergence test for the three schemes is performed with increas-
ingly finer grids h = 1/2", for n = 3, 4, 5, and 6. The initial state is defined as
¢(z,y,0) = 0.1cos(2mzx) cos(2my) in @ = (0,1) x (0,1) (Figure 4.1(a)), and Figure
4.1(b) illustrates the numerical solution at T' = 24At, where we use € = 0.0075 and
At = 6 x 107*. We consider a reference solution, because it is generally hard to find

the exact solution of the Cahn-Hilliard equation. We define the reference solut

¢re f

i Dy the local average of numerical solution on a much finer grid, and

the error by e;; 1= ¢;; — qﬁfjef We use a 1024 x 1024 mesh grid and FPF {
- 18 -



4.1. CONVERGENCE TEST

reference solution ¢:Je 7. The convergence rate is defined as the ratio of successive

errors, logy(|lenl/llen/2ll), where |les|| is the discrete lo-norm of error function ey.

I l

uhw

’,0.“ '
S H .
I ‘\\\\\ i 7 N
XN s af "c;"l T \\\\\\\“
L - Wl

FIGURE 4.1. (a) Initial condition ¢(z,y,0) and (b) numerical solu-
tion ¢(z,y,T) at time T' = 0.0144

Table 4.1 lists the discrete lo-norm of errors and convergence rates with different
three formula. Using NPF and CNPF, we have the fourth-order accuracy in space

as we expect from the discretization.

TABLE 4.1. ls-norm errors and convergence rates for FPF, NPF, and CNPF

FPF NPF CNPF
h error order error order error order
1/8 1.03 x 1072 8.14 x 1073 5.02 x 1073

1/16 276 x 1073 1.90 6.59x107% 363  3.36x107*%  3.90
1/32 7.26x107* 193 454x107° 386  201x107°  4.06
1/64 1.83x107% 199 231x107% 430 1.27x107%  3.98
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4.2. NON-INCREASE OF TOTAL ENERGY AND CONSERVATION OF MASS

4.2. Non-increase of total energy and conservation of mass

We define the discrete total energy functional by
h( n n €’ |2
& (¢ )Z(F(¢ )al)h+"§"llv¢ He'

Figure 4.2 demonstrates that the discrete total energy is monotonically decreas-
ing and the mass is conserved. The inscribed small figures show the phase separation
at the indicated times. For the numerical test, in Q = (0,1) x (0, 1), the initial state
is taken as a random perturbation ¢(z,y,0) = 0.5rand(z,y), where rand(z,y) is a
random value, which is uniformly distributed between —1 and 1. For other param-

eter, h = 1/256, At = 0.002, T' = 3, and ¢ = 0.0038 are used.

——total energy

© mass

0.8}
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4.3. LINEAR STABILITY ANALYSIS

4.3. Linear stability analysis

Let us consider the linear stability analysis for the Cahn—Hilliard equation (1.1)

and (1.2)
pr=A (4> -9 —A¢), x€Q, t>0, (4.1)

where Q0 = (0,27) x (0, 27). We assume that the solution can be expressed by

o) = 303 s i)t
1=1ko=
Z Z ’Yk1/c2 )Sln (k1$) sin (]”2:9) (4'2)
k1=1ko=1

where ¢ is the average of ¢, and By, (t) and Y1, (t) are amplification factors at
wave numbers k1 and ko. After linearizing Equation (4.1) and substituting Equation

(4.2) into the linearized equation, we have

dﬁkgj: (t) = L2 (1 _ 3&2 — €2k2) /Bklkz (t)7 (43)

where we denote k? = k% + k3. We only consider B, 1,(t) because the same ordinary
differential equation holds for g, k,(t). The solution of Equation (4.3) is B, (t) =
Brerkr (0) exp(nk, k,t), where nmi ik, = k?(1 — 362 — €2k?) is the growth rate. The
numerical growth rate is defined as 7k, = 10g(]|¢0™]|0o/]|9°|lc0)/(MmAL). We take
the initial condition ¢(z,y,0) = 0.01 cos(k17) cos(kay) with m = 100, At = 1078,

h = /256, and ¢ = 0.03. Figures 4.3(a) and (b) show the numerical growth




4.3. LINEAR STABILITY ANALYSIS

from the linear stability analysis and CNPF, respectively. The numerical results are

in good agreement with the analytic solutions from the linear stability analysis.

FIGURE 4.3. Growth rate versus the wave numbers k1 and ks for the

(a) CH and (b) linearized CH equations
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4.4. STABILITY OF THE PROPOSED SCHEME

4.4. Stability of the proposed scheme

We demonstrate a practical stability of the scheme through a numerical experi-
ment with spinodal decomposition of a binary mixture. In the simulation, the initial
condition is taken as ¢(z,y,0) = 0.5rand(z,y) in Q = (0,1) x (0,1). Note that the
maximum amplitude is 0.5 at the initial time. For numerical parameters, h = 1/128
and e = 0.0113 are used and different time step A¢ = 0.01, 10, and 10000 are em-
ployed. In Figure 4.4, we illustrate the evolutions after fifteen time iterations. As
the numerical results, the maximum amplitudes are bounded, and the numerical
solutions do not blow up. Therefore, our proposed scheme is stable regardless of the

time step size.

‘ll

II\\;‘{';

I |
‘ﬁ'i‘"’!';‘"’;u‘&‘ﬁdf’!bg. |

05

00

(b) At =10 (d) At = 10000

FIGURE 4.4. Evolutions with different time step At = 0.01, 10, and 10000
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4.5. STEADY STATE

4.5. Steady state

We examine the evolution of a random perturbation up to the steady state. The
initial condition is taken to be ¢(z,y,0) = 0.0lrand(z,y) in Q = (0,1) x (0,1). We
then take the simulation parameters as ¢ = 0.0075, h = 1/256, and At = 10h?. We
stop the numerical computations when the discrete ls-norm of the difference between
(n + 1)th and nth step solutions becomes less than 107°, i.e., ||¢"T! — ¢™| < 1077,
Figure 4.5 shows the snapshots of filled contour of the concentration ¢. We observe
that the randomly perturbed concentration ¢ evolves to a complex interconnected

pattern. After a long time evolution, a numerical equilibrium state is reached.

Iy -

t=0.076 t=0.382 t=0.763 t = 3.0562 t=152.6

FiGURE 4.5. Evolution of ¢ up to the steady state time ¢ = 152.6.
The times are shown below each figure.
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4.6. COMPARISON OF SCHEMES

4.6. Comparison of schemes

To show the superiority of CNPF, we compare the evolution results from CNPF
and FPF, and list the computational times for the three methods. The initial con-
dition is given as

_ 1 if0.2<z<38and04<y<0.6,
$(z.y,0) = { —1 otherwise

(4.4)
in 2 = (0,4)x(0,1). Here, a mesh grid 256 x 64, ¢ = 0.015, At = 0.0005, and T" = 10
are used. We define the reference solution by numerical solutions, using FPF, on a
finer mesh 1024 x 256. In Figure 4.6, we illustrate evolutions by CNPF (circles) and
FPF (dashed line) with the reference solutions (solid line) at ¢ = 0, 2, 6, and 10.
Table 4.2 lists CPU times of the three schemes to 7' = 10. Although CNPF has a
slight difference of CPU time than FPF, it has higher accuracy compared to FPF.

Furthermore, NPF needs more V-cycle iterations than CNPF to reach the V-cycle

tolerance, and it results in the increment of CPU time.

A}
1
-

——reference
- - -2nd-order
© 4th—order

0 1 2 3 4

64. Note that the reference solution is defined by use much
finer mesh 1024 x 256. From top to bottom, times are ¢ = 0,
and 10.
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4.7. COMPARISON BETWEEN CNPF AND NPF

TABLE 4.2. CPU time (sec) for FPF, NPF, and CNPF

FPF NPF CNPF
1819 3095 2218

4.7. Comparison between CNPF and NPF

We compare the numerical convergence of two formula, CNPF and NPF. For the
numerical test, we take the initial condition as ¢(z,y,0) = 0.1 cos(27z) cos(27y) in
Q= (0,1) x (0,1). For other parameter, we use h = 1/64 and € = 0.015. We count
the number of V-cycle until the maximum value of residual error is less than 10710,
Figure 4.7 plots the numbers of V-cycle for one time iteration versus At. From the
results, we can observe that CNPF requires less V-cycle iterations than NPF for all

time step sizes.

200

1601

120

801

401

FIGURE 4.7. V-cycle number with different time step At
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Chapter 5

Conclusion

We proposed the fourth-order accurate and practically stable compact finite
difference method for the Cahn—Hilliard equation. The compact nine-point formula
(CNPF) and linearly stabilized splitting scheme were presented for the equation.
We described the multigrid algorithm to solve the discrete Cahn—Hilliard system.

Numerical experiments were performed to demonstrate the fourth-order accu-
racy, decreasing of total energy, mass conservation, and practical stability. Also,
to verify the superiority of proposed scheme, we compared the standard nine-point
formula (NPF) with CNPF. Since NPF needs more V-cycle iterations than CNPF
to reach the tolerance, the computational time of CNPF was less than that of NPF.

NPF had a disadvantage due to the wide stencil compared to CNPF.
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