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The deformation dynamics of a compound liquid droplet in shear flow is numerically investigated in two-
and three-dimensional space. The computational model is based on the immersed boundary method. This
accurately and efficiently tracks the interfaces of immiscible multi-phase fluids. We extend a recently
developed volume-conserving immersed boundary method for two-phase fluid flow to ternary com-
pound droplet flows. For long time simulations, we also apply a surface remeshing algorithm. Chorin’s
projection method is employed, and the resulting system of discrete equations is solved by a multigrid
technique. We study the effects of radius, interfacial tension ratios, and inner droplet location on the
deformation of a compound droplet, and compute the inclination angles of inner and outer droplets.
Simulation results indicate that the angle of the inner droplet is always greater than or equal to that
of the outer one. The effect of wall confinement on compound droplet deformation is compared with that
of a simple droplet. The result shows that the more confined the wall is, the more different the compound
and simple droplets’ behavior.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The dynamics of multiphase droplets is of great interest in
many fields of science and technology. The hydrodynamics of
simple droplets and blends under various flow conditions has been
intensively investigated from theoretical (Hinch and Acrivos, 1980;
Taylor, 1934), computational (Renardy and Cristini, 2001; Renardy,
2007; Janssen and Anderson, 2007; Vananroye et al., 2008; Yue
et al., 2004, 2006; Pillapakkam and Singh, 2001; Sheth and
Pozrikidis, 1995; Hua et al., 2013), and experimental (Rumscheidt
and Mason, 1961; Torza et al., 1972; Bartok and Mason, 1959) per-
spectives. The growing interest in the generation and manipulation
of compound droplets is mainly due to microfluidic applications
(Utada et al., 2005; Chen et al., 2007; Hirofumi et al., 2007). For
example, Utada et al. (2005) fabricated double emulsions that
contained a single internal droplet in a core–shell geometry using
a microcapillary device.

Johnson and Sadhal (1985) reviewed the fluid mechanics of
compound multiphase droplets in the static state and their trans-
lation in quiescent flow. The behavior of double emulsion droplets
in extensional flows was analytically studied in (Stone and Leal,
1990), and Bazhlekov et al. (1995) numerically studied the
unsteady motion of a rising compound droplet in a viscous fluid
under the effect of gravity using the finite element method.
Smith et al. (2004) investigated the deformation and breakup of
an encapsulated droplet in shear flow using the level set method.
They focused on the recovery behavior of an equiviscous
compound droplet, and presented a phase diagram to describe
the morphologies for a range of capillary numbers and surface
tensions. As a first step to develop a model for the deposition of
a cell-encapsulating droplet, Tasoglu et al. (2010) studied the
impact and spreading of a compound viscous droplet on a flat
surface using the front-tracking method. Gao and Feng (2011)
developed a diffuse-interface method to simulate the spreading
and breakup of a compound drop on a partially wetting substrate.
They observed three regimes for the interfacial behavior, mainly
depending on the size of the inner droplet. Recently, Qu and
Wang (2012) studied the hydrodynamics of concentric and eccen-
tric compound droplets in extensional flows using the spectral
boundary element method. They explored parameter effects in
detail, including the relative size and surface tension of two
interfaces, the capillary number, and the initial location of an inner
droplet in the compound droplet, on the deformation and stability
of the compound droplet in the Stokes flow regime. There are
several experimental (Vananroye et al., 2007; Sibillo et al., 2006)
and numerical (Renardy, 2007; Janssen and Anderson, 2007;
Vananroye et al., 2008) results for the confinement effect on the
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steady-state shape of a simple droplet under shear flow. The phe-
nomenological models make an important contribution to our
comprehension of the deformation and breakup of a single droplet
(Minale, 2008, 2010). However, there are no numerical results for
the wall effect with respect to a compound droplet.

The novel contributions of this study are as follows: (i) we
extend the three-dimensional volume-conserving immersed
boundary method and apply surface remeshing for a compound
droplet; (ii) the influence of fluid properties, droplet size, and inner
droplet location are investigated; and (iii) the wall confinement
effect is also studied and compared with a simple droplet. The rest
of the paper is organized as follows. In Section 2, the mathematical
governing equations are introduced. In Section 3, we describe the
numerical implementation in detail. The results of numerical sim-
ulations are presented in Section 4. Finally, conclusions are drawn
in Section 5.
2. Governing equations

We study the two- and three-dimensional dynamics of a com-
pound liquid droplet suspended in an ambient fluid between two
parallel plates under a shear flow with shear rate _c, as schemati-
cally illustrated in Fig. 1. The domains X1; X2, and X3 represent
the inner, outer, and ambient fluids, respectively, and Cm denotes
the interface between fluids Xm and Xmþ1 ðm ¼ 1;2Þ. rm is the sur-
face tension coefficient on Cm, and qm and lm are density and vis-
cosity, respectively, in Xm. For simplicity, we consider constant
density and viscosity.

In each fluid, the Navier–Stokes and continuity equations are
satisfied

qm
@um

@t
þ um � rum

� �
¼ �rpm þ lmDum; for m ¼ 1;2;3; ð1Þ
r � um ¼ 0; ð2Þ

where um ¼ umðx; tÞ is the fluid velocity and pm ¼ pmðx; tÞ is the
pressure field, defined for the Cartesian coordinate x 2 Xm at time
t. The velocity is continuous across the droplet interface Cm, and
the normal stress jump is balanced by the interfacial force fm, i.e.,
½�pInm þ lrunm�Cm

þ fm ¼ 0, where nm is the unit normal vector
on Cm. However, it is not easy to solve Eqs. (1) and (2) directly with
jump conditions at the interfaces. To overcome these difficulties, we
use the immersed boundary method (IBM), which was developed
by Peskin (1977). In IBM, we treat the interface as an immersed
boundary that exerts a force f on the fluids and moves with the local
fluid velocity (Lai et al., 2008).
Fig. 1. Compound droplet in an ambient fluid under shear flow.
We denote by XmðtÞ the Lagrangian variable for the immersed
boundary Cm;m ¼ 1;2. The fluid flow is computed in the whole
domain, and then XmðtÞ is moved according to the interpolated
fluid velocity. The fluid interacts with the interface through the
surface tension force exerted by the boundary. This surface tension
force is spread to the surrounding Eulerian variable x using a delta
function. Then, the dimensionless equations of motion for the sys-
tem of immiscible three-phase fluid flow can be written in the fol-
lowing form:

@uðx; tÞ
@t

þ uðx; tÞ � ruðx; tÞ ¼ �rpðx; tÞ þ 1
Re

Duðx; tÞ þ fðx; tÞ; ð3Þ

r � uðx; tÞ ¼ 0; ð4Þ

fðx; tÞ ¼
X2

m¼1

1
Wem

fmðx; tÞ; ð5Þ

fmðx; tÞ ¼
Z

Cm

FmðXmðtÞÞdðx� XmðtÞÞds; ð6Þ

dXmðtÞ
dt

¼ UmðXmðtÞÞ for m ¼ 1;2; ð7Þ

UmðXmðtÞÞ ¼
Z

X
uðx; tÞdðx� XmðtÞÞdx: ð8Þ

Here, uðx; tÞ; pðx; tÞ; fmðx; tÞ are Eulerian variables and
FmðXmðtÞÞ; UmðXmðtÞÞ are Lagrangian variables in the Cartesian
domain X � Rd (d = 2 or 3). The Lagrangian force density is defined
as FmðXmðtÞÞ ¼ jmðXmðtÞÞnmðXmðtÞÞ, where jm is the mean curva-
ture and nm is the unit outward normal vector at the interface
Cm. dðxÞ is the Dirac delta function defined as the product of
one-dimensional Dirac delta functions, i.e., dðxÞ ¼ dðxÞdðyÞ and
dðxÞ ¼ dðxÞdðyÞdðzÞ in two and three dimensions, respectively.

Let R1 and R2 be the undeformed radii of the inner and outer
droplets, respectively. The length scale is R2. 1= _c is the time scale,
where _c is the shear rate. Thus, _cR2 is the velocity scale. We now
define the capillary numbers Cam ¼ l3 _cRm=rm for the inner
(m ¼ 1) and outer (m ¼ 2) droplets. Other dimensionless parame-
ters are the Reynolds number Re ¼ q3 _cR2

2=l3 and the interface-
specific Weber numbers Wem ¼ CamRe. For the computational
domains, we use X ¼ ð�Lx; LxÞ � ð�Ly; LyÞ and X ¼ ð�Lx; LxÞ�
ð�Ly; LyÞ � ð�Lz; LzÞ for two- and three-dimensional spaces, respec-
tively. The initial conditions are ðu;vÞ ¼ ðy; 0Þ and ðu;v ;wÞ
¼ ðz;0;0Þ. The boundary conditions are uðx; LyÞ ¼ �uðx;�LyÞ ¼ Ly;

vðx; LyÞ ¼ vðx;�LyÞ ¼ 0, and uðx; y; LzÞ¼ �uðx; y;�LzÞ ¼ Lz, vðx; y; LzÞ
¼ vðx; y;�LzÞ ¼ wðx; y; LzÞ ¼ wðx; y;�LzÞ ¼ 0. For the pressure field,
we take the homogeneous Neumann boundary condition at the
top and bottom plates. In the other directions, we use periodic
boundary conditions.

3. Numerical solution

In this section, we briefly describe the numerical solutions for
IBM in three dimensions. Volume-conserving and remeshing algo-
rithms are used to preserve the mass of the droplet and maintain a
high-quality surface mesh.

3.1. Discretization

We discretize the domain X ¼ ð�Lx; LxÞ � ð�Ly; LyÞ � ð�Lz; LzÞ in
three-dimensional space. Two-dimensional discretization is analo-
gously defined. Let the computational domain be partitioned into a
uniform mesh with a space step of size h in a Cartesian geometry.
The center of each cell is located at xijk ¼ ðxi; yj; zkÞ, where
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xi ¼ �Lx þ ði� 0:5Þh, yj ¼ �Ly þ ðj� 0:5Þh, and zk ¼ �Lzþðk� 0:5Þh,
for i ¼ 1; . . . ;Nx, j ¼ 1; . . . ;Ny, and k ¼ 1; . . . ;Nz. Nx;Ny, and Nz are
the numbers of cells in the x-, y-, and z-directions, respectively.
Let un

ijk be an approximation of uðxijk; tnÞ, where tn ¼ nDt and Dt is
the time step size. We use a staggered marker-and-cell mesh
(Harlow and Welch, 1965), in which pressure is stored at the cell
centers and the velocity components u;v , and w are defined at
the x-, y-, and z-directional face centers, respectively (see
Fig. 2(a)). We use a set of Mm Lagrangian points Xn

m;l ¼ ðX
n
m;l;

Yn
m;l; Z

n
m;lÞ for l ¼ 1; . . . ;Mm to discretize the immersed boundary

Cm (see Fig. 2(b)).

3.2. Immersed boundary method

At the n-th time step, we have a divergence-free velocity field
un and a surface tension force fn calculated from the boundary con-
figuration Xn. An outline of the main procedure in one time step
containing the volume correction and remeshing algorithms is as
follows:

Step 1. Surface tension force
From the inner (Xn

1;l for l ¼ 1; . . . ;M1) and outer (Xn
2;l for

l ¼ 1; . . . ;M2) droplet boundary configurations, we calcu-
late the boundary force densities.
Fn
m;l ¼ jn

m;ln
n
m;l; for m ¼ 1;2 and l ¼ 1; . . . ;Mm; ð9Þ
where jn
m;l is the mean curvature and nn

m;l is the normal vec-
tor at Xn

m;l. We then calculate the surface tension force,
fn
ijk ¼

X2

m¼1

1
Wem

XMm

l¼1
Fn

m;ldhðxijk � Xn
m;lÞDAm;l

� �
; ð10Þ
for i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny, and k ¼ 1; . . . ;Nz, where dh is
a smoothed Dirac delta function (Peskin and McQueen,
1995) and DAm;l is a surface area element for each interface.
Refer to (Li et al., 2013) for details of the curvature and nor-
mal vector calculations.

Step 2. Velocity update
The Navier–Stokes Eqs. (3) and (4) are solved by the pro-
jection method (Choirn, 1968). First, we solve for an inter-
mediate velocity ~u,
~u� un

Dt
þ un � rdun ¼ 1

Re
Ddun þ fn

; ð11Þ
whererd and Dd denote the centered difference approxima-
tions for the gradient and Laplacian operators, respectively.
Second, we solve the following equation for the pressure field
Ddpnþ1 ¼ 1
Dt
rd � ~u; ð12Þ
(a)

Fig. 2. (a) Velocities are defined at the cell interfaces, pressure is defined
where rd� denotes the discrete divergence operator. The
resulting system of Eq. (12) is solved using a multigrid
method (Trottenberg et al., 2001). The velocity field unþ1 is
then computed by
at the c
unþ1 ¼ ~u� Dtrdpnþ1: ð13Þ
Step 3. Interface marker position update
The new immersed boundary positions are computed from
the updated velocity field:
Xnþ1
m;l ¼ Xn

m;l þ DtUnþ1
m;l ; for m ¼ 1;2; and l ¼ 1; . . . ;Mm;

ð14Þ

where Unþ1
m;l ¼

XNx

i¼1

XNy

j¼1

XNz

k¼1

unþ1
ijk dhðxijk � Xn

m;lÞh
3
: ð15Þ
Steps 1–3 complete the procedure for calculating the fluid veloc-
ity unþ1 and boundary position Xnþ1. We then apply the volume-
conserving algorithm (Li et al., 2013) and remeshing procedure
to Xnþ1 to preserve the initial volume and high-quality surface
mesh (Hua et al., 2013), respectively.

4. Numerical experiments

4.1. Pressure jump

In the absence of viscous, gravitational, and other external
forces, the pressure gradient is balanced by the surface tension
force. Using Laplace’s formula for an infinite cylindrical liquid
surrounded by an ambient fluid at zero pressure, the pressure
difference is ½p�C ¼ r=R, where R is the droplet radius and r is the
surface tension coefficient of the interface C (Landau and Lifshitz,
1987). We consider the equilibrium of a drop-in-drop placed within
another fluid (see Fig. 3(a)) in two dimensions. Thus ½p�Cm

¼ rm=Rm,
where rm and Rm are the surface tension coefficient and droplet
radius of the interface Cm for m ¼ 1;2, respectively. The initial con-
ditions are circles with R1 ¼ 0:2 and R2 ¼ 0:4. The surface tension
coefficients are r1 ¼ r2 ¼ 1. Numerically, the pressure difference
is obtained on the domain ð0;1Þ � ð0;1Þ with the uniform grids
h ¼ 1=2n for n ¼ 5; 6; 7, and 8. Table 1 shows the convergence of
the pressure jump between the ambient fluid and inner droplet as
we refine the mesh size. Fig. 3(b) and (c) show the pressure field
over the domain and along the line y ¼ 0:5, respectively.

4.2. Dynamics of compound droplet in two dimensions

We introduce the Taylor deformation number defined for a
simple droplet (Taylor, 1932) (see Fig. 4(a)), namely, D ¼ ðL� BÞ=
(b)

ell centers. (b) Eulerian points x and Lagrangian points XðtÞ.



(a) (c)(b)

Fig. 3. (a) Schematic illustration of a drop-in-drop surrounded by ambient fluid. (b) Pressure field for the compound drop. (c) Slice of the pressure field at y ¼ 0:5 (dotted line
in (a)).

Table 1
Numerical pressure jump between the ambient fluid and the inner droplet with
different mesh sizes. The theoretical pressure jump is 7:5.

Mesh size (h) 1=32 1=64 1=128 1=256

Numerical pressure jump 7:5089 7:5051 7:5045 7:5036
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ðLþ BÞ, where L and B are the instantaneous maximum and
minimum distances of the drop from its center, respectively. The
inclination angle h is defined as the angle between the long axis
L and the x-axis. For the compound case, Fig. 4(b) illustrates the
inclination angles h1 and h2 for the inner and outer interfaces,
respectively. Let R; R1, and R2 be the radii of the simple, inner,
and outer droplet, respectively.
4.2.1. Effect of radius ratio
Let R ¼ R2, where R is the simple droplet radius and R2 is the

outer droplet radius of a compound droplet. We increase the inner
droplet radius of the compound droplet to examine the effect of
inner droplet size on the deformation of the outer droplet. The
computational domain is X ¼ ð�6;6Þ � ð�3;3Þ, and a spatial step
of h ¼ 6=128 and time step of Dt ¼ 0:2h2 are used. Fig. 5(a) and
(b) show the equilibrium shapes at t ¼ 10 and the temporal
evolution of the outer droplet’s deformation for various values of
the core droplet radius R1. When R1 ¼ 0:1, the equilibrium mor-
phology and the evolution of the deformation number D in the
outer droplet of the compound droplet are almost identical to
the simple binary droplet. With increased inner droplet sizes, B
and L are getting larger and smaller, respectively.
(a)

Fig. 4. Schematic representation: (a) maximum distance L, minimum distance B, and incl
compound droplet, respectively.
4.2.2. Inclination angle of inner droplet
Fig. 6(a) shows a snapshot of the velocity field for a compound

droplet when t ¼ 10. The inner droplet undergoes a rotational
velocity field inside the outer droplet. In this case, parameters
R1 ¼ 0:6; R2 ¼ 1; k ¼ 0:6; b ¼ 0:6, Re ¼ 1; Ca2 ¼ 0:25, and Ca1 ¼
ðk=bÞCa2 are used. Here, k ¼ R1=R2 and b ¼ r1=r2. Fig. 6(b) shows
the temporal evolution of h1 and h2 for the compound droplet.
We can observe that h1 is always greater than or equal to h2.
4.2.3. Eccentric compound droplet
We next investigate the behavior of the compound droplet

when the initial inner droplet is eccentrically located in the shear
flow. We set X ¼ ð�6;6Þ � ð�3;3Þ; h ¼ 6=128; Dt ¼ 0:2h2,
R1 ¼ 0:5; R2 ¼ 1; k ¼ 0:5; b ¼ 1; Re ¼ 1; _c ¼ 1, and Ca2 ¼ 0:25.
The centers of the inner droplets are initially located at
ð�1=4;0Þ; ð�

ffiffiffi
2
p

=8;
ffiffiffi
2
p

=8Þ; ð0;1=4Þ, and ð
ffiffiffi
2
p

=8;
ffiffiffi
2
p

=8Þ, as shown
in the first row of Fig. 7. The second row of Fig. 7 shows the shapes
and positions of the compound droplets in the steady state after
the centers have been horizontally shifted. We can see that there
is almost no difference in the droplet shapes for different initial
positions.
4.3. Dynamics of compound droplet in three dimensions

In this section, we investigate the effects of the radius ratio,
interfacial tension ratio, Ca number, and wall confinement on the
morphology of the compound droplet under shear flow in the
steady state.
(b)

ination angle h. (b) Inclination angles h1 and h2 for the inner and outer interfaces of a



(a) (b)

Fig. 5. (a) Shapes of simple and compound droplets when t ¼ 10. (b) Temporal evolution of the outer droplet’s deformation number with varying R1.

(a) (b)

Fig. 6. (a) Velocity field of the compound drop in the steady state. (b) Temporal evolution of h1 and h2.

H. Hua et al. / International Journal of Heat and Fluid Flow 50 (2014) 63–71 67
4.3.1. Effect of radius ratio
We increase the radius of the inner droplet to study its effect on

the morphology of the outer droplet. The domain X ¼ ð�4;4Þ�
ð�2;2Þ � ð�2;2Þ, and parameter values of h ¼ 1=16; Dt ¼ 0:1h2

;

Re ¼ 1; b ¼ 1, and Ca2 ¼ 0:25 are used. We fix the outer radius
R2 ¼ 1 and change the inner radius R1 ¼ kR2, where the radius ratio
k ¼ 0:3; 0:5, and 0:7. In addition, a value of Ca1 ¼ ðk=bÞCa2 is used.
Fig. 8 shows the steady state shapes of compound droplets. The
inner droplet strongly affects the deformation of the outer one as
the radius ratio k increases. As in the two-dimensional case, the
velocity field in the region enclosed by the outer droplet can be
viewed as another induced shear flow for the inner droplet. The
inclination of the inner droplet is based on this induced shear flow.
When k ¼ 0:7, the interfaces of the inner and outer droplets are
closer to each other than in other cases; therefore, the inner drop-
let encounters a strong inclined shear flow, resulting in greater
inclination toward the flow direction compared with the results
for k ¼ 0:3 and 0:5. In addition, the shape of the outer interface
deviates further from the ellipsoidal shape as k increases.

4.3.2. Effect of interfacial tension ratio
To investigate the effect of surface tension, we fix the surface

tension of the outer droplet and change that of the inner droplet.
We set X ¼ ð�4;4Þ � ð�2;2Þ � ð�2;2Þ; R1 ¼ 0:5; R2 ¼ 1, h¼1=16;
Dt ¼ 0:1h2, and Re ¼ 5. First, we fix the capillary number of
the outer droplet to Ca2 ¼ 0:05, and set Ca1 ¼ ðk=bÞCa2 with
b ¼ 0:1; 0:05, and 0:025 to decrease the interface tension of the
inner droplet. Fig. 9 shows the steady-state shape of the compound
droplet. The inner droplets become more stretched as the inner
surface tension decreases. Furthermore, decreasing the surface
tension of the inner droplet makes it more inclined to the direction
of flow.

Next, we fix the capillary number of the inner droplet to
Ca1 ¼ 0:05, and vary Ca2 ¼ ðb=kÞCa1 by setting b ¼ 0:5, 1, and 2
to decrease the interface tension of the outer droplet. Fig. 10 shows
the steady-state shapes of the compound droplets. As the outer
surface tension decreases, the outer droplets become more
stretched and inclined toward the flow direction. When b ¼ 2,
the shape of the outer interface deviates from an ellipsoid.
4.3.3. Comparison with a simple droplet
To study the effect of the capillary number of the outer droplet,

we compare the results with those for a simple droplet. For
the numerical simulations, we use M ¼ M2 ¼ 1896 for the sim-
ple and outer droplets, and M1 ¼ 462 for the inner droplet.
We set X¼ ð�2H;2HÞ� ð�2H;2HÞ� ð�H;HÞ; R¼ R2 ¼ 1; R1 ¼ 0:5,
H¼ 0:5=0:415, and b¼ 0:5. The capillary number Ca¼ Ca2 and Rey-
nolds number Re¼ 5Ca are then varied. Fig. 11 shows the simple
and compound droplets in the steady state. In both cases, increas-
ing Ca makes the droplets more stretched and inclined toward the
fluid directions. However, the interaction between the inner and



(a)

(e)

(b) (c) (d)

(i)

(f) (g) (h)

Fig. 7. Effect of inner droplet position on the shape of the compound droplet. Figures (a) to (d) illustrate the initial shapes, and figures (e) to (h) are the corresponding shapes
in the steady state. (i) Overlapped interface of the steady-state shapes for the outer and inner droplets.

Fig. 8. Radius ratio effect of compound droplet. Top row: surface mesh viewed from x–z plane; bottom row: velocity vector field and interface of the compound droplet in the
y ¼ 0 plane.
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outer droplets in the compound case makes the outer droplets less
deformed than the simple droplets.

To compare the dynamics of the simple and compound cases,
we consider the dimensionless axes L=R; B=R, and W=R with
various capillary numbers. For the simple droplet, the effect of
the capillary number has been studied theoretically in Minale
(2008) and experimentally in Vananroye et al. (2007). For the
numerical simulations, to match this experimental situation, we
use a wall height of H ¼ 0:5=0:415, outer radius R2 ¼ R ¼ 1, and
Re ¼ 5Ca. In addition, we set the inner radius as R1 ¼ 0:5 for the
compound case. Note that the viscosity ratio of the droplet and
ambient fluid is 1:07 in the theoretical and experimental results,
whereas we use a unit viscosity in our numerical simulations.
Fig. 12 shows the experimental, numerical simulation, and theoret-
ical results for various capillary numbers. In Fig. 12, the closed,
dashed, and dotted lines represent the dimensionless axes
L=R; B=R, and W=R from the theoretical analysis, respectively.
The symbols denote corresponding values from the experiment
and numerical simulations. When Ca ¼ 0:1 and Ca ¼ 0:15, all three
approaches are in good agreement. For the smaller value of
Ca ¼ 0:05, the numerical results from the simple and compound
droplets are almost the same. In the simple droplet case, the com-
putational results lie between the experimental and theoretical
results. For a larger value of Ca ¼ 0:25, the dimensionless values



Fig. 9. Effect of inner droplet surface tension on the steady state of the compound droplet. First row illustrates the surface meshes viewed from x–z plane. Second row shows
the vector field with contours at y ¼ 0.

Fig. 10. Effect of outer droplet surface tension on the steady state of the compound droplet. First row illustrates the surface meshes viewed from x–z plane. Second row shows
the vector field with contours at y ¼ 0.

Fig. 11. Side views of the simple and compound droplets in the steady state. The first and second rows show simple and compound droplets, respectively.
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from the compound droplet are different to those from the simple
droplet. This is due to the existence of the inner droplet.

4.3.4. Effect of wall confinement
We study the wall effect on the hydrodynamics of the

compound droplet, and compare its steady shape with the simple
droplet under the same conditions. The computational domain is
ð�3H;3HÞ � ð�3H;3HÞ � ð�H;HÞ. We use wall heights of H ¼ 2,
1:5; 1:25; 1, and 0:8. For the numerical simulations, we use Re ¼
1; R ¼ R2 ¼ 1; R1 ¼ 0:5; Ca ¼ Ca2 ¼ 0:25, and b ¼ 0:5. Because of
the case H ¼ 0:8, the initial shapes are prolate ellipsoids that have
the same volumes as with radii of R; R1, or R2. Fig. 13 shows a side
view of the simple and compound droplets in the steady states. For
the compound droplet, decreasing the wall height makes both



Fig. 12. Dimensionless axes for the simple and compound droplets versus Ca
number.

(a)

(b)

(c)

(d)

(e)

Fig. 13. Simple and compound droplets in the steady state with wall heights of: (a) H ¼
simple and compound droplet results, respectively.
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outer and inner droplets more inclined toward the flow direction.
This is similar to the behavior of the simple droplet. As the
compound droplet becomes more confined, the shape difference
compared with the simple droplet for the same wall height
increases. The compound droplet is less elongated than the simple
droplet.

5. Conclusions

The deformation dynamics of a compound liquid droplet in
shear flow has been numerically investigated in two- and three-
dimensional spaces. We extended a recently developed volume-
conserving IBM for two-phase fluid flows to ternary compound
droplet flows, and applied a surface remeshing algorithm for long
time simulations. We studied the effects of radius, interfacial
tension ratios, and inner droplet location on the deformation of a
compound droplet. We computed the inclination angles of the
inner and outer droplets. The simulation results indicate that the
angle of the inner droplet is always greater than or equal to that
2, (b) H ¼ 1:5, (c) H ¼ 1:25, (d) H ¼ 1, and (e) H ¼ 0:8. Left and right columns show
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of the outer one. The effect of wall confinement on compound
droplet deformation was compared with that of a simple droplet.
The results show that, as the wall becomes more confined, the dif-
ference in behavior between the compound and simple droplets
increases. The novelties of this study are (i) the three-dimensional
volume-conserving immersed boundary method and surface reme-
shing for a compound droplet, which enable accurate and stable
simulations, (ii) our investigation of the influence of fluid proper-
ties, droplet sizes, and inner droplet locations, and (iii) our compar-
ison of wall confinement effects with those of a simple droplet.
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