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a b s t r a c t

In this paper, we consider a phase-field model for dendritic growth in a two-dimensional cavity flow and
propose a computationally efficient numerical method for solving the model. The crystal is fixed in the
space and cannot be convected in most of the previous studies, instead the supercooledmelt flows around
the crystal, which is hard to be realized in the real world experimental setting. Applying advection to the
crystal equation, we have problems such as deformation of crystal shape and ambiguity of the crystal
orientation for the anisotropy. To resolve these difficulties, we present a phase-field method by using a
moving overset grid for the dendritic growth in a cavity flow. Numerical results show that the proposed
method can predict the crystal growth under flow.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Convection of the crystal in the melt is of great interest for the
practical processes to understand the dendritic solidification. The
formation of the solidification such as the arm spacing, growth
rate, and morphology is largely changed by the forced convection
due to the melt flow. The convective effects on free dendritic
crystal growth have been investigated experimentally [1–5] and
numerically [6–12]. In numerical investigation, the phase-field
method, which has been widely applied to model various meso-
scale phenomena such as solidification, recrystallization, andmany
energy-based applications [13–16], is also a flexible mathematical
tool to describe the interfaces in dendritic crystal growth with
convection. Two- and three-dimensional adaptive phase-field sim-
ulations of dendritic crystal growth in a forced flowwere presented
in [17]. The effect of natural convection in 3D dendritic growth
using an efficient adaptive phase-field simulation was investi-
gated by Chen and Lan [18]. A two-dimensional lattice Boltzmann
method-cellular automation model was presented to investigate
the dendritic growth of binary alloys in the presence of natural
convection [19]. Recently, motion and growth of a dendrite in the
presence of melt convection was modeled using a phase-field-
lattice Boltzmann method [7].

However, the crystal is fixed in the space and cannot be con-
vected, instead the supercooled melt flows around the crystal,
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which is hard to be realized in the real world experimental setting
in the previous studies. Direct application of the advection term
to the crystal equation would lead some problems such as the
shape deformation and the ambiguity of the crystal orientation for
the anisotropy. In recent years, few models have been elaborated
for using two computational domains to distinguish between the
fluid flow and the phase separation by applying a fictitious domain
method [20], a combination of the volume of fluid and the im-
mersed boundarymethods [21]. Nevertheless, there are drawbacks
in their algorithms; difficulty in matching the grids or compu-
tational efficiency. Note that the efficiency of the computational
point of view is one of themost important issues in solidmechanics
because of tackling massively large scale computational problem
from implementation [22]. Therefore, the parallel computing is
an active field in modeling evolution of dendrite microstructure
[23–25].

The main purpose of the present paper is to resolve these
difficulties by using a moving overset grid. The fluid domain is
covered with a fixed Cartesian grid, while a moving overset grid
is used to represent the crystal growth. Themotion of the crystal is
derived by calculating the translational and rotational force of the
crystal phase. Using the fictitious domainmethod with distributed
Lagrange multiplier method, the method in [20] has an advantage
that simulations can be performed in a problem involving different
scales in time and space. Note that the proposed method would
be compared with the method in [20] since our moving overset
gridmethod is similar to their method based on a fictitious domain
method. However, our method is simpler to implement and it

http://dx.doi.org/10.1016/j.cpc.2017.03.005
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also has the advantage involving different scales. As mentioned
above, a large scale computational problem is an important issue
in modeling dendritic growth and the parallel computing tech-
nique is actively studied. Therefore, the simpler algorithm can be
contributed to parallelize or develop other kinds of computational
methodologies.

This paper is organized as follows: the governing equations are
described in Section 2. In Section 3, the computationally efficient
operator splitting algorithm is discussed. The numerical results are
presented for solving the crystal growth simulations under a cavity
flow in Section 4. Finally, conclusions are given in Section 6. Note
that this work is based on the Ph.D. thesis [26] of the first author,
Korea University.

2. Mathematical modeling

We consider the solidification of a pure substance from its
supercooled melt in a two-dimensional cavity flow. To model
the solidification system, let φ(x, y, t) be the phase-field function,
where φ = 1 and φ = −1 refer to the bulk solid and melt phases,
respectively. The phase-field variable φ is smoothly changed but
has small thickness across the interfacial transition region, and we
define the interface by the zero level set of φ [12]. The governing
equations for crystal growth in the flow are given as

∂u
∂t

+ u · ∇u = −∇p +
1
Re

∇ · [η(φ)(∇u + ∇uT )], (1)

∇ · u = 0, (2)

ϵ2(φ)
(
∂φ

∂t
+ u · ∇φ

)
= ∇ · (ϵ2(φ)∇φ) + [φ − λU(1 − φ2)](1 − φ2)

+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φx

)
x
+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φy

)
y
, (3)

∂U
∂t

+ u · ∇U = D∆U +
1
2
∂φ

∂t
, (4)

where u is the velocity, p is the pressure, η(φ) is the variable vis-
cosity, and U is the temperature. Note that Eqs. (1) and (2) are the
Navier–Stokes equations [27] and Eqs. (3) and (4) are the governing
equations for dendrite growth [28]. Here, η(φ) = 0.5[ηs(1 + φ) +

ηm(1 − φ)], where ηs and ηm are viscosities of solid and melt,
respectively. We take the increased viscosity approach [29] which
uses a very large viscosity in the solid to describe the resistance to
the flow. The dimensionless parameters are the Reynolds number
Re, λ, and D. For the four-fold symmetry, ϵ(φ) is defined as:

ϵ(φ) = (1 − 3ϵ4)

(
1 +

4ϵ4
1 − 3ϵ4

φ4
x + φ4

y

|∇φ|
4

)
,

where ϵ4 is a parameter for the anisotropy of interfacial energy.
We will consider the two computational domains to separately

represent the crystal growth and fluid flow. The flow with appro-
priate boundary conditions is defined on the base domain. The
phase-field functionφ for representing the crystal is defined on the
relatively small domain, and the crystal growth equation is

ϵ2(φ)
∂φ

∂t
= ∇ · (ϵ2(φ)∇φ) + [φ − λU(1 − φ2)](1 − φ2)

+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φx

)
x
+

(
|∇φ|

2ϵ(φ)
∂ϵ(φ)
∂φy

)
y

(5)

by using Eq. (3) without the advection term u · ∇φ. For translating
and rotating of the crystal domain, we use the conservation law of
the linear and angular momentums. Since the crystal is governed

Fig. 1. Schematic of an advection for φ(x, t).

by a rigid body motion, the conservation of the linear momentum
is given as:

Mcuc =

∫
Ω

u(x, y)ρ(x, y) dx, (6)

where Mc is the total mass of a crystal, Mc =
∫
Ω
ρ(x, y) dx, Ω is

a crystal, and uc is the velocity of the crystal. If ρ is constant, then
we can rewrite Eq. (6) as

uc =

∫
Ω
u(x, y) dx∫
Ω
dx

. (7)

We consider the advection equation to validate the motion by
the linear momentum. For a rigid body motion, the motion of an
advection can be represented by xc(t +∆t) = xc(t)+ uc∆t where
xc(t) = (xc(t), yc(t)) is the center of mass. Here, a one-dimensional
space is considered for simplicity (see Fig. 1).

On the other hand, the motion in Fig. 1 satisfies∫ x

0
φ(ξ, 0)dξ =

∫ x+a

a
φ(ξ,∆t)dξ .

By differentiating both sides, we get φ(x, 0) = φ(x + a,∆t). Here,
we can assume the constant velocity in the rigid body, i.e., a = u∆t .
Since φ(x + a,∆t) = φ(x,∆t) + u∆tφx(x,∆t) + O(∆t2) by the
Taylor’s expansion,

φ(x,∆t) − φ(x, 0)
∆t

+ uφx(x,∆t) = 0,

which is approximated by the classical advection equation φt +

u∇φ = 0 for a small ∆t . From our derivation, the rigid body
motion can be modeled by the classical advection equation only
when a velocity field is a constant in the rigid body. To resolve
this restriction, we propose themoving overset gridmethodwhich
does not require a constant velocity field in the rigid body.

Next, the angular momentum Lc of the crystal is generally
defined as a sum of the infinitesimal angular momentum dL [30]:

Lc =

∫
Ω

dL =

∫
Ω

(
r̃(x, y) × u(x, y)

)
ρ(x, y) dx, (8)

where r̃(x, y) is the displacement vector from the center of mass.
Moreover, Lc can be written by a product of the moment of inertia
Ic and the angular speed ωc , i.e., Lc = Icωc . Assuming the constant
density ρ = 1, we have

ωc =
Lc
Ic

=

∫
Ω
(r̃ × u)dx∫

Ω
∥ r̃ ∥

2dx
. (9)

Moreover, a rotation velocity of a rigid body can be treated as

u(x, y) =
−→ω × r̃(x, y).

The rotation can be approximated by the following equation:[
xc(t +∆t)
yc(t +∆t)

]
=

[
xc(t)
yc(t)

]
+∆t(−→ω × r̃). (10)
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Fig. 2. Schematic illustration of the fluid domain Ωf , the crystal domain Ωc , and
the moving domainΩmoving .

Note that −→ω = (0, 0, ∥ωc∥) and −→ω × r̃ = (−rx∥ωc∥, ry∥ωc∥, 0)
in a two-dimensional domain where ∥ωc∥ is the norm of ωc and
r = (rx, ry, 0). Since ∥ωc∥ = ∆θc/∆t where ∆θc is the rotational
angle, Eq. (10) can be written as[
∆xc
∆yc

]
= ∆θc

[
−ry
rx

]
.

It is well-matched to the following rotation equation:[
∆xc
∆yc

]
=

[
cos(∆θc) − sin(∆θc)
sin(∆θc) cos(∆θc)

][
rx
ry

]
−

[
rx
ry

]
≈

[
1 −∆θc
∆θc 1

][
rx
ry

]
−

[
rx
ry

]
= ∆θc

[
−ry
rx

]
,

for a small ∆θc . Therefore, we can translate and rotate a crystal
without solving the advection term since the velocity vector and
the angular speed of a crystal (or an overset grid) can be derived
from Eqs. (7) and (9).

3. Numerical solution

In this section, we propose a hybrid numerical method using
an overset grid for the simulation of the crystal growth in a cavity
flow. Let Ωf = (a, b) × (c, d) be a domain for the fluid velocity
u = (u, v), pressure p, and temperature U with proper boundary
conditions. Also, let Ωc = (0, α) × (0, β) be another domain for
the phase-field function φ with interpolated boundary conditions.
Ωmoving is the coordinate transformation of Ωc , and it represents
the location and rotation ofΩc onΩf . Let X1, X2, X3, X4 be corners
of Ωmoving on Ωf corresponding to points (0, 0), (α, 0), (α, β),
(0, β) onΩc , respectively. We determine the location ofΩmoving by
setting its center asmc = (X1+X2+X3+X4)/4 and the rotation θc
as the signed anglemeasured from the horizontal axis to the vector
−−→
X1X2 (see Fig. 2).

For the time integration, we consider the uniform time step
∆t = T/Nt , where T is the final time and Nt is the total number
of iterations. For Ωf , we use a uniform mesh with mesh spacing
h = (b − a)/Nx = (d − c)/Ny, where Nx and Ny are the numbers of
cells in the x- and y-directions, respectively. The center of each cell
is located at xij = (xi, yj) = (a + (i − 0.5)h, c + (j − 0.5)h) and we
define the computational domain Ωh

f = {xij | i = 1, . . . ,Nx, j =

1, . . . ,Ny}. Using the marker-and-cell mesh, the pressure p and
temperature U are defined at the cell centers and the velocities u
and v are defined at the cell edges (see Fig. 3). Let pnij and Un

ij be
approximations of p(xi, yj, n∆t) andU(xi, yj, n∆t), respectively. Let
un
i+1/2,j and v

n
i,j+1/2 be approximations of u(xi + h/2, yj, n∆t) and

v(xi, yj + h/2, n∆t), respectively.
For Ωc , we also use a uniform mesh with mesh spacing h̄ =

α/Mx = β/My, where Mx and My are the numbers of cells in the

Fig. 3. Schematic of the computational grid for the pressure, velocities, and tem-
perature.

x- and y-directions, respectively. The center of each cell is located
at skl = (sxk, s

y
l ) = ((k − 0.5)h̄, (l − 0.5)h̄), and we define the

computational domainΩh
c = {skl | k = 1, . . . ,Mx, l = 1, . . . ,My}.

And, mn
c and θnc represent the center position and rotation of

Ωmoving at time n∆t , respectively.
Next, we describe our proposed numerical solution algorithm.

At the nth time step, we have a divergence-free velocity field un,
the phase-field φn, and temperature Un. We seek un+1, pn+1, φn+1,
and Un+1.

3.1. Hydrodynamic flow onΩf

First, we solve Eqs. (1) and (2) to update un+1 and pn+1 on the
fluid domainΩf by using the Chorin’s projection method [31,32]:

un+1
− un

∆t
+ un

· ∇dun
= −∇dpn+1

+
1
Re

∇d ·
[
ηn
(
∇dun

+ (∇dun)T
)]
, (11)

∇d · un+1
= 0. (12)

We solve an intermediate velocity field, ũn
= (ũn, ṽn):

ũn
i+ 1

2 ,j
= un

i+ 1
2 ,j

−∆t(uux + vuy)ni+ 1
2 ,j

+
∆t
Re

(
2(ηux)x + (ηuy)y + (ηvx)y

)n
i+ 1

2 ,j
, (13)

ṽn
i,j+ 1

2
= vn

i,j+ 1
2

−∆t(uvx + vvy)ni,j+ 1
2

+
∆t
Re

(
(ηvx)x + (ηuy)x + 2(ηvy)y

)n
i,j+ 1

2
. (14)

The advection terms are defined by

(uux + vuy)ni+ 1
2 ,j

= un
i+ 1

2 ,j
ūn
x
i+ 1

2 ,j
+ vn

i+ 1
2 ,j

ūn
y
i+ 1

2 ,j
, (15)

(uvx + vvy)ni,j+ 1
2

= vn
i,j+ 1

2
v̄ny

i,j+ 1
2

+ un
i,j+ 1

2
v̄nx

i,j+ 1
2

, (16)

where the values ūn
x
i+ 1

2 ,j
and ūn

y
i+ 1

2 ,j
are computed using the upwind

procedure

ūn
x
i+ 1

2 ,j
=

⎧⎪⎪⎨⎪⎪⎩
un
i+ 1

2 ,j
− un

i− 1
2 ,j

h
, if un

i+ 1
2 ,j
> 0,

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

h
, otherwise,

(17)

ūn
y
i+ 1

2 ,j
=

⎧⎪⎪⎨⎪⎪⎩
un
i+ 1

2 ,j
− un

i+ 1
2 ,j−1

h
, if vn

i+ 1
2 ,j
> 0,

un
i+ 1

2 ,j+1
− un

i+ 1
2 ,j

h
, otherwise.

(18)
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The quantities v̄nx
i,j+ 1

2

and v̄ny
i,j+ 1

2

are similarly computed. The vis-

cosity terms are defined by(
2(ηux)x + (ηuy)y + (ηvx)y

)n
i+ 1

2 ,j

= 2

(
ηni+1,j

un
i+ 3

2 ,j
− un

i+ 1
2 ,j

h2 − ηnij

un
i+ 1

2 ,j
− un

i− 1
2 ,j

h2

)

+ ηn
i+ 1

2 ,j+
1
2

un
i+ 1

2 ,j+1
− un

i+ 1
2 ,j

h2 − ηn
i+ 1

2 ,j−
1
2

un
i+ 1

2 ,j
− un

i+ 1
2 ,j−1

h2

+ ηn
i+ 1

2 ,j+
1
2

vn
i+1,j+ 1

2
− vn

i,j+ 1
2

h2

− ηn
i+ 1

2 ,j−
1
2

vn
i+1,j− 1

2
− vn

i,j− 1
2

h2 , (19)(
(ηvx)x + (ηuy)x + 2(ηvy)y

)n
i,j+ 1

2

= ηn
i+ 1

2 ,j+
1
2

vn
i+1,j+ 1

2
− vn

i,j+ 1
2

h2 − ηn
i− 1

2 ,j+
1
2

vn
i,j+ 1

2
− vn

i−1,j+ 1
2

h2

+ ηn
i+ 1

2 ,j+
1
2

un
i+ 1

2 ,j+1
− un

i+ 1
2 ,j

h2 − ηn
i− 1

2 ,j+
1
2

un
i− 1

2 ,j+1
− un

i− 1
2 ,j

h2

+ 2

(
ηni,j+1

vn
i,j+ 3

2
− vn

i,j+ 1
2

h2 − ηnij

vn
i,j+ 1

2
− vn

i,j− 1
2

h2

)
. (20)

Because the viscosity ηn on Ωf depends on the phase-field
function φn on Ωc , we consider the interpolated function φ̃n as
follows: First, to check whether xij ∈ Ωh

f is inside of Ωmoving or
not, we compare the sum of areas of four triangles with the area of
moving domainΩmoving. That is, if

△xijX1X2 + △xijX2X3 + △xijX3X4 + △xijX4X1

> □X1X2X3X4, (21)

then it means that xij ̸∈ Ωmoving (Fig. 4(a)). If the two areas are
same, then xij ∈ Ωmoving (Fig. 4(b)). Next, we estimate the value of
φ̃n
ij fromφ

n onΩc if xij ∈ Ωmoving by using the bilinear interpolation
and we define φ̃n

ij = 1 otherwise. For more details, we denote the

directional vectors as a =
−−→
X1X2, b =

−−→
X1X4, and c =

−−→
X1xij. If xij ∈

Ωmoving, xij is corresponding to the location ((a·c)/|a|, (b·c)/|b|) on
Ωc and then we can calculate the φ̃ij by the interpolation. Finally,
we define

ηnij =
ηs(1 + φ̃n

ij ) + ηm(1 − φ̃n
ij )

2
. (22)

We then solve the pressure field at the (n + 1)th time step.

un+1
− ũn

∆t
= −∇dpn+1, (23)

∇d · un+1
= 0. (24)

Applying the discrete divergence ∇d· and divergence-free Eq. (24)
to Eq. (23), we obtain the Poisson’s equation with the homoge-
neous Neumann boundary condition:

∆dpn+1
=

1
∆t

∇d · ũn, (25)

where ∆dpn+1
ij = (pn+1

i+1,j + pn+1
i−1,j − 4pn+1

ij + pn+1
i,j+1 + pn+1

i,j−1)/h
2 and

∇d · ũn
ij = (ũn

i+ 1
2 ,j

− ũn
i− 1

2 ,j
+ ṽn

i,j+ 1
2

− ṽn
i,j− 1

2
)/h. We solve Eq. (25)

by themultigridmethod, and using the updated pressure pn+1, the

divergence-free velocities are obtained

un+1
i+ 1

2 ,j
= ũn

i+ 1
2 ,j

−
∆t
h

(pn+1
i+1,j − pn+1

ij ), (26)

vn+1
i,j+ 1

2
= ṽn

i,j+ 1
2

−
∆t
h

(pn+1
i,j+1 − pn+1

ij ). (27)

3.2. Dendritic crystal growth onΩc

Next, we solve the crystal equation (3) to obtain the updated
phase-field functionφn onΩc . Note that the convection termu·∇φ

is treated by translating and rotating the moving domain Ωmoving.
We use the operator splitting scheme [33]:

ϵ2(φn)
φn+1,1

− φn

∆t
= 2ϵ(φn)ϵx(φn)φn

x + 2ϵ(φn)ϵy(φn)φn
y

+

(
16ϵ4ϵ(φn)φx(φ2

xφ
2
y − φ4

y )

|∇dφ|
4

)n

x

+

(
16ϵ4ϵ(φn)φy(φ2

xφ
2
y − φ4

x )

|∇dφ|
4

)n

y

, (28)

ϵ2(φn)
φn+1,2

− φn+1,1

∆t
= ϵ2(φn)∆dφ

n+1,2
− 4λÛnF (φn+1,1), (29)

where F (φ) = 0.25(φ2
−1)2. Because the temperatureUn is defined

onΩf , we consider the interpolated function Ûn forΩc . Ûn
kl at skl ∈

Ωh
c is the bilinearly interpolated value from the temperature Un at

the position s̃kl = X1 + sxka/|a| + syl b/|b| onΩf (Fig. 5). If s̃ij ̸∈ Ωf ,
then we define Ûn

ij = ∆with a dimensionless undercooling∆.
And then we update φn+1 by solving the following equation:

φn+1
= φn+1,2

/√
e
−

2∆t∗
ϵ2(φn+1,2) + (φn+1,2)2

(
1 − e

−
2∆t∗

ϵ2(φn+1,2)

)
.

(30)

Eqs. (25) and (29) are solved by a multigrid method [34]. For
more detailed discretizations, please refer to [33].

3.3. Translation and rotation ofΩmoving

Also, we update the position of the advected crystal on Ωf
by moving Ωmoving. The magnitudes of its rotatory and parallel
translations are derived from the conservations of the linear and
angular momentums, respectively. Here, we calculate the velocity
un
c = (un

c , v
n
c ) of the crystal and the rotation angle θnc of the crystal

to represent the motion of the crystal. Using the interpolated
phase-field φ̃n

ij , fluid velocity un, and Eq. (7), we can write un
c , as

un
c =

∑Nx
i=1
∑Ny

j=1 0.5
(
1 + φ̃n

ij

)
un
ijh

2∑Nx
i=1
∑Ny

j=1 0.5
(
1 + φ̃n

ij

)
h2

. (31)

Note that the interpolation of φ̃n is described in Section 3.1. And,
we estimate the fluid velocity at cell centers as

un
ij =

(
0.5(un

i+ 1
2 ,j

+ un
i− 1

2 ,j
), 0.5(vn

i,j+ 1
2

+ vn
i,j− 1

2
)
)
. (32)

Next, we consider the angular momentum Lc of the crystal to
calculate the rotation angle θc . Let ωn

c be an approximation of ωc
at time n∆t . From Eq. (9), ωn

c is written as

ωn
c =

∑Nx
i=1
∑Ny

j=1 0.5
(
mn

c − xij
)
× un

ij

(
1 + φ̃n

ij

)
h2∑Nx

i=1
∑Ny

j=1 ∥
(
mn

c − xij
)
∥2h2

. (33)
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Fig. 4. Schematic illustration of (a) xij ̸∈ Ωmoving and (b) xij ∈ Ωmoving .

Fig. 5. Schematic of the temperature field interpolation.

Fig. 6. New center position and rotation angle of the crystal domainΩc .

Therefore, we can compute the new position and rotation angle of
the crystal domain Ωc on the fluid domain Ωf from Eqs. (31) and
(33) (Fig. 6):

mn+1
c = mn

c + un
c∆t, (34)

θn+1
c = θnc + ωn

c∆t. (35)

3.4. Temperature field onΩf

Finally, we solve the temperature field U on the domain Ωf
with the homogeneous Dirichlet boundary condition using the
multigrid method:

Un+1
ij − Un

ij

∆t
+ (un

· ∇dUn)ij = D∆dUn+1
ij +

φ̃n+1
ij − φ̃n

ij

2∆t
. (36)

Here, we apply the upwind scheme for the advection term:

Un
xij =

⎧⎪⎪⎨⎪⎪⎩
Un
ij − Un

i−1,j

h
, if un

ij > 0,

Un
i+1,j − Un

ij

h
, otherwise,

Un
yij =

⎧⎪⎪⎨⎪⎪⎩
Un
ij − Un

ij−1

h
, if vnij > 0,

Un
i,j+1 − un

ij

h
, otherwise.

Note that the velocity located at a cell center (un
ij, v

n
ij) is defined by

using interpolation as
(
0.5(un

i+ 1
2 ,j

+ un
i− 1

2 ,j
), 0.5(vn

i,j+ 1
2

+ vn
i,j− 1

2
)
)

as in Section 3.3.

3.5. Summary for the implementation

A brief summary of numerical procedures for crystal growth
simulation in a cavity flow is as follows: Given the fluid velocity
un, the phase-field function φn, the temperature Un, the crystal
location mn

c , and the crystal rotation θnc , we proceed the following
steps:

Step (1) Update un+1 onΩf by Eqs. (11) and (12).
Step (2) Update φn+1 onΩc by Eqs. (28)–(30).
Step (3) Updatemn+1

c and θn+1
c ofΩmoving by Eqs. (34) and (35).

Step (4) Update Un+1 onΩf by Eq. (36).
This completes the description of the process above by which

the quantities un+1, φn+1, Un+1, mn+1
c , and θn+1

c are updated.
The fictitious domain model [20] shares a similar idea using

the local and global domains to simulate the growth and con-
vection separately; however, there are differences in describing
other physical properties. The convection of the crystal is cal-
culated using the correct velocity of the global domain and the
momentum equations (or the NS equations) with a permeability
term are solved on the local domain in the fictitious domainmodel.
Whereas, we do not solve the NS equations, consider the advection
term in Ωc , and do not implement a permeability term in our
model. Instead, the rigid body motion is enforced by calculating
the translation and rotation of Ωmoving and the permeability of
the crystal is treated by using a large viscosity ratio. Because of
mismatching detail parameters, it is not comparable to compare
our method with the results in [20] directly. We would rather
perform a numerical simulation in Section 4.2 to comparewith the
analytical value of a terminal velocity for a particle sedimentation,
also suggested in [20].
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Fig. 7. Evolution of the solid under a rotational flow by (a) solving the classical
advection equation and (b) applying the proposed overset grid. The solid contour
represents the initial configuration, dashed zero-level contours are the configura-
tions at every 400 iterations, and arrows are the underlying velocity field.

Table 1
Errors of the numerical angles and the exact value with various mesh grids.

Mesh 1282 2562 5122

Error 2.983 × 10−3 3.260 × 10−4 6.000 × 10−6

4. Numerical results

In this section, we present examples to numerically demon-
strate the efficiency of the proposed methods. The first example
compares the result by the proposed translation algorithmwith the
result by solving the advection equation. Particle sedimentation is
computed in the second example to demonstrate the accuracy of
our treatment of solid motion. Next, we show temporal evolution
of the crystal growth in the two-dimensional cavity flow. We then
perform simulations to study the effect of the viscosity, Reynolds
number, and temperature.

4.1. Translation and rotation of a solid

We first compare the translation and rotation of a solid using
the advection equation
∂φ

∂t
+ u · ∇φ = 0 (37)

and the proposed algorithm using Eqs. (7) and (10). For simplicity
of exposition, we only consider the translation and rotation with-
out solving the crystal growth equation (5). Theunderlying velocity
is a rotational flow (u, v) = (y/100,−x/100) in the domainΩf =

(−50, 50) × (−50, 50), which gives the uniform angular velocity.
At the initial state, the square solid whose one side has a length of
12 is located at the center of a quadruply smaller domain Ωc =

(0, 50) × (0, 50) and the corresponding moving domainΩmoving is
located atm0

c = (0, 25) inΩf . That is,

φ(x, y, 0) =

{
1, if (x, y) ∈ square solid,
−1, otherwise.

Fig. 7(a) and (b) show the evolution of the solid under the
flow with ∆t = 0.05π up to the final time T = 200π by
solving the classical advection equation and applying the proposed
overset grid, respectively. The solid contour represents the initial
configuration, dashed zero-level contours are the configurations
at every 400 iterations, and arrows are the underlying velocity
field. An upwind scheme is applied to solve the classical advection
equation. The overset grid method shows the rigid body motion of
the solid structure.

Because of the uniform angular velocity ω = 0.01 from the un-
derlying velocity, the initial and final configurations should agree
with each other exactly, i.e., the angle is 2π at the final time T . To

(a) t = 0.

(b) t = 20π .

(c) t = 120π .

Fig. 8. Temporal evolution of φ with the advection equation (37) and its zero
contour (solid line).

Fig. 9. Evolution of average concentration ofφwhen solving the advection equation
until t = 200π .

show the convergence, we perform numerical tests with different
mesh sizes for the case as in Fig. 7(b). Table 1 lists the errors of
the numerical angles and the exact value at T . As the mesh is finer,
the angles from the numerical experiments converge to the exact
value.

Fig. 8 shows the temporal evolution of φ with the advection
equation (37) and its zero contour. By the numerical diffusion, the
zero contour line is shrinking even though its average concentra-
tion is preserved as shown in Fig. 9. We could, of course, obtain
better results by using other time integrating schemes and smaller
time step sizes; however, it is not easy to avoid the numerical
diffusion perfectly if the advection equation (37) is used.
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Fig. 10. Evolution of the velocity with the different grid numbers.

4.2. Particle sedimentation

To demonstrate the accuracy of our treatment of solid motion,
we simulate particle sedimentation and compare the results with
the analytical value in [35]. Here, the gravitational effect ismade by
the Boussinesq approximation, which has been widely applied be-
cause of its practical simplicity [36–38]. The Navier–Stokes equa-
tionwith a gravitational force in the Boussinesq approximation can
be written as
∂u
∂t

+ u · ∇u = −
1
ρ∗

∇p +
1
ρ∗

∇ · [η(φ)(∇u + ∇uT )]

+
ρ(φ) − ρ∗

ρ∗
g,

where ρs is the solid density, ρm is the density of the ambient
fluid, ρ∗

= 0.5(ρs + ρm), ρ(φ) = ρm + 0.5(ρs − ρm)(1 + φ),
and g = (0,−g) is the gravitational force. The parameters used
are as follows: Ωf = [0, 0.04] × [0, 0.12], ∆t = 0.2ρmh2ηm/ηs,
h = 0.04/Nx, ηs = 20, ηm = 0.5, ρs = 2000, ρm = 1000,
g = 9.8, and the radius of a solid r = 0.005. Under the condition,
the analytical terminal velocity is −0.07 [35].

Fig. 10 represents the evolution of the velocity with the differ-
ent grid numbers. The result shows that the terminal velocity con-
verges to the analytical value asNx becomes bigger. To supplement
the solid viscosity effect for a rigid-body motion, we will perform
the numerical comparison test for various viscosity ratios in the
later section.

4.3. Flow effect

We perform numerical experiments for the crystal growth in a
two-dimensional cavity flow. To observe the growth of the crystal
under the flows, we consider a sufficiently large domain Ωf =

[−300, 300] × [−300, 300] to define the fluid and temperature,
and we use Ωc = [0, 300] × [0, 300] to define the phase-field
representing the crystal. InΩf , the time step is restricted to ∆t ≤

0.25Reh2ηm/ηs due to the explicit discretization for the diffusion
term in Eq. (11). In contrast, inΩc , the operator splittingmethod for
solving Eqs. (28)–(29) allows large time step, e.g., ∆t ≤ 5.5h [33].
Thus, we use ∆t = min

(
0.2Reh2ηm/ηs, 5.5h

)
, unless otherwise

specified. For the initial state, we take:

φ(x, y, 0) = tanh

(
R0 −

√
x2 + y2

√
2

)
and

U(x, y, 0) =

{
0 if φ > 0
∆ otherwise.

The zero level set (φ = 0) of the initial state represents a circle of
radius R0 = 6. From the definition of dimensionless variable U , the
value of zero corresponds to the melting temperature of the pure
material, while the value of ∆ is the initial undercooling. We also

(a) Initial state. (b) t = 854.5.

(c) t = 1709. (d) t = 2563.

(e) t = 3418. (f) t = 4272.

Fig. 11. Evolutions for the traces of crystal and the flow field.

use λ = 3.1913 as in [33,39,40]. The initial center m0
c is located

at (0, 120) and the initial fluid flow is defined as the steady state
solution of the cavity flow Re = 1 to reduce the computational
time. For other parameters, we set as follows: h = 600/768,
ϵ4 = 0.05, D = 2.0, ∆ = −0.3, Re = 10, ηm = 1, ηs = 25,
and T = 4272.

Fig. 11 shows the temporal evolution of the crystal growth in
the cavity flow. The snapshots with the contour of crystal and cor-
responding fluid vector field are drawn at the specific time. Now,
the crystal is not fixed but floats in a liquid, so that the crystal does
not grow symmetrically anymore. The flow and crystal affect each
other by the viscosity difference, and the crystal follows the fluid
flow. The heat distribution is also changed due to the interaction
of the flow and crystal, and it makes the non-symmetrical crystal
growth.

In addition, Fig. 12 displays the temporal evolutions of crystal
growth with and without the cavity flow to show the effect of the
flow. Same parameters ϵ4 = 0.05, D = 2.0, and ∆ = −0.3 are
used in a domain [0, 300] × [−150, 150] to simulate the crystal
growth without the flow. Small difference of growth is observed in
the early stage, however, in the case of with the flow, symmetry
in growing branches is getting broken and the crystal is growing
faster.
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Table 2
Center of mass (xc , yc ) and rotational angle (θc ) (degree) at the final time t = 4272.

ηs 1.5625 3.125 6.25 12.5 25 50 100

xc 346.7044 346.3121 345.6238 344.5754 343.2638 341.9477 340.8277
yc 412.2977 412.7974 413.5656 414.5939 415.7478 416.8293 417.7317
θc 155.1626 155.3965 155.5990 155.7082 155.7325 155.7314 155.7509

(a) with the flow. (b) without the flow.

Fig. 12. Contours of crystal growth (a) with and (b) without the cavity flow. The
elapsed time for each contour is 427.2.

4.4. Viscosity effect

Here, we show the viscosity effect on a fluid flow. With fixed
ηm = 1, a viscosity ratio is adjusted by ηs and the other parameters
are the same as the ones in Section 4.3. Table 2 shows the center
of mass (xc, yc) and the rotational angle (θc) at the final time
t = 4272.

The flow governed by the Navier–Stokes equation when Re = 0
is called the Stokes flow; however, the asymptotic behavior in
Stokes flow is fitted well for Re = 1, which is small enough to be
considered as a limit of the zero Reynolds number [41]. Similarly,
we can use a finite value of the viscosity ηs to approximate the
effect of a solid. Table 2 shows that ηs = 25 is reasonable in this
manner.

We also perform the simulations with higher Re = 50 and
100 and compare the effect on the evolution of the crystal growth.
Figs. 13(a), (b), and (c) show the interfaces of the crystal and
melt with Re = 10, 50, and 100 at the final time t = 4272,
respectively. In each magnified inscribed figure, the results with
various viscosity values are shown. The converged contours are
the results with ηs = 100. The results show that the effect of ηs
becomes weaker as Re becomes larger.

4.5. Effect of crystal growth on fluid flow

To show how the crystal growth in Ωc may affect the fluid
flow in Ωf , we compare the cavity flow simulations with and
without the crystal. Here, the simulation parameters are the same
as those of the previous Section 4.3. We excludeΩc and its related
parameters for the simulation if there is no crystal.

Fig. 14 shows the overlapped streamlines for each simulation.
Here, the solid line is for the result with crystal, while the dotted
line is for the result without crystal. At the early stage of the
simulations, the streamlines are almost similar for both cases as
shown in Fig. 14(a) because the crystal is too small to affect the
fluid flow. However, we can easily notice the difference between
streamlines when the crystal grows large enough (see Fig. 14(b)).
Note that the crystal at t = 4272 can be checked in Fig. 11.

4.6. Reynolds number effect

Next, we check the Reynolds number effect for the crystal
growth in a cavity flow. The used parameters are same as previous

(a) Re = 10. (b) Re = 50.

(c) Re = 100.

Fig. 13. Contours of crystal growth with various ηs at the final time t = 4272.

(a) t = 122.1. (b) t = 4272.

Fig. 14. Overlapped streamlines; the solid line is for the result with crystal, while
the dotted line is for the result without crystal.

simulation in Section 4.3 except for Re and ∆t . For comparison
of the Reynolds number effects, we set Re = 5 and Re = 100.
Since the time step restriction depends on Re, the corresponding
∆t is used as 0.02441 and 0.04883 for Re = 5 and Re = 100,
respectively.

Figs. 15(a) and (b) show migration with respect to time and
configurations of the crystals at the final time T , respectively.
A moving distance is little larger when Re = 100. Moreover, there
is a difference in the growth rates of the crystals with different
Re numbers. Generally, absorbing external heat would give rise
to growth of crystal. As shown in the figure, migration distance is
changed as Re is also changed and it implies that the crystal absorbs
more external heat when Re = 100 than Re = 5. This agrees well
with our result for growth of crystal.
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Fig. 15. (a) Migration distances with respect to time and (b) contours of the crystals at T .

(a) t = 427.2. (b) t = 854.5.

(c) t = 1282. (d) t = 1709.

(e) t = 2136. (f) t = 2563.

Fig. 16. Evolution of the crystal growth under the flow fields with∆ = −0.2 (solid
line) and∆ = −0.4 (dotted line).

4.7. Temperature effect

The initial undercooling∆ is also one of the influential parame-
ter to determine the growth of the crystal.We perform simulations
to check the effect of ∆ in the cavity flow. Fig. 16 shows configu-
rations of crystal with ∆ = −0.2 and ∆ = −0.4 until t = 2563.

(a)∆ = −0.2. (b)∆ = −0.4.

Fig. 17. Contours of crystal growth when (a) ∆ = −0.2 and (b) ∆ = −0.4. The
elapsed time for each contour is 427.2.

The other parameter settings and initial condition are same as the
simulation in 4.3.

Fig. 16 shows the traces of crystal growth under the flow vector
fields with ∆ = −0.2 (solid line) and ∆ = −0.4 (dotted line).
Here, the flow vector fields are drawn for better understanding
in convection of crystal. As seen in the figures, the crystals with
different∆ have apparently different morphology.

We also display the temporal evolutions of crystal growthwhen
∆ = −0.2 and ∆ = −0.4 in Fig. 17 to compare both cases
conveniently.

5. Discussion

To deal with the case of overgrowth of the crystal in the given
initial crystal domain, we increase the crystal domain when the
tip position of the crystal is close to the computational domain
boundary. We change Ωc = (0, α) × (0, β) with Mx × My grid as
Ωc = (0, 2α) × (0, 2β) with 2Mx × 2My grid and define

φn
kl =

⎧⎨⎩φ
n
k−Mx/2,l−My/2, ifMx/2 + 1 ≤ k ≤ 3Mx/2
and My/2 + 1 ≤ l ≤ 3My/2,

−1, otherwise.

To valid our extension strategy, we consider a numerical simula-
tion with the same condition as in Fig. 11. Here, we extend the
crystal domain if the tip reaches to the boundary layer whose
width is 8h. At the initial stage, the crystal domain size is Ωc =

[0, 37.5] × [0, 37.5] with 48 × 48 mesh grid.
Fig. 18 shows the evolutions for the traces of crystal and the

flow field. The solid box represents the size and the position ofΩc .
Until Fig. 18(c), the result has a good agreement with Fig. 11 which
is the result without the proposed extension algorithm. Figs. 18(c),
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(a) Initial state. (b) t = 1709.

(c) t = 4272. (d) t = 4700.

(e) t = 4785. (f) t = 5554.

Fig. 18. Evolutions for the traces of crystal and the flow field. The solid box
represents the size and the position ofΩc .

Fig. 19. Contours of crystal growth with (a) on the crystal domain smaller than
Ωc = [0, 300] × [0, 300] and (b) on the extended crystal domainΩc = [0, 600] ×

[0, 600]. The elapsed time for each contour is 427.2.

(d), and (e) show the crystal growth after further extension ofΩc in
Section 4.3. Moreover, Fig. 19 shows the contours of crystal growth
with (a) on the crystal domain smaller than Ωc = [0, 300] ×

[0, 300] and on the extended crystal domains (b)Ωc = [0, 600] ×

[0, 600]. The elapsed time for each contour is 427.2.
In this paper, we only deal with the growth of a single crystal.

If the method is further extended to simulate multiple crystals
with growth competition, then a natural extensional model is

as follows:
∂u
∂t

+ u · ∇u = −∇p +
1
Re

∇ · [η(ψ)(∇u + ∇uT )], (38)

∇ · u = 0, (39)

ϵ2(ci)
(
∂ci
∂t

+ u · ∇ci

)
= ∇ · (ϵ2(ci)∇ci)

+ [ci − 0.5 − λUci(1 − ci)]ci(1 − ci)

+

(
|∇ci|2ϵ(ci)

∂ϵ(ci)
∂cix

)
x

+

(
|∇ci|2ϵ(ci)

∂ϵ(ci)
∂ciy

)
y

,

for i = 1, 2, . . . ,N, (40)
∂U
∂t

+ u · ∇U = D∆U +
∂ψ

∂t
, (41)

where ci is the phase-field of ith dendrite that varies from unity in
the solid phase to zero in the liquid phase, N is the number of the
crystal components, ψ =

∑N
i=1ci, and η(ψ) = ηsψ + ηm(1 − ψ).

We suggest that Eq. (40) is solved in an individual crystal domain
for each i and expect that growth competition is realized through
temperature distribution.

6. Conclusion

In this article, we proposed a phase-field model and its com-
putationally efficient numerical method for dendritic growth in
a two-dimensional cavity flow. In most of the previous studies,
the crystal is fixed in the space and the supercooled melt flows
around the crystal, which is hard to be realized in the real world
experimental setting. Applying advection to the crystal equation
is not simple because we have problems such as deformation
of crystal shape and ambiguity of the crystal orientation for the
anisotropy. To resolve these difficulties,we presented a phase-field
method by using a moving overset grid for the dendritic growth in
a cavity flow. Numerical results demonstrated that the proposed
method can predict the crystal growth under a flow. Furthermore,
we considered the possible strategies to deal with the multiple
crystals with growth competition and the single crystal growing
larger than the size of the crystal domain in the discussion section.
Note that the proposed method heavily relies on the assumption
that the solid particle can be well approximated by a very viscous
fluid. The solid particle (i.e., the very viscous drop) has two sets of
velocities, one is the velocity from fluid equations, and the other is
the rigid-body velocity obtainedby averaging. In general, these two
velocities are different. Besides, as crystal grows, the solid extends
to the region which is previously occupied by melt. Therefore, as a
future research work, it will be studied to develop a more accurate
algorithm for the interaction between the fluid and crystal to the
proposed moving overset grid method. Another interesting future
research is the extension to three-dimensional space of the two-
dimensional methodology.
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