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Abstract

The primary purpose of this thesis is to explore the numerical methods for four
main parts: phase-field model, Landau-Lifshitz model, computational finance, and
biomathematics. This dissertation consists of published and working papers which
were performed as a graduate student during last two years.

(1) Phase-field model

First, we consider an unconditionally gradient stable scheme for solving the Allen-
Cahn equation representing a model for anti-phase domain coarsening in a binary mix-
ture. The continuous problem has a decreasing total energy. We show the same prop-
erty for the corresponding discrete problem by using eigenvalues of the Hessian matrix
of the energy functional. We also show the pointwise boundedness of the numerical
solution for the Allen-Cahn equation. We describe various numerical experiments we
performed to study properties of the Allen-Cahn equation.

And we review and present details of the computational scheme and computer pro-
gram for the phase-field models. The scheme is unconditionally gradient stable and
is solved by an efficient and accurate multigrid method. And the program, which is
written in the C language, is designed to provide the researchers with an easy and
detailed guidance for the multigrid method of the phase-field models. We discuss the
implementation of the code through numerical experiments. Also, we consider a nu-
merical method for a block copolymer using Cahn-Hilliard equaiton.

Lastly, we propose a computationally efficient and fast phase-field method which
uses automatic switching parameter, adaptive time step, and automatic stopping of
calculation for image inpainting. The algorithm is based on an energy functional.
We demonstrate the performance of our new method and compare it with a previous
method.

(2) Landau-Lifshitz model

We propose an accurate and efficient numerical approach, based on a finite dif-
ference method with Crank-Nicolson time stepping, for the Landau-Lifshitz equation
without damping. A nonlinear multigrid method is used for handling the nonlinearities
of the resulting discrete system of equations at each time step. We show numerically
that the proposed scheme has a second-order convergence in space and time.
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(3) Computational finance

We present an efficient and accurate finite-difference method for computing Black-
Scholes partial differential equations with multi-underlying assets. We directly solve
Black-Scholes equations without transformations of variables. We provide computa-
tional results showing the performance of the method for two underlying asset option
pricing problems. And the finite difference methods are applied and the resulting lin-
ear system is solved by biconjugate gradient stabilized, alternating direction implicit,
operator splitting, and multigrid methods. The performance of these methods is com-
pared for two asset option problems based on two-dimensional Black-Scholes equations.
Numerical results show that the operator splitting method is the most efficient among
these solvers to get the same level of accuracy.

Also, we present the numerical valuation of the two-asset step-down equity-linked
securities (ELS) option by using the operator-splitting method (OSM). We provide a
detailed numerical algorithm and computational results showing the performance of
the method for two underlying asset option pricing problems such as cash-or-nothing
and step-down ELS. Final option value of two-asset step-down ELS is obtained by a
weighted average value using probability which is estimated by performing a MC sim-
ulation.

Finally, using an adaptive grid technique which is based on a far-field boundary
position of the equation, we present an accurate and efficient numerical method for
the Black-Scholes equations. The results show that the computational time of the new
adaptive grid method is reduced substantially when compared to that of a uniform grid
method.

(4) Biomathematics

First, we present an efficient and accurate numerical method for solving a ratio
dependent predator-prey model with Turing instability. The system is discretized by
a finite difference method with a semi-implicit scheme which allows much larger time
step sizes than a standard explicit scheme. A proof is given for the positivity and
boundedness of the finite difference solutions depending only on time step sizes.

Second, we present a mathematical model to predict the growth of cells as a pow-
erful tool in scaffold designs, depending on its own materials. Our observation focuses
on further cells’ migration and growth phase beyond experiment data.

Finally, we consider the Neumann initial boundary problem for chemotaxis-systems
with a logarithmic chemotactic sensitivity function and a non-diffusing chemical in a
smooth bounded domain Ω ⊂ R

n, n ≥ 1. And we present an efficient numerical method.
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Chapter 1

Introduction

This thesis deals with four main parts, phase-field model, Landau-Lifshitz model,
computational finance, and biomathematics.
And this dissertation consists of published and working papers which performed as
graduate student during last two years.

The published papers which consisted in this thesis are as following.
Published papers

• An unconditionally stable numerical method for the Allen-Cahn equation, Jeong-
Whan Choi, Hyun Geun Lee, Darae Jung, and Junseok Kim, Physica A, Vol.
388, No. 9, pp. 1591-1606, 2009.

• Fast and automatic inpainting of binary images using a phase-field model, Darae
Jung, Yibao Li, Hyun Geun Lee, and Junseok Kim, J. KSIAM, Vol. 13, No. 3,
pp. 225-236, 2009.

• An accurate and efficient numerical method for the Black-Scholes equations,
Darae Jung, Junseok Kim, and In-Suk Wee, Commun. Korean Math. Soc. 24,
No. 4, pp. 617-628, 2009.

• A Crank-Nicolson scheme for the Landau Lifshitz equation without damping,
Darae Jung and Junseok Kim, J. Comput. Appl. Math., Vol. 234, pp. 613-623,
2010.

• An operator splitting method for ELS option pricing, Darae Jung, In-Suk Wee,
and Junseok Kim, J. KSIAM, Vol. 14, No. 3, pp. 175-187, 2010.

The outline of this thesis is as following.
In Chapter 2, we consider an unconditionally gradient stable scheme for solving

the Allen-Cahn equation representing a model for anti-phase domain coarsening in a
binary mixture. The continuous problem has a decreasing total energy. We show the
same property for the corresponding discrete problem by using eigenvalues of the Hes-
sian matrix of the energy functional. We also show the pointwise boundedness of the
numerical solution for the Allen-Cahn equation. We describe various numerical exper-
iments we performed to study properties of the Allen-Cahn equation.

In Chapter 3, we review and present details of the computational scheme and com-
puter program for the phase-field models. The scheme is unconditionally gradient stable
and is solved by an efficient and accurate multigrid method. And the program, which
is written in the C language, is designed to provide the researchers with an easy and
detailed guidance for the multigrid method of the phase-field models. We discuss the
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implementation of the code through numerical experiments.

In Chapter 4, we consider a numerical method for a block copolymer.

In Chapter 5, we propose a computationally efficient and fast phase-field method
which uses automatic switching parameter, adaptive time step, and automatic stopping
of calculation for image inpainting. The algorithm is based on an energy functional.
We demonstrate the performance of our new method and compare it with a previous
method.

In Chapter 6, we propose an accurate and efficient numerical approach, based on
a finite difference method with Crank-Nicolson time stepping, for the Landau-Lifshitz
equation without damping. The phenomenological Landau-Lifshitz equation describes
the dynamics of ferromagnetism. The Crank-Nicolson method is very popular in the
numerical schemes for parabolic equations since it is second-order accurate in time.
Although widely used, the method does not always produce accurate results when it is
applied to the Landau-Lifshitz equation. The objective of this article is to enumerate
the problems and then to propose an accurate and robust numerical solution algorithm.
A discrete scheme and a numerical solution algorithm for the Landau-Lifshitz equation
are described. A nonlinear multigrid method is used for handling the nonlinearities of
the resulting discrete system of equations at each time step. We show numerically that
the proposed scheme has a second-order convergence in space and time.

In Chapter 7, we present an efficient and accurate finite-difference method for com-
puting Black-Scholes partial differential equations with multi-underlying assets. We
directly solve Black-Scholes equations without transformations of variables. We pro-
vide computational results showing the performance of the method for two underlying
asset option pricing problems.

In Chapters 8 and 9, we perform comparison of numerical methods for two-dimensional
Black-Scholes equations obtained from stock option pricing. The finite difference meth-
ods are applied and the resulting linear system is solved by biconjugate gradient sta-
bilized, alternating direction implicit, operator splitting, and multigrid methods. The
performance of these methods is compared for two asset option problems based on
two-dimensional Black-Scholes equations. Numerical results show that the operator
splitting method is the most efficient among these solvers to get the same level of ac-
curacy.

In Chapter 10, we presente the numerical valuation of the two-asset step-down
equity-linked securities (ELS) option by using the operator-splitting method (OSM).
The ELS is one of the most popular financial options. The value of ELS option can be
modeled by a modified Black-Scholes partial differential equation. However, regardless
of whether there is a closed-form solution, it is difficult and not efficient to evaluate the
solution because such a solution would be represented by multiple integrations. Thus,
a fast and accurate numerical algorithm is needed to value the price of the ELS option.
This Chapter uses a finite difference method to discretize the governing equation and
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applies the OSM to solve the resulting discrete equations. The OSM is very robust and
accurate in evaluating finite difference discretizations. We provide a detailed numerical
algorithm and computational results showing the performance of the method for two
underlying asset option pricing problems such as cash-or-nothing and step-down ELS.
Final option value of two-asset step-down ELS is obtained by a weighted average value
using probability which is estimated by performing a MC simulation.

In Chapter 11, we present an accurate and efficient numerical method for the Black-
Scholes equations. The method uses an adaptive grid technique which is based on a far-
field boundary position of the equation. Numerical tests are presented to demonstrate
the accuracy and efficiency of the method. The results show that the computational
time of the new adaptive grid method is reduced substantially when compared to that
of a uniform grid method.

In Chapter 12, we present an efficient and accurate numerical method for solving a
ratio dependent predator-prey model with Turing instability. The system is discretized
by a finite difference method with a semi-implicit scheme which allows much larger
time step sizes than a standard explicit scheme. A proof is given for the positivity and
boundedness of the finite difference solutions depending only on time step sizes. Finally,
we perform numerical experiments demonstrating the robustness and accuracy of the
numerical solution the Turing instability. Also, we show the numerical non-constant
stationary solutions with amplitudes.

In Chapter 13, we present a mathematical model to predict the growth of cells as
a powerful tool in scaffold designs, depending on its own materials. The improved un-
derstanding derived from this mathematical model and its numerical analysis benefits
in the fabrication of three-dimensional scaffolds that can support more confirmation
of the growth of cells. Our observation focuses on further cells’ migration and growth
phase beyond experiment data.

Next, in Chapter 14, we consider the Neumann initial boundary problem for chemotaxis-
systems with a logarithmic chemotactic sensitivity function and a non-diffusing chemi-
cal in a smooth bounded domain Ω ⊂ R

n, n ≥ 1. And we present an efficient numerical
method.

Finally, Chapter 15 summarizes the results and gives some recommendations for
future work.
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Chapter 2

An unconditionally gradient stable numerical method for

solving the Allen-Cahn equation

We consider an unconditionally gradient stable scheme for solving the Allen-Cahn
equation representing a model for anti-phase domain coarsening in a binary mixture.
The continuous problem has a decreasing total energy. We show the same property for
the corresponding discrete problem by using eigenvalues of the Hessian matrix of the
energy functional. We also show the pointwise boundedness of the numerical solution
for the Allen-Cahn equation. We describe various numerical experiments we performed
to study properties of the Allen-Cahn equation.

2.1. Introduction

The Allen-Cahn (AC) equation [1] was originally introduced as a phenomenological
model for anti-phase domain coarsening in a binary alloy. It has been applied to
a wide range of problems such as phase transitions [10], image analysis [3, 7], the
motion by mean curvature flows [8], and crystal growth [14]. An efficient and accurate
numerical solution of this equation is needed to understand its dynamics. We consider
an unconditionally gradient stable algorithm for the AC equation:

∂c(x, t)

∂t
= −M(F ′(c(x, t)) − ǫ2∆c(x, t)), x ∈ Ω, 0 < t ≤ T, (2.1)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain. The quantity c(x, t) is defined to be the
difference between the concentrations of the two mixtures’ components. The coefficient
M is a constant mobility. We take M ≡ 1 for convenience. The function F (c) is the
Helmholtz free-energy density for c. It has a double well form, i.e., F (c) = 0.25(c2 −1)2

as in Ref. [74].
The small constant ǫ is the gradient energy coefficient related to the interfacial

energy. The boundary condition is

∂c

∂n
= 0 on ∂Ω, (2.2)

where ∂
∂n

denotes the normal derivative on ∂Ω. The physical meaning of the condition
is that the total free energy of the mixture decreases in time. The AC equation arises
from the Ginzburg-Landau free energy,

E(c) :=

∫

Ω

(
F (c) +

ǫ2

2
|∇c|2

)
dx. (2.3)
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Figure 2.1. A double well potential, F (c) = 0.25(c2 − 1)2.

The AC equation is the L2-gradient flow of the total free energy E(c). We differentiate
the energy E(c) to get

d

dt
E(c) =

∫

Ω
(F ′(c)ct + ǫ2∇c · ∇ct)dx

=

∫

Ω
(F ′(c) − ǫ2∆c)ctdx = −

∫

Ω
(ct)

2dx ≤ 0, (2.4)

where we have used an integration by parts and the boundary condition (2.2). There-
fore, the total energy is non-increasing in time; that is, the total energy is a Lyapunov
functional for solutions of the AC equation. Numerical simulations of the AC equa-
tion, using explicit methods, impose severe time-step restrictions requiring the use of
implicit type methods [52, 53, 11]. Ideally, we would like to use a stable integration
algorithm allowing accuracy requirements rather than stability limitations to determine
the integration step size. We use an unconditionally gradient stable scheme to solve
the resulting discrete equations accurately and efficiently.

Eyre introduced a concept, “an unconditionally gradient stable scheme” in Refs.
[52, 53]. In Eyre’s papers [52, 53], he provided the idea and the theory of a scheme, but
a little vaguely. We, here, clarify the proof of the scheme. We emphasize that, while
the methods allow us to take arbitrarily large time steps, the accuracy of the numerical
solution depends on choosing a small enough time step to resolve the dynamics [53].

This chapter is organized as follows. In Section 2.2, we briefly review a derivation of
the AC equation, based on gradient dynamics, with a physically motivated functional.
In Section 2.3, we describe the unconditionally gradient stable discrete scheme and
its properties such as the total energy decrease and the boundedness of the numerical
solution. We present the numerical results in Section 2.4. In Section 2.5, we conclude.
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2.2. The Allen-Cahn equation

In this section, we review a derivation of the AC equation as a gradient flow [6, 9].
It is natural to seek a law of evolution in the form

∂c

∂t
= −gradE(c). (2.5)

The symbol “grad” here denotes the gradient on the manifold in L2(Ω) space. Let the
domain of definition for the functional E be D = {c ∈ H2(Ω)| ∂c

∂n
= 0 on ∂Ω}. Let

c, v ∈ D. Then, we have

(gradE(c), v)L2 =
d

dθ
E(c+ θv)

∣∣
θ=0

= lim
θ→0

1

θ

(
E(c+ θv) − E(c)

)

=

∫

Ω

(
F ′(c) − ǫ2∆c

)
vdx = (F ′(c) − ǫ2∆c, v)L2 ,

where we have used an integration by parts and the boundary condition (2.2). We
identify gradE(c) ≡ F ′(c) − ǫ2∆c, then Eq. (2.5) becomes the AC equation [9].

2.3. Numerical analysis

In this section, we present an unconditionally gradient stable scheme for time dis-
cretization of the AC equation. In addition, we prove a discrete version of the total free
energy dissipation for any time step size, which immediately implies the stability of the
numerical solution. For simplicity of exposition, we shall discretize the AC equation in
one-dimensional space, i.e., Ω = (a, b). Two and three-dimensional discretizations are
defined analogously.

Let N be a positive even integer, h = (b − a)/N be the uniform mesh size, and
Ωh = {xi = (i− 0.5)h, 1 ≤ i ≤ N} be the set of cell-centers. Let cni be approximations
of c(xi, n∆t), where ∆t = T/Nt is the time step, T is the final time, Nt is the total
number of time steps, and cn = (cn1 , c

n
2 , · · · , cnN ). We first implement the zero Neumann

boundary condition, Eq. (2.2), by requiring that for each n,

∇hc
n
1
2

= ∇hc
n
N+ 1

2
= 0, (2.6)

where the discrete differentiation operator is ∇hc
n
i+ 1

2

= (cni+1 − cni )/h. We then define

a discrete Laplacian by ∆hci = (∇hci+ 1
2
− ∇hci− 1

2
)/h and a discrete l2 inner product

by 〈c,d〉h = h
∑N

i=1 cidi. We also define the discrete norms as ||c||2h = 〈c, c〉h and
‖c‖∞ = max

1≤i≤N
|ci|. For dissipative dynamics such as the AC equation, a discrete time

stepping algorithm is defined to be unconditionally gradient stable if the discrete total
free energy is nonincreasing for any size of a time step ∆t.

Eyre’s theorem [53] shows that an unconditionally gradient stable algorithm results
for the AC equation if we can split the free energy appropriately into contractive and
expansive parts,

E(c) =

∫ b

a

[
F (c) +

ǫ2

2
c2x

]
dx (2.7)

=

∫ b

a

[
c4 + 1

4
+
ǫ2

2
c2x

]
dx−

∫ b

a

c2

2
dx = Ec(c) − Ee(c)
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and then treat the contractive part Ec(c) implicitly and the expansive part −Ee(c)
explicitly. We use the nonlinearly stabilized splitting scheme [53] that involves a semi-
implicit time and centered difference space discretizations of Eq. (2.1):

cn+1
i − cni

∆t
= −(cn+1

i )3 + cni + ǫ2∆hc
n+1
i for i = 1, · · · , N. (2.8)

The boundary condition is c0 = c1 and cN+1 = cN . This splitting is similar to the one
employed in [13] for the time-dependent Ginzberg-Landau (TDGL) equation, which
treats the TDGL equation as a heat equation with a nonlinear source term resulting in
an adaptive mesh refinement scheme which is second-order in space and time.

2.3.1. The unconditionally gradient stable scheme. The main purpose of
this section is to show that the scheme in Eq. (2.8) inherits characteristic properties
such as a decrease in the total energy corresponding to Eq. (2.4). To show the decrease
in the discrete total energy, first, we define a discrete Lyapunov functional,

Eh(cn) =
h

4

N∑

i=1

((cni )2 − 1)2 +
ǫ2h

2

N∑

i=0

|∇hc
n
i+ 1

2
|2 (2.9)

for each n. It is convenient to decompose Eh(cn) into three parts:

E(1)(cn) = −h
2

N∑

i=1

(cni )2, E(2)(cn) =
ǫ2h

2

N∑

i=0

∣∣∇hc
n
i+ 1

2

∣∣2,

E(3)(cn) =
h

4

N∑

i=1

(
(cni )4 + 1

)
.

We define a decomposition of Eh(cn) as Eh
c (cn) = E(2)(cn) + E(3)(cn) and Eh

e (cn) =
−E(1)(cn), i.e., Eh(cn) = Eh

c (cn) − Eh
e (cn). We define gradh the variational derivative

with respect cni , i.e.,

gradhEh(cn)i =
δEh(cn)

δcni
= (cni )3 − cni − ǫ2∆hc

n
i .

(2.10)

We can rewrite the numerical scheme in Eq. (2.8) in terms of a gradient of the
discrete total energy, i.e.,

cn+1
i − cni

∆t
= −gradhEh

c (cn+1)i + gradhEh
e (cn)i, for i = 1, · · · , N. (2.11)

The Hessian of E(i)(c), denoted by H(i), is the Jacobian of the gradhE(i)(c) and is thus
given for i = 1, 2, 3 by

{
H(1),H(2),H(3)

}
=
{
JgradhE(1)(c), JgradhE(2)(c), JgradhE(3)(c)

}
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where

JgradhE(1)(c) = −




1 0
1

. . .

1
0 1

,



,

JgradhE(2)(c) =
ǫ2

h2




1 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 1



,

JgradhE(3)(c) = 3




c21 0
c22

. . .

c2N−1
0 c2N



.

And we have used the boundary condition in Eq. (2.6). The eigenvalues of H(1), H(2),

and H(3) are

λ
(1)
k = −1, λ

(2)
k =

4ǫ2

h2
sin2 (k − 1)π

2N
, λ

(3)
k = 3c2k where k = 1, 2, · · · , N. (2.12)

Note that λ
(1)
k is negative and that λ

(2)
k and λ

(3)
k are non-negative. Let vk for

k = 1, · · · , N be the orthonormal eigenvector of H(2) corresponding to the eigenvalue

λ
(2)
k and let vk,l = cos((k−1)π(2l−1)/(2N)) for l = 1, · · · , N denote the lth component

of vk. We can take the orthonormal eigenvector of H(1) corresponding to the eigenvalue

λ
(1)
k , the same as vk. Let λe

1, λ
e
2, . . . , λ

e
N be eigenvalues of J(gradhEh

e ) = −H(1); i.e.,

λe
k = −λ(1)

k = 1, k = 1, 2, · · · , N. (2.13)

We can expand cn+1 − cn in a basis of eigenvectors vk as follows.

cn+1 − cn =
N∑

k=1

αkvk. (2.14)

The decrease of the discrete energy functional is established in the following theo-
rem: If cn+1 is the solution of Eq. (2.8) with a given cn, then

Eh(cn+1) ≤ Eh(cn). (2.15)

Next, we prove Eq. (2.15). With an exact Taylor expansion of Eh(cn) about cn+1 up
to the second order, we have

Eh(cn) = Eh(cn+1) + 〈gradhEh(cn+1), cn − cn+1〉h

+

〈
J(gradhEh)(ξ)

2
(cn − cn+1), cn − cn+1

〉

h

,
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where ξ = θcn + (1 − θ)cn+1 and 0 ≤ θ ≤ 1. Rearranging the terms and using Eh =

E(1) + E(2) + E(3), Eq. (2.11), Eq. (2.14), and the mean value theorem, we have

Eh(cn+1) − Eh(cn)

=
〈
gradhEh(cn+1) − J(gradhEh)(ξ)

2
(cn+1 − cn), cn+1 − cn

〉
h

≤
〈
gradhEh(cn+1) − 1

2
(H(1) + H(2))(cn+1 − cn), cn+1 − cn〉h

=
〈
gradhEh(cn+1), cn+1 − cn

〉
h
−

N∑

j,k=1

〈1

2
(H(1) + H(2))αjvj, αkvk

〉
h

=
〈
gradhEh

c (cn+1) − gradhEh
e (cn+1) − 1

∆t
(cn+1 − cn) − gradhEh

c (cn+1)

+gradhEh
e (cn), cn+1 − cn

〉
h

−
N∑

j,k=1

〈1

2
(λ

(1)
j + λ

(2)
j )αjvj , αkvk

〉

h

= −
〈
gradhEh

e (cn+1) − gradhEh
e (cn), cn+1 − cn

〉

h
− 1

∆t
‖cn+1 − cn‖2

h

−
N∑

j,k=1

〈1

2
(λ

(1)
j + λ

(2)
j )αjvj , αkvk

〉
h

= −
N∑

j,k=1

〈[
J(gradhEh

e ) +
1

2
(λ

(1)
j + λ

(2)
j )I

]
αjvj , αkvk

〉
h
− 1

∆t
‖cn+1 − cn‖2

h

= −
N∑

k=1

1

2

(
λe

k + λ
(2)
k

)
α2

k − 1

∆t
‖cn+1 − cn‖2

h ≤ 0,

where we have used the fact that λe
k is positive and λ

(2)
k is non-negative. Therefore,

we have proven the decrease of the discrete total energy. This completes the proof.
The theorem holds for any time step ∆t; hence, the method is unconditionally gradient
stable. It should be emphasized that while the methods will allow us to take arbitrarily
large time steps, the accuracy of the numerical solution depends on choosing a small
enough time step to resolve the fast-time-scale dynamics.

2.3.2. Boundedness of the numerical solution. Next, we show that the de-
crease of the discrete total energy functional implies the pointwise boundedness of the
numerical solution for the AC equation. If cn is a numerical solution for the discrete
Eq. (2.8), then there exists a constant K, independent of n, such that

||cn||∞ ≤ K. (2.16)

We prove Eq. (2.16) by a contradiction. Assume on the contrary that there is an
integer nK , dependent on K, such that ||cnK ||∞ > K for all K. Then there is an index

i (1 ≤ i ≤ N) such that |cnK

i | > K. Let K be the largest solution of hF (K) = Eh(c0),
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i.e., K =
√

1 + 2
√

Eh(c0)/h. Note that K ≥ 1. Then, F (c) is a strictly increasing

function on (K,∞) (see Fig. 2.2). Since the total energy is non-increasing, we have
Eh(c0) = hF (K) < hF (|cnK

i |) ≤ Eh(cnK ) ≤ Eh(c0). This contradiction implies that
Eq. (2.16) should be satisfied.

0−1 1 K |cnK

i |

Eh(c0)

hF (|cnK

i |)

hF (c)

Figure 2.2. Graph of hF (c).

2.4. Numerical experiments

In this section, we perform the following: finding relation between ǫ value and
the width of transition layer, comparing the numerical equilibrium solution with the
analytic equilibrium solution, investigating properties of AC equation, and checking the
total energy decrease. We also implement the unconditionally gradient stable scheme in
Eq. (2.8) with the recently developed adaptive mesh refinement (AMR) methodology.
For detailed descriptions of the numerical method used in solving these equations with
AMR, we refer to [12, 15] and the references therein. A uniform mesh solution algorithm
using a nonlinear multigrid is described in subsection 2.4.1.

2.4.1. Numerical solution - a nonlinear multigrid method. In this section,
we use a nonlinear Full Approximation Storage (FAS) multigrid method to solve the
nonlinear discrete equation (2.8) at the implicit time level. The nonlinearity is treated
using one step of Newton’s iteration. A pointwise Gauss-Seidel relaxation scheme is
used as the smoother in the multigrid method. See the reference text [122] for additional
details and background. The algorithm of the nonlinear multigrid method for solving
the discrete AC system is : First, we rewrite Eq. (2.8) as follows.

N(cn+1) = φn, (2.17)

where N(cn+1) = cn+1/∆t+(cn+1)3−ǫ2∆hc
n+1 and the source term is φn = cn/∆t+cn.
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In the following description of one FAS cycle, we assume a sequence of grids Ωk

(Ωk−1 is coarser than Ωk by a factor of 2). Given the number β of pre- and post-
smoothing relaxation sweeps, an iteration step for the nonlinear multigrid method
using the V-cycle is formally written [122]:
FAS multigrid cycle

cm+1
k = FAScycle(k, cmk , Nk, φ

n
k , β).

That is, cmk and cm+1
k are the approximation of cn+1(xi, yj) before and after an FAScy-

cle. Now, define the FAScycle.
Step 1) Presmoothing

c̄mk = SMOOTHβ(cmk , Nk, φ
n
k ),

which means performing β smoothing steps with the initial approximation cmk , source
term φn

k , and SMOOTH relaxation operator to get the approximation c̄mk . Here, we de-

rive the smoothing operator in two dimensions. Since (cn+1
ij )3 in Eq. (2.17) is nonlinear

with respect to cn+1
ij , we linearize (cmij )

3 at cmij , i.e.,

(cn+1
ij )3 ≈ (cmij )

3 + 3(cmij )2(cn+1
ij − cmij ).

After substituting this expression into (2.17), we obtain
(

1

∆t
+

4ǫ2

h2
+ 3(cmij )

2

)
cn+1
ij = φn

ij

+ǫ2
cn+1
i+1,j + cn+1

i−1,j + cn+1
i,j+1 + cn+1

i,j−1

h2
+ 2(cmij )

3. (2.18)

Next, we replace cn+1
αβ in Eq. (2.18) with c̄mαβ if (α ≤ i) or (α = i and β ≤ j); otherwise,

with cmαβ , i.e.,
(

1

∆t
+

4ǫ2

h2
+ 3(cmij )2

)
c̄mij

= φn
ij + ǫ2

cmi+1,j + c̄mi−1,j + cmi,j+1 + c̄mi,j−1

h2
+ 2(cmij )3. (2.19)

Step 2) Coarse grid correction
• Compute the defect: d̄m

k = φn
k −Nk(c̄

m
k ).

• Restrict the defect and c̄mk : d̄m
k−1 = Ik−1

k (d̄m
k ), c̄mk−1 = Ik−1

k (c̄mk ).

• Compute the right-hand side: φn
k−1 = d̄m

k−1 +Nk−1(c̄
m
k−1).

• Compute an approximate solution ĉmk−1 of the coarse grid equation on Ωk−1, i.e.

Nk−1(c
m
k−1) = φn

k−1. (2.20)

If k = 1, we apply the smoothing procedure in Step1 ) to obtain the approximate
solution. If k > 1, we solve (2.20) by performing a FAS k-grid cycle using c̄mk−1 as an
initial approximation:

ĉmk−1 = FAScycle(k − 1, c̄mk−1, Nk−1, φ
n
k−1, β).

• Compute the coarse grid correction (CGC): v̂m
k−1 = ĉmk−1 − c̄mk−1.

• Interpolate the correction: v̂m
k = Ik

k−1v̂
m
k−1.
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• Compute the corrected approximation on Ωk : cm, after CGC
k = c̄mk + v̂m

k .

Step 3) Postsmoothing : cm+1
k = SMOOTHβ(cm, after CGC

k , Nk, φ
n
k ).

This completes the description of a nonlinear FAScycle.

2.4.2. The relation between the ǫ value and the width of the transition
layer. In our first numerical experiment, we consider the relation between the ǫ value
and the width of the transition layer for the AC equation. From our choice of the
total energy density Eq. (2.7) and an equilibrium profile c(x) = tanh(x/(

√
2ǫ)) on the

infinite domain, the concentration field varies from −0.9 to 0.9 over a distance of about
2
√

2ǫ tanh−1(0.9). Therefore, if we want this value to be about m grid points, then

ǫm =
hm

2
√

2 tanh−1(0.9)
. (2.21)

To confirm this, we ran a simulation with the initial condition c(x, 0) = 0.01rand(x) on
the unit domain Ω = (0, 1) with h = 1/128, ∆t = 0.05, and ǫ4 (see the line with stars
in Fig. 2.3). Here, rand(x) is a random number between −1 and 1. In Fig. 2.3, we
see that the transition layer (from c = −0.9 to c = 0.9) is about 4 grid points at time
t = 10.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

c

 

 

t=0
t=6
t=10

Figure 2.3. The evolution of an initial random distribution of concen-
tration, c(x, 0) = 0.01rand(x). The concentration profile is shown at
t = 0, 6, and 10.

2.4.3. An equilibrium profile. Next, we compare numerical equilibrium solu-
tions with analytic ones. We stop the numerical computations when the discrete l2
-norm of the difference between (n+1)th and nth time step solutions becomes less than
10−10, ‖cn+1 − cn‖h ≤ 10−10 and we take cn+1 as a numerical equilibrium solution.

The initial concentration is c(x, 0) = 0.8 tanh(x/(
√

2ǫ8)) on Ω = (−0.5, 0.5). We take
h = 1/128, ǫ8, and ∆t = 0.1. In Fig. 2.4(a), the solid, ‘∗’, and ‘◦’ denoted lines are
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the initial condition, the numerical equilibrium solution, and the analytic equilibrium
solution, respectively. The numerical equilibrium profile matches well with the analytic
equilibrium solution c∞eq(x) = tanh(x/(

√
2ǫ8)) on Ω = (−∞,∞).

In Fig. 2.4(b), numerical equilibrium solutions are shown with an initial condition

c(x, 0) = 0.8 tanh(x/(
√

2ǫ4)) on Ω = (−0.5, 0.5) according to various mesh sizes. Lines
with the symbols, ‘⋄’, ‘◦’, ‘+’, and ‘⋆’, denote the numerical results with 64, 128, 256,
and 512 mesh sizes with ǫ4, respectively. In this case, ǫ24/h

2 is constant in Eq. (2.8);
therefore, we have the same discrete equations and have almost the same values with
different mesh sizes with respect to grid points from the origin.

−0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

c

 

 

initial
numerical
analytic

(a)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

c

 

 

64
128
256
512

(b)

Figure 2.4. (a) Lines with circles and stars denote the analytic and
numerical equilibrium solutions with an initial concentration c(x, 0) =

0.8 tanh(x/(
√

2ǫ8)), respectively. (b) Numerical equilibrium solutions
with an initial concentration c(x, 0) = 0.8 tanh(x/(

√
2ǫ8)) on Ω =

(−0.5, 0.5). Lines with the symbols, ‘⋄’, ‘◦’, ‘+’, and ‘⋆’, are numer-
ical results with 64, 128, 256, and 512 mesh sizes with ǫ4, respectively.

2.4.4. The exact solution. The partial differential Eq. (2.1) in one dimensional
space may be written as

ct = −c3 + c+ ǫ2∆c. (2.22)

If we take the initial condition as a constant, i.e., c(x, 0) = c0, then, the exact solution
of Eq. (2.22) is

c(x, t) =
c0e

t

√
1 + c20(e

2t − 1)
. (2.23)

If c0 = 0.1, then in order to find a t that satisfies c(x, t) = 0.9, we solve the Eq.
(2.23) and get an approximate value, t ∼ 3.02257. The initial state is taken to be
c(x, 0) = 0.1 on the computational domain Ω = (0, 1) with h = 1/32 and ǫ4. We set the
final time T = 3.02257 and time step ∆t = T/100. Fig. 2.5 shows an evolution of the
constant concentration c(x, t) with different time steps (∆t = 0.0604, ∆t/4, ∆t/16) up
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to the final time. We can see the convergence of the numerical solutions with respect
to the time steps.

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

time

c

 

 

∆t=0.0604
∆t/4
∆t/16
Exact

Figure 2.5. The evolution of the constant value of c(x, t) with different
time steps up to the final time, T = 3.02257.

2.4.5. Traveling wave solutions. We seek traveling wave solutions of Eq. (2.1)
as a following form,

c(x, t) =
1

2

(
1 − tanh

x− st

2
√

2ǫ

)
, (2.24)

where s is the speed of the traveling wave. By substituting Eq. (2.24) into Eq. (2.1),
we arrive at the following equation.

√
2s− 3ǫ

8ǫ
sech2

(
x− αt

2
√

2ǫ

)
= 0. (2.25)

Therefore, the speed of the traveling wave is s = 3ǫ/
√

2.

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

c

 

 

initial
64
128
256
analytic

Figure 2.6. Numerical traveling wave solutions with an initial profile,
c(x, 0) = 1

2(1 − tanh x
2
√

2ǫ
). The final time is T = 1/s. The analytic

solution is a solid line. Lines with symbols, ‘o’, ‘⋄’, and ‘·’ represent
mesh sizes of 64, 128, and 256, respectively.
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In Fig. 2.6, the numerical traveling wave solutions (where symbols ‘o’, ‘⋄’, and ‘·’
represent mesh sizes of 64, 128, and 256, respectively) with an initial profile, c(x, 0) =
1
2 (1 − tanh x

2
√

2ǫ
) and on a computational domain, Ω = (−0.5, 1.5). The final time

is T = 1/s and the fixed time step is ∆t = T/400. The analytic final profile is
c(x, 1/s) = 1

2(1 − tanh x−1
2
√

2ǫ
). The convergence of the results with grid refinement is

qualitatively evident.
To obtain a quantitative estimate of the rate of convergence, we perform a number

of simulations for the same initial problem on a set of increasingly finer grids and time
steps. The numerical solutions are computed on the uniform grids and time steps,
h = 2/2n and ∆t = 5h2, for n = 6, 7, and 8. The errors and rates of convergence are
given in table 2.1. The results suggest that the scheme is indeed second order accurate
in space and first order in time.

Table 2.1. Convergence results.

Case 64 rate 128 rate 256

l2 1.0709e-2 1.9938 2.6887e-3 2.0140 6.6570e-4

In Fig. 2.7, we show numerical traveling wave solutions with an initial profile,
c(x, 0) = 1 if x < 0.2; c(x, 0) = 0, otherwise. Solid, circle, diamond, and star lines
are an initial profile, ǫ4, 2ǫ4, and 4ǫ4, respectively. The results match well with the
theoretical prediction of the speed, which depends linearly on the ǫ value.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

c

 

 

initial
ε

4

2ε
4

4ε
4

Figure 2.7. Numerical traveling wave solutions with an initial profile
(solid line), c(x, 0) = 1 if x < 0.2; c(x, 0) = 0, otherwise. The circle,
diamond, and star delineated lines represent numerical solutions with
ǫ4, 2ǫ4, and 4ǫ4, respectively. The computational mesh is 512, ∆t = 0.1,
and the final time is T = 40.
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Figure 2.8. The evolution of the initial concentration is shown;
c(x, 0) = 1 if x < 0.2 and c(x, 0) = −1 if x > 0.8; c(x, 0) = 0.001, other-
wise with ǫ4, 2ǫ4, and 4ǫ4. The computational mesh is 512, ∆t = 1/40,
and the final time is T = 10.

Fig. 2.8 shows evolution of the initial concentration, c(x, 0) = 1 if x < 0.2, c(x, 0) =
−1 if x > 0.8; c(x, 0) = 0.001, otherwise with ǫ4, 2ǫ4, and 4ǫ4. The computational mesh
is 512, ∆t = 1/40, and the final time is T = 10. The two transition layers at around
x = 0.2 and x = 0.8 travels like traveling wave solution. On the other hand, in the
middle in the domain behaves like a constant solution, Eq. (2.23). And this constant
solution does not depend on ǫ values.

2.4.6. Metastable states. In Figs. 2.9(a) and (b) show the evolutions of the
concentration c(x, t) with 12 points and 13 points negative one with ǫ7, respectively.
The computational mesh is 128 and ∆t = 1/128. In Fig. 2.9(c), the open circles denote
ǫm and the number of points that have constant equilibrium solutions; while the stars
indicate parameters that have non-constant equilibrium solutions.

2.4.7. Linear stability analysis. We perform a linear stability analysis around a
spatially constant critical composition solution c ≡ 0. Linearizing the partial differential
Eq. (2.8) about c ≡ 0 gives

ct = c+ ǫ2∆c. (2.26)

Next, we let c = α(t) cos(kπx). Then from Eq. (2.26) we have

α′(t) cos(kπx) = α(t) cos(kπx) − (ǫkπ)2α(t) cos(kπx). (2.27)

By dividing Eq. (2.27) by cos(kπx), we obtain

α′(t) = [1 − (ǫkπ)2]α(t). (2.28)

The solution of the ordinary differential equation (2.28) is given by

α(t) = α(0)eλt, (2.29)
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Figure 2.9. (a) and (b) are the evolutions of the concentration c(x, t)
with 12 points and 13 points negative one with ǫ7, respectively. (c)
The stars denote the pairs of ǫm and the number of negative one points
that have constant equilibrium solutions as shown in (a), while the open
circles indicate parameters that have non-constant equilibrium solutions
as shown in (b).

where λ = 1 − (ǫkπ)2. The numerical growth rate is defined by

λ̃ =
1

T
log

(
max1≤i≤N |cNt

i |
α(0)

)
. (2.30)

The initial state is taken to be c(x, 0) = 0.01 cos(kπx) on the computational domain,
Ω = (0, 1). We use parameters such as the final time T = 0.1, time step ∆t = 0.01,
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α(0) = 0.01, ǫ = 0.04, and N = 256. In Fig. 2.10, numerical λ̃ (‘o’) and exact λ (solid
line) values for different wave numbers k (k = 0, 1, · · · , 10) are shown and are in good
agreement.
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Linear theory
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Figure 2.10. Numerical and exact λ values for different wave numbers
k (k = 0, 1, · · · , 10) and ǫ = 0.04. The insets illustrate time evolutions
of the initial profiles.

2.4.8. The decrease of the total energy. In order to demonstrate that the
numerical scheme is unconditionally gradient stable, we consider the evolution of the
discrete total energy. The initial state is taken to be c(x, y, 0) = 0.01rand(x, y) on the
computational domain Ω = (0, 1)×(0, 1) with 128×128. rand(x, y) is a random number
between −1 and 1. We use the simulation parameters ǫ4 and ∆t = 10/128. In Fig.
2.11, the time evolution of the non-dimensional discrete total energy Eh(cn)/Eh(c0) is
shown. Also, the inscribed small figures are the concentration fields at the indicated
times. The total discrete energy is non-increasing as predicted by Eq. (2.15).

2.4.9. Mean curvature flow. After rescaling the time variable, Eq. (2.1) be-
comes

ct = −c(c
2 − 1)

ǫ2
+ ∆c. (2.31)

It was first formally proved that, as ǫ → 0, the zero level set of c, denoted by Γǫ
t :=

{x ∈ Ω; c(x, t) = 0} approaches to a surface Γt that evolves according to the geometric
law

V = −κ = −
(

1

R1
+

1

R2

)
, (2.32)
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Figure 2.11. The time dependent non-dimensional discrete total en-
ergy Eh(cn)/Eh(c0) of the numerical solutions with the initial data,
c(x, y, 0) = 0.01rand(x, y).

where V is the normal velocity of the surface Γt at each point, κ is its mean curvature,
and R1, R2 are the principal radii of curvatures at the point of the surface [1]. In two
dimensions, with a single radius of curvature, Eq. (2.32) becomes V = −1/R.

An initial condition is given with a circle centered at the center of a domain Ω =
(0, 1) × (0, 1). If we set the initial radius of the circle to r0 and denote the radius at
time t as r(t), then Eq. (2.32) becomes dr(t)/dt = −1/r(t). Its solution is given as

r(t) =
√
r20 − 2t. (2.33)

Let r0 = 0.25. Then, the initial condition is

c(x, y, 0) = tanh
0.25 −

√
(x− 0.5)2 + (y − 0.5)2√

2ǫ
. (2.34)

In Figs. 2.12, (a), (b), and (c) are evolutions of the initial concentration c(x, y, 0),
Eq. (2.34). The times are shown below each figure. (d) illustrates the zero level contour
lines of (a), (b), and (c). We observe that the circle shrinks as theoretically predicted.

In Fig. 2.13, we show that as the mesh size decreases from h = 1/64 (‘◦’) to
h = 1/128 (‘⋄’) and h = 1/256 (‘·’), the plot of numerical radius of the circle r(t) in
time becomes closer and closer to the asymptotic value (solid line) given by Eq. (2.33).
We note that as mesh sizes decrease the actual value of ǫ4 decreases also. This result
confirms the theory that as ǫ→ 0 then Γǫ

t → Γt.

2.4.10. Adaptive mesh refinement. Across the spatial interfaces, the solution
undergoes an O(1) change over an O(ǫ) interval. If these interfaces are to be accurately
resolved, a fine discretization of space is required. Therefore, an adaptive mesh refine-
ment (AMR) of the space is necessary. In this approach, the computational mesh is
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Figure 2.12. (a), (b), and (c) show evolutions of the initial concentra-
tion c(x, y, 0), Eq. (2.34). The times are shown below each figure. (d)
illustrates the zero level contour lines of (a), (b), and (c).

locally refined in regions where greater accuracy is desired. We use Marsha Berger’s and
Phillip Colella’s block-structured approach; where refinement is organized in logically
rectangular regions of the domain [2, 4, 5, 101, 92]. We also implement the uncondi-
tionally gradient stable scheme in Eq. (2.8) with the recently developed adaptive mesh
refinement methodology. For a detailed description of the numerical method used in
solving these equations with AMR, please refer to Refs. [12, 15].

In this simulation we consider the evolution of an initial state is taken to be
c(x, y, 0) = 0.01rand(x, y) on the computational domain Ω = (0, 1) × (0, 1). We use a
base 64 × 64 mesh with two levels of refinement ratios of 2. Therefore, the effective
fine mesh size is 256 × 256. We use the simulation parameters such as ǫ4 based on the
effective fine mesh and ∆t = 0.1. Fig. 2.14 shows the evolution of the concentration
c(x, y, t) at times t = 100 and 300. At t = 300, the mesh adapts around the zero level
set.
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Figure 2.13. Mesh refinement with ǫ4.
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Figure 2.14. The evolution of the mesh and concentration c(x, y, t) =
0 under anti-phase domain coarsening. The times are shown below each
figure. The effective fine grid resolution for 2 levels of adaptivity is
256 × 256.

2.5. Conclusions

In this paper, we reviewed a derivation of the AC equation as a gradient flow
and showed that a numerical scheme for the AC equation is unconditionally gradient
stable by using eigenvalues of the Hessian matrix of the energy functional. We also
showed that the decrease of the discrete total energy functional implies the pointwise
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boundedness of the numerical solution for the AC equation. We investigated a variety
of phenomena associated with the AC equation. We have uncovered a traveling wave
solution to the AC equation and found that its speed depends linearly on the interfacial
energy parameter, i.e., s = 3ǫ/

√
2.

This chapter is published in Physica A, Vol. 388, No. 9, pp. 1591-1606,
(2009).
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Chapter 3

A computer program for the phase-field models

Phase-field model is an important methodology for modeling physical phenomena
such as solidification, ferroelectrics, spinodal decomposition, and polymer blend. In
this Chapter, we review and present details of the computational scheme and computer
program for the phase-field models. The scheme is unconditionally gradient stable and
is solved by an efficient and accurate multigrid method. And the program, which is
written in the C language, is designed to provide the researchers with an easy and
detailed guidance for the multigrid method of the phase-field models. We discuss the
implementation of the code through numerical experiments.

3.1. Introduction

The code presented in this Chapter may be extended for various models such as the
Rayleigh-Taylor instability [16], the pinch-off in liquid/liquid jets [17], thermocapillary
flows [18, 19], mixing [20], contact angles and wetting phenomena [21, 92], gravity and
capillary waves [22, 23, 24], and nucleation and spinodal decomposition [17, 18, 25, 26,
27].

In this Chapter, we consider an implementation of the Cahn-Hilliard (CH) equation:

∂c(x, t)

∂t
= ∇ · [M(c(x, t))∇µ(c(x, t))], x ∈ Ω, 0 < t ≤ T, (3.1)

µ(c(x, t)) = F ′(c(x, t)) − ǫ2∆c(x, t), (3.2)

where Ω ⊂ Rd (d = 1, 2, 3). The quantity c(x, t) is defined to be the difference between
the concentrations of the two mixtures’ components (e.g., (m1 −m2)/(m1 +m2) where
m1 and m2 are the masses of components 1 and 2 in a representative volume V ). The
CH equation was originally introduced to model spinodal decomposition and coarsening
phenomena in binary alloys [46, 51]. This equation is very important in modeling and
simulation of materials science applications (see Refs. [46, 51, 28, 115] and references
therein). This CH equation arises from the Ginzburg-Landau free energy

E(c) :=

∫

Ω

(
F (c) +

ǫ2

2
|∇c|2

)
dx,

where F (c) = 0.25(c2−1)2 is the Helmholtz free energy and ǫ is a positive constant. To
obtain the CH equation with a variable mobility one introduces a chemical potential µ
as the variational derivative of E ,

µ :=
δE
δc

= F ′(c) − ǫ2∆c
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and defines the flux, J := −M(c)∇µ, where M(c) ≥ 0 is a diffusional mobility. As a
consequence of mass conservation, we have

∂c

∂t
= −∇ · J ,

which is the CH equation with a variable mobility. The natural and no-flux boundary
conditions are

∂c

∂n
= J · n = 0 on ∂Ω, where n is normal to ∂Ω. (3.3)

We differentiate the energy E and the total mass
∫
Ω c dx to get

d

dt
E(t) =

∫

Ω
(F ′(c)ct + ǫ2∇c · ∇ct)dx =

∫

Ω
µct dx =

∫

Ω
µ∇ · (M(c)∇µ)dx

=

∫

∂Ω
µM(c)

∂µ

∂n
ds −

∫

Ω
∇µ · (M(c)∇µ)dx = −

∫

Ω
M(c)|∇µ|2dx

and
d

dt

∫

Ω
c dx =

∫

Ω
ct dx =

∫

Ω
∇ · (M(c)∇µ)dx =

∫

∂Ω
M(c)

∂µ

∂n
ds = 0,

where we used the no-flux boundary condition (3.3). Therefore, the total energy is
non-increasing in time and the total mass is conserved.

In this Chapter, we briefly review numerical methods for the CH equation and
provide details of a computational scheme and the complete C code. The code presented
in this Chapter is intended to provide a comprehensive implementation guide for phase-
field models. Researchers to the field of phase-field models can download the code from
the webpage http://elie.korea.ac.kr/~cfdkim/CHcode/.

This Chapter is organized as follows. In Section 3.2, we briefly review numerical
methods for the CH equation. In Section 3.3, we describe the discrete scheme and show
the boundedness of its numerical solution. We present the multigrid method for the
fully discrete system in Section 3.4. The numerical results are described in Section 3.5.
A discussion is presented in Section 3.6. In Section 3.7, we provide the multigrid C
code for solving the CH equation.

3.2. Review

In this section, we present a brief review of numerical methods for the CH equation.
The CH equation with finite element [29, 30, 31, 32, 33, 34] and finite difference [35, 36,
37, 38, 39] methods have been studied intensively. For one-dimensional problems, finite
Galerkin approximate solutions have been obtained by Elliott and French [29]. Also
this authors considered a nonconforming finite element method for multi-dimensional
problems in [30]. Elliott and Larsson [31] have obtained error bounds of finite Galerkin
solutions with smooth and nonsmooth initial data. In [32], Dean et al. used a mixed
finite element method to obtain approximate solutions of the CH equation. A multigrid
finite element solver has been presented by Kay and Welford [33] and an adaptive finite
element method was developed by Banas and Nürnberg [34]. Furihata [35] has proposed
a stable and conservative finite difference scheme to solve numerically the CH equation.
Choo and Chung [36] have applied a nonlinear conservative difference scheme based
on the Crank-Nicolson scheme for a one-dimensional problem and Choo et al. [37]
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used a nonlinear conservative difference scheme for a two-dimensional problem. Zhou
and Wang [38] introduced a phase field model for the optimization of multimaterial
structural topology based a modified Cahn-Hilliard theory. Kim [39] has considered a
conservative nonlinear multigrid method for the CH equation with a variable mobility.
Multigrid methods are generally accepted as among the fastest numerical methods for
solving this type of partial differential equations [122]. We use a multigrid method
[33, 39, 40, 41, 42] to solve the CH equation accurately and efficiently.

3.3. Numerical analysis

In this section, we present fully discrete schemes for the CH equation. We consider
an unconditionally gradient stable scheme for time discretization introduced by Eyre
[53, 43]. For simplicity of exposition, we shall discretize the CH equation in two-
dimensional space, i.e., Ω = (a, b) × (c, d). One and three-dimensional discretizations
are defined analogously. Let Nx and Ny be positive even integers, h = (b − a)/Nx be
the uniform mesh size, and Ωh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤
i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let cij and µij be approximations of
c(xi, yj) and µ(xi, yj). We define a discrete energy functional by

Eh(cn) =
h2

4

Nx∑

i=1

Ny∑

j=1

((cnij)
2 − 1)2 +

ǫ2h2

2




Nx∑

i=0

Ny∑

j=1

|∇dc
n
i+ 1

2
,j
|2 +

Nx∑

i=1

Ny∑

j=0

|∇dc
n
i,j+ 1

2

|2

 .

By using the linearly stabilized splitting scheme [43], we present a implicit time and
centered difference space discretization of Eqs. (3.1) and (3.2):

cn+1
ij − cnij

∆t
= ∆dµ

n+1
ij , (3.4)

µn+1
ij = 2cn+1

ij − ǫ2∆dc
n+1
ij + f(cnij) − 2cnij , (3.5)

where f(c) = F ′(c).
Eyre [53, 43] proved that if cn+1 is the solution of Eqs. (3.4) and (3.5) with a given

cn, then

Eh(cn+1) ≤ Eh(cn).

Furihata et al. [44] have examined the boundedness of the solution of a finite difference
scheme [45] using discretized Lyapunov functional. Furihata [35] has shown that the
decrease of the total energy implies boundedness of discretized Sobolev norm of the
solution, independent ∆t and ∆x, unconditionally.

We can show that boundedness of the solution of finite difference scheme using the
decrease of the discrete total energy functional. This proof can be done similarly by
using method in Subsec. 2.3.2 in Chapter 2. The decrease of the discrete total energy
functional means that the numerical solution for the CH equation is pointwise bounded.

3.4. Numerical solution - A multigrid method

In this section, we develop a multigrid method to solve the linear discrete system
(3.4) and (3.5) at the implicit time level. A pointwise Gauss-Seidel relaxation scheme is
used as the smoother in the multigrid method. See the reference text [122] for additional
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details. We use the same notations as this reference text. Let us rewrite Eqs. (3.4)
and (3.5) as follows.

L(cn+1, µn+1) = (φn, ψn),

where the linear system operator (L) is defined as

L(cn+1, µn+1) =

(
cn+1

∆t
− ∆dµ

n+1, µn+1 − 2cn+1 + ǫ2∆dc
n+1

)

and the source term is (φn, ψn) = (cn/∆t, f(cn) − 2cn). In the following description
of one multigrid cycle, we assume a sequence of grids Ωk (Ωk−1 is coarser than Ωk by
a factor of 2). Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation
sweeps, an iteration step for the multigrid method using the V-cycle is formally written
as follows:

Multigrid cycle

{cn+1,m+1
k , µn+1,m+1

k } = MGcycle(k, cn+1,m
k , µn+1,m

k , Lk, φ
n
k , ψ

n
k , ν1, ν2) on Ωk grid.

Here, {cn+1,m
k , µn+1,m

k } and {cn+1,m+1
k , µn+1,m+1

k } are the approximations of {cn+1
k (xi, yj),

µn+1
k (xi, yj)} before and after an MGcycle.

Step 1) Presmoothing

{c̄n+1,m
k , µ̄n+1,m

k } = SMOOTHν1(cn+1,m
k , µn+1,m

k , Lk, φ
n
k , ψ

n
k ) on Ωk grid.

This means performing ν1 smoothing steps. Let us discretize Eqs. (3.4) and (3.5) as a
Gauss-Seidel type.

c̄n+1,m
k,ij

∆t
+

4µ̄n+1,m
k,ij

h2
= φn

k,ij +
µ̄n+1,m

k,i−1,j + µn+1,m
k,i+1,j + µ̄n+1,m

k,i,j−1 + µn+1,m
k,i,j+1

h2
, (3.6)

−
(

2 +
4ǫ2

h2

)
c̄n+1,m
k,ij + µ̄n+1,m

k,ij = ψn
k,ij − ǫ2

c̄n+1,m
k,i−1,j + cn+1,m

k,i+1,j + c̄n+1,m
k,i,j−1 + cn+1,m

k,i,j+1

h2
. (3.7)

One SMOOTH relaxation operator step consists of solving the system (3.6) and (3.7)
by a 2 × 2 matrix inversion for each ij.

Step 2) Coarse grid correction

• Compute the defect: (d̄m
1k, d̄

m
2k) = (φn

k , ψ
n
k ) − Lk(c̄

n+1,m
k , µ̄n+1,m

k ).

• Restrict the defect: (d̄m
1,k−1, d̄

m
2,k−1) = Ik−1

k (d̄m
1k, d̄

m
2k).

• Compute an approximate solution {c̄mk−1, µ̄
m
k−1} of the coarse grid equation on Ωk−1:

Lk−1(c
n+1,m
k−1 , µn+1,m

k−1 ) = (d̄m
1,k−1, d̄

m
2,k−1). (3.8)

If k = 1, we apply the smoothing procedure in Step 1) to obtain the approximate
solution. If k > 1, we solve (3.8) by performing a k-grid cycle using the zero grid
function as an initial approximation:

{v̂n+1,m
1,k−1 , v̂

n+1,m
2,k−1 } = MGcycle(k − 1,0,0, Lk−1, d̄

m
1,k−1, d̄

m
2,k−1, ν1, ν2).
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• Interpolate the correction: (v̂n+1,m
1k , v̂n+1,m

2k ) = Ik
k−1(v̂

n+1,m
1,k−1 , v̂

n+1,m
2,k−1 ).

• Compute the corrected approximation on Ωk:

cm, after CGC
k = c̄n+1,m

k + v̂n+1,m
1k , µm, after CGC

k = µ̄n+1,m
k + v̂n+1,m

2k .

Step 3) Postsmoothing:

{cn+1,m+1
k , µn+1,m+1

k }

= SMOOTHν2(cm, after CGC
k , µm, after CGC

k , Lk, φ
n
k , ψ

n
k ) on Ωk grid.

This completes the description of an MGcycle.
Describing an algorithm for a discrete system is one thing and actual implementa-

tion is another. Especially, using recursive function for a multigrid method is non-trivial
task for the beginners. We made the code as simple as possible. Therefore, it needs
a modification for accounting other features of the equations such as different bound-
ary conditions, variable mobilities, three dimensional extension, and more than two
components. These modifications can be done in a straightforward manner.

3.5. Numerical results

3.5.1. The relation between the ǫ value and the width of the transition
layer. In the first numerical experiment, we consider the relation between the ǫ value
and the width of the transition layer for the CH equation. From our choice of an
equilibrium profile c(x) = tanh(x/(

√
2ǫ)) on the infinite domain, the concentration

field varies from −0.9 to 0.9 over a distance of about ξ = 2
√

2ǫ tanh−1(0.9) (see Fig.
3.1).

x

0.9

−0.9

tanh x
√

2ǫ

ξ

0
√

2ǫ tanh−1(0.9)

Figure 3.1. The concentration field varies from −0.9 to 0.9 over a
distance of about ξ = 2

√
2ǫ tanh−1(0.9).

Therefore, if we want this value to be about m grid points, then

ǫm =
hm

2
√

2 tanh−1(0.9)
.
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To confirm this, we run a simulation with the initial condition c(x, y, 0) = 0.01rand( )
on the unit domain Ω = (0, 1) × (0, 1) with h = 1/64, ∆t = 0.05, and ǫ4. Here, rand( )
is a random number between −1 and 1. In Fig. 3.2, we see that the transition layer
(from c = −0.9 to c = 0.9) is about 4 grid points at t = 25.
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Figure 3.2. The evolution of an initial random concentration,
c(x, y, 0) = 0.01rand( ). The concentration profile is shown at t = 1.25,
2.5, and 25.
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t=0.05 t=0.5 t=2 t=4 t=10

Figure 3.3. The evolution of the concentration c(x, y, t) with different
initial conditions, c(x, y, 0) = 0.01rand( ) (the top row) and c(x, y, 0) =
−0.4 + 0.1rand( ) (the bottom row). The times are shown below each
figure.

3.5.1.1. Phase separation. Next, to confirm the phase separation with different ini-
tial states, we take two different initial conditions on Ω = (0, 1) × (0, 1), c(x, y, 0) =
0.01rand( ) and c(x, y, 0) = −0.4 + 0.1rand( ). We take the simulation parameters,
h = 1/1024, ∆t = 0.01, and ǫ4. Fig. 3.3 shows the evolution of the concentration
c(x, y, t). The first and second rows represent the evolution of the concentration 50%
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with the initial condition c(x, y, 0) = 0.01rand( ) and the concentration 30% with the
initial condition c(x, y, 0) = −0.4 + 0.1rand( ), respectively.

3.5.1.2. The decrease of the total energy. In order to demonstrate that the numer-
ical scheme inherits the energy decreasing property, we consider the evolution of the
discrete total energy. In the simulation, we choose h = 1/128, ∆t = 0.01, and ǫ4.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time

 

 

total energy

 

 

Figure 3.4. The time dependent non-dimensional discrete total energy
Eh(t)/Eh(0) (solid line) of the numerical solutions with the initial state
c(x, y, 0) = 0.01rand( ).

In Fig. 3.4, the time evolution of the non-dimensional discrete total energy Eh(t)/Eh(0)
(solid line) of the numerical solutions with the initial state c(x, y, 0) = 0.01rand( ). As
can be seen in Fig. 3.4 the energy is non-increasing. This numerical result agrees well
with the total energy dissipation property.

3.6. Conclusions

In this Chapter, we reviewed various numerical methods for solving the CH equa-
tion. We described the discrete scheme and its properties, and presented the multigrid
method for the fully discrete system. Also, we provided a C program code for the CH
equation. We hope that the code will play an useful role in the modeling and simulation
for the phase-field models. The C program source code is available from the author’s
homepage at http://elie.korea.ac.kr/~cfdkim/CHcode/.

3.7. Cahn-Hilliard C code

In this section, we present a source code written in C language for the Cahn-Hilliard
equation.
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#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define nx 128

#define ny 128

#define iloop for(i=1;i<=nx;i++)

#define jloop for(j=1;j<=ny;j++)

#define ijloop int i, j; iloop jloop

#define iloopt for(i=1;i<=nxt;i++)

#define jloopt for(j=1;j<=nyt;j++)

#define ijloopt int i, j; iloopt jloopt

void initialization(double **cn);

void Cahn_Hilliard(double **cn, double **cnp);

void source(double **cn, double **src_c, double **src_mu);

void vcycle(double **cnp, double **mu, double **sor_c, double **sor_mu,

int nxf, int nyf, int ilevel);

void relax(double **cnp, double **mu, double **sor_c, double **sor_mu,

int ilevel, int nxt, int nyt);

void defect(double **def_c, double **def_mu, double **cn, double **cnp,

double **sor_c, double **sor_mu, int nxf, int nyf);

void LS(double **LSc, double **LSmu, double **cnp, double **mu,

int nxt, int nyt);

void laplace(double **a, double **lap_a, int nxt, int nyt);

void restrict(double **cf, double **cc, double **muf, double **muc,

int nxt, int nyt);

void prolong(double **cc, double **cf, double **muc, double **muf,

int nxt, int nyt);

double **dmatrix(long nrl, long nrh, long ncl, long nch);

void zero_matrix(double **a, int nxt, int nyt);

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch);

void mat_add(double **a, double **b, double **c, int nxt, int nyt);

void mat_sub(double **a, double **b, double **c, int nxt, int nyt);

void mat_copy(double **a, double **b, int nxt, int nyt);

double error(double **ct, double **cnp);

void print_data(double **cnp);

int n_level, c_relax;

double **tmp1, **tmp2, **ct, **mu, **sor_c, **sor_mu, xleft, xright,

yleft, yright, h, h2, dt, epsilon, Cahn;

int main()

{

extern int n_level, c_relax;

extern double **tmp1, **tmp2, **ct, **mu, **sor_c, **sor_mu,

xleft, xright, yleft, yright, h, h2, dt, epsilon, Cahn;

int it, max_it, print_interval, count=1;

double **cn, **cnp;

FILE *fphi;

if (nx<ny) n_level=(int)(log(nx)/log(2)+0.1);

else n_level=(int)(log(ny)/log(2)+0.1);



3.7. CAHN-HILLIARD C CODE 31

c_relax=5, max_it=50, print_interval=max_it/2,

xleft=0.0, xright=1.0, yleft=0.0, yright=1.0;

h=xright/(double)nx, h2=pow(h,2), dt=h, epsilon=h,

Cahn=pow(epsilon,2);

tmp1=dmatrix(1, nx, 1, ny); tmp2=dmatrix(1, nx, 1, ny);

ct=dmatrix(1, nx, 1, ny); mu=dmatrix(1, nx, 1, ny);

sor_c=dmatrix(1, nx, 1, ny); sor_mu=dmatrix(1, nx, 1, ny);

cn=dmatrix(1, nx, 1, ny); cnp=dmatrix(1, nx, 1, ny);

initialization(cnp);

fphi=fopen("phi.m","w");

fprintf(fphi,"A=[ \n");

fclose(fphi);

print_data(cnp);

for (it=1; it<=max_it; it++) {

mat_copy(cn, cnp, nx, ny);

Cahn_Hilliard(cn, cnp);

if (it % print_interval==0) {

print_data(cnp);

printf("print out counts %d \n", count++); }

printf("Iteration is %d \n", it); }

fphi = fopen("phi.m","a");

fprintf(fphi,"]; surf(A’); shading interp \n");

fclose(fphi);

return 0;

}

void initialization(double **cn)

{

ijloop {

cn[i][j]=0.3*(0.5-rand()/(double)RAND_MAX);

mu[i][j]=0.0; }

}

void Cahn_Hilliard(double **cn, double **cnp)

{

int max_it=300, iter=1;

double tol=1.0e-5, resid=1.0;

source(cn, sor_c, sor_mu);

mat_copy(ct, cn, nx, ny);

while (iter <= max_it && resid > tol) {

vcycle(cnp, mu, sor_c, sor_mu, nx ,ny, 1);

resid=error(ct, cnp);

mat_copy(ct, cnp, nx, ny);

iter++; }
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printf("Error is %12.10f %d",resid,iter-1);

}

void source(double **cn, double **src_c, double **src_mu)

{

ijloop {

src_c[i][j]=cn[i][j]/dt;

src_mu[i][j]=pow(cn[i][j],3)-3.0*cn[i][j];}

}

void vcycle(double **cnp, double **mu, double **sor_c, double **sor_mu,

int nxf, int nyf, int ilevel)

{

relax(cnp, mu, sor_c, sor_mu, ilevel, nxf, nyf);

if (ilevel<n_level) {

double **def_c, **def_mu, **codef_c, **codef_mu,

**fidef_c, **fidef_mu;

def_c=dmatrix(1, nxf/2, 1, nyf/2);

def_mu=dmatrix(1, nxf/2, 1, nyf/2);

fidef_c=dmatrix(1, nxf, 1, nyf);

fidef_mu=dmatrix(1, nxf, 1, nyf);

codef_c=dmatrix(1, nxf/2, 1, nyf/2);

codef_mu=dmatrix(1, nxf/2, 1, nyf/2);

defect(def_c, def_mu, cnp, mu, sor_c, sor_mu, nxf, nyf);

zero_matrix(codef_c, nxf/2, nyf/2);

zero_matrix(codef_mu, nxf/2, nyf/2);

vcycle(codef_c, codef_mu, def_c, def_mu, nxf/2, nyf/2, ilevel+1);

prolong(codef_c, fidef_c, codef_mu, fidef_mu, nxf/2, nyf/2);

mat_add(cnp, cnp, fidef_c, nxf, nyf);

mat_add(mu, mu, fidef_mu, nxf, nyf);

relax(cnp, mu, sor_c, sor_mu, ilevel, nxf, nyf);

free_dmatrix(def_c, 1, nxf/2, 1, nyf/2);

free_dmatrix(def_mu, 1, nxf/2, 1, nyf/2);

free_dmatrix(fidef_c, 1, nxf, 1, nyf);

free_dmatrix(fidef_mu, 1, nxf, 1, nyf);

free_dmatrix(codef_c, 1, nxf/2, 1, nyf/2);

free_dmatrix(codef_mu, 1, nxf/2, 1, nyf/2);

}

}

void restrict(double **cf, double **cc, double **muf, double **muc,

int nxt, int nyt)

{

ijloopt {

cc[i][j]=0.25*(cf[2*i][2*j]+cf[2*i-1][2*j]

+cf[2*i][2*j-1]+cf[2*i-1][2*j-1]);

muc[i][j]=0.25*(muf[2*i][2*j]+muf[2*i-1][2*j]
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+muf[2*i][2*j-1]+muf[2*i-1][2*j-1]); }

}

void prolong(double **cc, double **cf, double **muc, double **muf,

int nxt, int nyt)

{

ijloopt {

cf[2*i][2*j]=cf[2*i-1][2*j]

=cf[2*i][2*j-1]=cf[2*i-1][2*j-1]=cc[i][j];

muf[2*i][2*j]=muf[2*i-1][2*j]

=muf[2*i][2*j-1]=muf[2*i-1][2*j-1]=muc[i][j]; }

}

void LS(double **LSc, double **LSmu, double **cnp, double **mu,

int nxt, int nyt)

{

double **lap_mu, **lap_c;

lap_mu=dmatrix(1, nxt, 1, nyt);

lap_c=dmatrix(1, nxt, 1, nyt);

laplace(cnp, lap_c, nxt, nyt);

laplace(mu, lap_mu, nxt, nyt);

ijloopt {

LSc[i][j]=cnp[i][j]/dt-lap_mu[i][j];

LSmu[i][j]=- 2.0*cnp[i][j]+Cahn*lap_c[i][j]+mu[i][j]; }

free_dmatrix(lap_mu, 1, nxt, 1, nyt);

free_dmatrix(lap_c, 1, nxt, 1, nyt);

}

void defect(double **def_c, double **def_mu, double **cn, double **cnp,

double **sor_c, double **sor_mu, int nxf, int nyf)

{

LS(tmp1, tmp2, cn, cnp, nxf, nyf);

mat_sub(tmp1, sor_c, tmp1, nxf, nyf);

mat_sub(tmp2, sor_mu, tmp2, nxf, nyf);

restrict(tmp1, def_c, tmp2, def_mu, nxf/2, nyf/2);

}

double error(double **ct, double **cnp)

{

double value=0.0;

ijloop {

if (fabs(ct[i][j]-cnp[i][j]) > value)

value=fabs(ct[i][j]-cnp[i][j]); }

return value;

}

void relax(double **cnp, double **mu, double **sor_c, double **sor_mu,

int ilevel, int nxt, int nyt)

{
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int iter;

double ht2, a[4], f[2], det;

ht2 = pow(xright/(double) nxt,2);

for (iter=1; iter<=c_relax; iter++) {

ijloopt {

a[0]=1.0/dt, a[1]=0.0, a[2]=-2.0, a[3]=1.0;

f[0]=sor_c[i][j], f[1]=sor_mu[i][j];

if (i>1) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;

f[0]+=mu[i-1][j]/ht2,f[1]-=Cahn*cnp[i-1][j]/ht2;}

if (i<nxt) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;

f[0]+=mu[i+1][j]/ht2,f[1]-=Cahn*cnp[i+1][j]/ht2;}

if (j>1) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;

f[0]+=mu[i][j-1]/ht2,f[1]-=Cahn*cnp[i][j-1]/ht2;}

if (j<nyt) {a[1]+=1.0/ht2,a[2]-=Cahn/ht2;

f[0]+=mu[i][j+1]/ht2,f[1]-=Cahn*cnp[i][j+1]/ht2;}

det = a[0]*a[3] - a[1]*a[2];

cnp[i][j] = (a[3]*f[0] - a[1]*f[1])/det;

mu[i][j] = (-a[2]*f[0] + a[0]*f[1])/det;}

}

}

void laplace(double **a, double **lap_a, int nxt, int nyt)

{

double ht2, value;

ht2 = pow(xright / (double) nxt, 2);

ijloopt {

value=0.0;

if (i<nxt) value += a[i+1][j]-a[i][j];

if (i>1) value -= a[i][j]-a[i-1][j];

if (j<nyt) value += a[i][j+1]-a[i][j];

if (j>1) value -= a[i][j]-a[i][j-1];

lap_a[i][j]=value/ht2;}

}

void mat_add(double **a, double **b, double **c, int nxt, int nyt)

{

ijloopt a[i][j] = b[i][j]+c[i][j];

}

void zero_matrix(double **a, int nxt, int nyt)

{

ijloopt a[i][j]=0.0;

}

void mat_copy(double **a, double **b, int nxt, int nyt)

{

ijloopt a[i][j]=b[i][j];

}

double **dmatrix(long nrl, long nrh, long ncl, long nch)
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{

double **m;

long i, nrow=nrh-nrl+1+1, ncol=nch-ncl+1+1;

m=(double **) malloc((nrow)*sizeof(double*));

m+=1;

m-=nrl;

m[nrl]=(double *) malloc((nrow*ncol)*sizeof(double));

m[nrl]+=1;

m[nrl]-=ncl;

for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;

return m;

}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)

{

free(m[nrl]+ncl-1);

free(m+nrl-1);

}

void mat_sub(double **a, double **b, double **c, int nxt, int nyt)

{

ijloopt a[i][j]=b[i][j]-c[i][j];

}

void print_data(double **cnp)

{

int i, j;

FILE *fp;

fp = fopen("phi.m","a");

iloop {

jloop { fprintf(fp, " %f", cnp[i][j]);}

fprintf(fp, "\n");}

fclose(fp);

}
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Chapter 4

A phase-field model for a block copolymer

We consider a numerical method for a block copolymer.

4.1. Introduction

In this paper, we consider an efficient and fast finite difference method for the
Cahn-Hilliard (CH) equation.

∂φ(x, t)

∂t
= ∆µ(φ(x, t)) − α(φ(x, t) − φ̄), x ∈ Ω, 0 < t ≤ T, (4.1)

µ(φ(x, t)) = F ′(φ(x, t)) − ǫ2∆φ(x, t), (4.2)

where Ω ⊂ Rd (d = 1, 2, 3).

φ̄ =
1

|Ω|

∫

Ω
φdx. (4.3)

Let Eshort(φ) be a short-range part of the free energy functional

Eshort(φ) :=

∫

Ω

(
F (φ) +

ǫ2

2
|∇φ|2

)
dx,

where F (φ) is the Helmholtz free energy and ǫ is a positive constant. In this paper, we
use the free energy in the form of F (φ) = 1

4 (φ2 − 1)2.
This Chapter is organized as follows. In section 4.2, we describe the discrete scheme

and its properties. We present the descretization of the proposed scheme in section 4.3.
The numerical results showing the effects of a variable mobility are described in section
4.4. A discussion is presented in section 4.5.

4.2. The Cahn-Hilliard equation

We consider a block copolymer consisting of two homopolymer blocks A and B,
each having the degree of polymerization NA and NB , respectively. We use the model
proposed by Ohta and Kawasaki[124] for the block copolymer mesophase.

In the Ohta-Kawasaki model, the free energy of the block copolymers is described
as a functional of the local segment density A, B, ρA(x), ρB(x) at point x. We assume
that the system is incompressible; i.e., ρA(x)+ρB(x) is constant. The order parameter
φ(x) is defined as the composition difference between the A and B components:

φ(x) =
ρA(x) − ρB(x)

ρA(x) + ρB(x)
. (4.4)
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Let c be sufficiently smooth and satisfy ∂c
∂n

= ∂∆c
∂n

= 0 on ∂Ω. Then, we have that

for all v ∈ Ċ∞
0 ,
(
δEshort(φ)

δφ
, v

)

L2

=
d

dθ
Eshort(φ+ θv)

∣∣
θ=0

= lim
θ→0

1

θ

(
Eshort(φ+ θv) − Eshort(φ)

)
(4.5)

=

∫

Ω

(
F ′(φ) − ǫ2∆φ

)
vdx. (4.6)

δEshort(φ)

δφ
= F ′(φ) − ǫ2∆φ. (4.7)

Let Elong(φ) be a long-range part of the free energy functional.

Elong(φ) =
α

2

∫

Ω

∫

Ω
G(x − y)(φ(x) − φ̄)(φ(y) − φ̄)dydx, (4.8)

where G is the Green’s function for the Laplace equation

∆xG(x − y) = −δ(x − y). (4.9)

Let c be sufficiently smooth and satisfy ∂c
∂n

= ∂∆c
∂n

= 0 on ∂Ω. Then, we have that

for all v ∈ Ċ∞
0 ,

(
δElong(φ)

δφ
, v

)

L2

=
d

dθ
Elong(φ+ θv)

∣∣
θ=0

= lim
θ→0

1

θ

(
Elong(φ+ θv) − Elong(φ)

)
(4.10)

=
α

2

∫

Ω

∫

Ω
G(x − y)(φ(x) − φ̄)v(x′)dydx (4.11)

+
α

2

∫

Ω

∫

Ω
G(x − y)(φ(y) − φ̄)v(x)dydx (4.12)

=

∫

Ω

[
α

∫

Ω
G(x − y)(φ(y) − φ̄)dy

]
v(x)dx. (4.13)

Therefore,

δElong(φ)

δφ
= α

∫

Ω
G(x − y)(φ(y) − φ̄)dy. (4.14)

φt = ∆µ = ∆

(
δEshort(φ)

δφ
+
δElong(φ)

δφ

)
(4.15)

= ∆(F ′(φ) − ǫ2∆φ) + α∆

∫

Ω
G(x − y)(φ(y) − φ̄)dy (4.16)

= ∆(F ′(φ) − ǫ2∆φ) + α

∫

Ω
∆xG(x − y)(φ(y) − φ̄)dy (4.17)

= ∆(F ′(φ) − ǫ2∆φ) − α(φ − φ̄). (4.18)
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4.3. Discretization f the proposed scheme

We present a semi-implicit time and centered difference space discretization of Eqs.
(4.1) and (4.2).

φn+1
ij − φn

ij

∆t
= ∆dµ

n+ 1
2

ij , (4.19)

µ
n+ 1

2
ij = 2φn+1

ij − ǫ2∆dφ
n+1
ij + f(φn

ij) − 2φn
ij , (4.20)

where f(φ) = F ′(φ).

φt = −α(φ− φ̄). (4.21)

φ∗ − φn

∆t
= −α(φ∗ − φ̄). (4.22)

φ∗ = φ̄+ (φn − φ̄)e−α∆t. (4.23)

4.4. Numerical results

4.4.1. One space dimension. Now, we examine the evolution of a random distri-
bution of initial concentration. We take ǫ = 0.009, h = 1/128, ∆t = 0.2h, Ω = (0, 1),
and the initial state (dotted line) in Fig. 4.1 is taken to be φ(x, 0) = 0.3 + 0.01rand( ).
The random number, rand( ), is uniformly distributed between −1 and 1. Fig. 4.1
shows evolutions of the initial concentration φ(x, 0) with a constant mobility and a
variable mobility from a random perturbation. Constant mobility case has only one
big component, but the variable mobility case has two components.
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Figure 4.1. Evolution of initial concentration φ(x, 0) = 0.3 + 0.01rand( ).

4.4.2. Instability of perfectly oriented lamellae in compression and ex-
pansion. To study the stability of the compressed or expanded lamellae, we conducted
the following simulation. We start from the initial condition

φ0
i = A cos(2πkxi) + noise term

and solve Eqs. (4.19) and (4.20) numerically.



4.4. NUMERICAL RESULTS 39

(a)

1 40 80 1200

(b)

1 40 200 800

(c)

1 10 200 800

(d)

1 6 200 800

(e)

1 5 200 800

Figure 4.2. Relaxation of uniform lamellae of the size L×L = 32×32
with intial wavenumber k = (a)2/L, (b) = 3/L, (c) = 4/L, (d) = 5/L,
(e) = 6/L. The numbers denotes the time steps.

The initial condition has two parameters A and k, but it was found that the results
are almost independent of the initial amplitude A. This is because the amplitude is
first optimized in a rather short time (10-30 time steps), and thereafter the relaxation
of the periodicity takes place slowly. Because of the periodic boundary condition, the
wave vectors can take only discrete values of k ) n/L, where n is an integer. In the
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present simulation, we fixed the system size at L ) 32 and prepare five different uniform
lamellae with the wave vectors k ) 2/L, 3/L, 4/L, 5/L, and 6/L.

We take ǫ = 1.9298, h = 1.0, ∆t = 1.0, Ω = (0, 32) × (0, 32), and the initial state
in Fig. 4.2 is taken to be φ(x, 0) = cos(2πkx) + 0.1rand( ).

4.4.3. Linear stability theory. Next, to ensure that we are simulating the cor-
rect physical problem, we consider the agreement between the numerics and the results
of a linear stability analysis about a constant concentration φ = φm. Accordingly, we
look for a solution of Eqs. (4.1) and (4.2) of the form

φ(x, t) = φm +

∞∑

k=1

φk(t) cos(kπx),

where |φk(t)| ≪ 1. Neglecting quadratic terms in φk(t), we find that φk(t) must solve
the ordinary differential equation,

dφk

dt
= −(kπ)2[3φm

2 − 1 + ǫ2(kπ)2 − α]φk. (4.24)

The solution of Eq. (4.24) is

φk(t) = φk(0)eηkt,

where ηk = −(kπ)2[3φm
2 − 1 + ǫ2(kπ)2 − α] is the growth rate.

In Fig. 4.3, the theoretical growth rate ηk is compared to that obtained from the
nonlinear scheme. The numerical growth rate is defined by

η̃k = log

(
maxij |φn

ij|
maxij |φ0

ij|

)
/tn.

Here, we used φm = 0.0, initial data φ0(x) = 0.01cos(kπx) and ǫ = 0.018757,
∆t = 10−6, h = 1/256 and tn = 0.0001. The graph shows that the linear analysis (solid
line) and numerical solution (circle) are in good agreement.
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Figure 4.3. Growth rate for the different wave numbers k with (a)
α = 0.0 and (b) α = 1.0.
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4.5. Conclusions

We present details of the efficient computational scheme of the phase-field models
for the block copolymer.
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Chapter 5

Fast and automatic inpainting of binary images using a

phase-field model

Image inpainting is the process of reconstructing lost or deteriorated parts of images
using information from surrounding areas. We propose a computationally efficient and
fast phase-field method which uses automatic switching parameter, adaptive time step,
and automatic stopping of calculation. The algorithm is based on an energy functional.
We demonstrate the performance of our new method and compare it with a previous
method.

5.1. Introduction

Image inpainting [50, 47, 98] is the process of reconstructing lost or deteriorated
parts of images using information from surrounding areas. Let f(x), where x = (x, y),
be a given image in a domain Ω. Let c(x, t) be a phase-field which is governed by the
following modified Cahn-Hilliard (CH) equation [51]:

ct = ∆µ+ λ(x)(f(x) − c), (5.1)

µ = F ′(c) − ǫ2∆c, (5.2)

where F (c) = 0.25c2(1 − c)2. In the examples considered here, we use binary images
in which most of the pixels are either exactly black or white. Eqs. (5.1) and (5.2) are
the modified CH equation, due to the added fidelity term λ(x)(f(x) − c) [48]. Image
inpainting using phase-field methods is recently investigated by authors in [48, 49]. It
is a good starting point for using partial differential equations in inpainting images,
however, we found there are a couple of defects. First of all, switching parameter ǫ and
stopping the calculation are done by trial and error. Furthermore, large time step ∆t
is more or less time step rescaling and it turns out that it is equivalent to using smaller
time step than usual usage. In this Chapter, we propose a phase-field method which
uses automatic varying ǫ, adaptive time step, and a stopping criterion based on energy
functional.

The outline of this Chapter is the following. In Sec. 5.2, the discrete equations
for the governing equations are presented. In Sec. 5.3, we present computational
examples. We propose a new automatic controlled algorithm in Sec. 5.4. Finally, in
Sec. 5.5, conclusions are drawn.

5.2. Discrete equations and a numerical solution

In this section, we present fully discrete schemes for the CH equation in two dimen-
sional space, i.e., Ω = (a, b) × (c, d).
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Then, a semi-implicit time and centered difference space discretization of Eqs. (5.1)
and (5.2) is

cn+1
ij − cnij

∆t
= ∆dµ

n+ 1
2

ij + λij(fij − cnij), (5.3)

µ
n+ 1

2
ij = ϕ(cn+1

ij ) − cn

4
− ǫ2∆d c

n+1
ij , (5.4)

where ϕ(c) = F ′(c) +
c

4
.

We can rewrite Eqs. (5.3) and (5.4) as follows:

cn+1
ij − cnij

∆t
= ∆dν

n+1
ij − 1

4
∆dc

n
ij + λij(fij − cnij), (5.5)

νn+1
ij = ϕ(cn+1

ij ) − ǫ2∆dc
n+1
ij . (5.6)

We use nonlinear Full Approximation Storage (FAS) multigrid method to solve the
nonlinear discrete system (5.5) and (5.6) at the implicit time level. The nonlinearity
is treated using one step of Newton’s iteration and a pointwise Gauss-Seidel relaxation
scheme is used as the smoother in the multigrid method. See the reference text [122]
for additional details and backgrounds.

5.3. Computational examples

In this section, we will compare the numerical scheme of the previous Bertozzi’s
paper [48] with our scheme. First we refer to the discrete Eq. (9) in the paper [48]

un+1 − un

∆t
+ ε∆2

du
n+1 − C1∆du

n+1 + C2u
n+1 (5.7)

= ∆d

(
1

ε
W′(un)

)
+ λ(x)(f(x) − un) − C1∆du

n + C2u
n,

where W (u) = u2(1 − u)2 and the constants C1 and C2 are large enough so that the
equation is convex for the range of u in the simulation. Next, we rewrite Eq. (5.7) as
follows:

un+1 − un

4∆t
ε(C2∆t+1)

= ∆d

(
1

4
W′(un) − ε2

4
∆du

n+1 +
ε

4
C1(u

n+1 − un)

)
+
ε

4
λ(x)(f(x) − un).

Table 5.1 shows that two schemes are equivalent.

Table 5.1. Equivalent forms of two schemes.

Bertozzi’s numerical scheme
un+1−un

4∆t
ε(C2∆t+1)

= ∆d(
1
4W′(un) − ε2

4 ∆du
n+1 + ε

4C1(u
n+1 − un)) + ε

4λ(x)(f(x) − un)

Our numerical scheme
cn+1−cn

∆t = ∆d

(
F ′(cn) − ǫ2∆dc

n+1 + 1
4 (cn+1 − cn)

)
+ λ(x)(f(x) − cn)

We perform two test problems such as inpaintings of a double stripe and of a cross
to show that two schemes are equivalent.
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(a)

t = 0 t = 50 t = 700

(b)

t = 0 t = 0.0015 t = 1.7565

Figure 5.1. (a) Bertozzi’s result. (b) Our result. Left column is initial
data, middle column is results at iteration 50, and right column is results
at iteration 700.

5.3.1. Inpainting of a double stripe. In this test problem, the computational
domain Ω = (0, 1.28) × (0, 1.28) and 128 × 128 mesh size are taken. The initial con-
figurations are shown in the first column in Fig. 5.1. In the first and second rows,
figures are results using the previous scheme and our proposed scheme, respectively.
The gray region in the initial configuration denotes the inpainting region. In the pre-
vious scheme, we start calculations with a large ǫ = 0.8 value, then switch its value
to ǫ = 0.01 after 50 iterations, and stop the calculation at 700 iterations. We repeat
the same calculations with equivalent values which are summarized in Table 5.2. The
prime notations of the parameters are from previous method and right arrow implies
changing values when switching happens. By comparing two results, we see that our
scheme is equivalent to the previous Bertozzi’s scheme.

Table 5.2. Equivalent parameter values of two schemes.

Previous Value Current Value

∆t′ 1.0 ∆t =
4∆t′

ǫ′(C ′
2∆t

′ + 1)
0.00003 → 0.0027

λ′ 50000 λ =
ǫ′

4
λ′ 10000 → 125

ǫ′ 0.8 → 0.01 ǫ =
ǫ′

2
0.4 → 0.005

5.3.2. Inpainting of a cross. For the second test problem, the initial configu-
ration is a cross with an inpainting region as shown in the first column in Fig. 5.2.
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The computational domain Ω = (0, 1.28)× (0, 1.28) and 128× 128 mesh size are taken.
In the first and second rows, figures are results using the previous scheme and our
proposed scheme, respectively. In the previous scheme, we start calculations with a
large ǫ = 0.8 value, switch its value to ǫ = 0.01 after 300 iterations, and stop the
calculation at 1000 iterations. We repeat the same calculations with equivalent values
which are summarized in Table 5.3. By comparing two results, we see that our scheme
is equivalent to the previous Bertozzi’s scheme.

(a)

t = 0 t = 300 t = 1000

(b)

t = 0 t = 0.0051 t = 0.9151

Figure 5.2. (a) Bertozzi’s result. (b) Our result. Left column is initial
data, middle column is results at iteration 300, and right column is
results at iteration 1000.

Table 5.3. Equivalent parameter values of two schemes.

Previous Value Current Value

∆t′ 1.0 ∆t =
4∆t′

ǫ′(C ′
2∆t

′ + 1)
0.000017 → 0.0013

λ′ 100000 λ =
ǫ′

4
λ′ 20000 → 250

ǫ′ 0.8 → 0.01 ǫ =
ǫ′

2
0.4 → 0.005

From these two test problems, we can conclude that two schemes are equivalent.
However, in the previous algorithm, when to switch the parameters and when to stop
the calculation are from trial and error. Therefore, it is our main purpose to propose
an automatic switching and stopping algorithm based on an energy functional.



5.4. PROPOSED ALGORITHM FOR AUTOMATIC CONTROL 46

5.4. Proposed algorithm for automatic control

In this section, we propose an automatic switching and stopping algorithm based
on an energy functional. Let us reconsider the first test problem which is the inpainting
of a double stripe.
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Figure 5.3. Temporal evolution of contour plots of the phase-field for
the double stripe inpainting.

Fig. 5.3 shows the temporal evolution of contour plots of the phase-field. Around
the switching time, we can observe the phase separation which means that the inpaint-
ing region separates into white and dark regions. Then we switched the ǫ parameter.
Next, let us take a look at the time evolution of the energy functional. In Fig. 5.4, the
energy is increased at the initial stage and it is decreased.
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Figure 5.4. Temporal evolution of contour plots of the energy func-
tional for the double stripe inpainting.

Similar phenomena in the second test problem which is the inpainting of a cross
are observed. See the Figs. 5.6 and 5.5. Therefore, it is natural to monitor the energy
functional for switching the parameter and stopping the calculation.
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Figure 5.5. Temporal evolution of contour plots of the energy func-
tional for the cross inpainting.

5.4.1. Inpainting of damaged images. Fig. 5.7(a) and (c) show the initial
images of damaged double stripes and cross and Fig. 5.7(b) and (d) show the re-
sults with our proposed automatic algorithm to a double stripe and a cross inpainting
problems. In the case of double stipes (see Fig. 5.7(a) and (b)), it only requires
16 iterations to recover the damaged images. Also in the other case (cross image,
see Fig. 5.7(c) and (d)) we obtain the recovered image after 15 iterations. We use
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Figure 5.6. Temporal evolution of contour plots of the phase-field for
the cross inpainting.

∆t = 1/128, ǫ = 0.038424, λ = 3/∆t and when diff ,the difference of energies of cn+1

and cn, is smaller than tol1(= 0.08) is equal to 3 times, that is, at the number of iteration
is 3 in both cases, we switch the parameter as ∆t′ = 2.0∆t, ǫ′ = 0.0875ǫ, λ′ = 1.8/∆t′.
When diff is smaller than prescribed tolerance, tol2 (= 1.0E − 6), we stop this algo-
rithm.

5.4.2. Inpainting of obscured text. In order to recover obscured text (see Fig.
5.8(a)), we use our inpainting algorithm. Fig. 5.8(a) shows the initial image which
is obscured text by lines and Fig. 5.8(b) shows the recover result image. We use
the parameter as ∆t = 1/128, ǫ = 0.038424, λ = 3/∆t and diff is smaller than
tol1 (= 0.08) is equal to 3 times, that is, at the number of iteration is 4 in this case,
we switch the parameter as ∆t′ = 1.8∆t, ǫ′ = 0.0875ǫ, λ′ = 1.8/∆t′. Our automatic
switching method of the modified CH equation is faster than the previous model.

5.5. Conclusions

We have shown that our automatic switching algorithm achieves faster inpainting
of binary images than the previous trial and error algorithm. Therefore, inpainting
region is reconstructed more efficiently and faster than previous method. The developed
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The proposed automatic switching and stopping algorithm is as follows.
Algorithm:
Given a maximum iteration number N , tolerances tol1 and tol2
• Set k = 1, flag = 0.
• While (k ≤ N) do Steps 1-4

Step 1 Compute cn+1 from cn by solving Eqs. (5.5) and (5.6).
Step 2 Check the difference of energies of cn and cn+1

diff = |E(cn) − E(cn+1)|
If (flag < 3 and diff < tol1)
flag = flag + 1

End
Step 3 Switch parameters and reset data

If (flag = 3)
If (cn+1 > 0.5)
cn+1 = 1

Else
cn+1 = 0

End
∆t = 2∆t
do Step 1 twice
ǫ = 0.0875ǫ
λ = 1.8/∆t

End
Step 4 Stop loop

If (diff < tol2 and flag = 3)
Stop loop

End
End

(a) Initial (b) 16 iterations (c) Initial (d) 15 iterations

Figure 5.7. Recovery of damaged images. The computational domain
is Ω = (0, 1.28) × (0, 1.28) and mesh size is 128 × 128.

automatic algorithm can be applied to calculating option pricing such as the Black-
Scholes equations accurately and efficiently.
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(a) Initial (b) 47 iterations

Figure 5.8. Recovery of damaged text. The computational domain is
Ω = (0, 2.56) × (0, 1.28) and mesh size is 256 × 128.

This chapter is published in J. KSIAM Vol.13, No. 3, 225-236, (2009).
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Chapter 6

A Crank-Nicolson scheme for the Landau-Lifshitz

equation without damping

An accurate and efficient numerical approach, based on a finite difference method
with Crank-Nicolson time stepping, is proposed for the Landau-Lifshitz equation with-
out damping. The phenomenological Landau-Lifshitz equation describes the dynam-
ics of ferromagnetism. The Crank-Nicolson method is very popular in the numerical
schemes for parabolic equations since it is second-order accurate in time. Although
widely used, the method does not always produce accurate results when it is applied to
the Landau-Lifshitz equation. The objective of this article is to enumerate the prob-
lems and then to propose an accurate and robust numerical solution algorithm. A
discrete scheme and a numerical solution algorithm for the Landau-Lifshitz equation
are described. A nonlinear multigrid method is used for handling the nonlinearities of
the resulting discrete system of equations at each time step. We show numerically that
the proposed scheme has a second-order convergence in space and time.

6.1. Introduction

The relaxation process of the magnetization distribution in a ferromagnetic mate-
rial is described by the Landau-Lifshitz (LL) equation [116, 60]. Numerical analysis
has played an important role in the investigation of various issues in ferromagnetic
materials [85, 54, 57, 58]. Recent developments in modeling, analysis, and numerics of
ferromagnetism were discussed in survey articles [55, 59]. In this paper, we consider
the gyromagnetic term in the Landau-Lifshitz equation with a forcing

∂m(x, t)

∂t
= −m(x, t) × ∆m(x, t) + f(x, t), x ∈ Ω 0 < t ≤ T, (6.1)

where m(x, t) = (u(x, t), v(x, t), w(x, t)) is a magnetization vector field and Ω ⊂ R
d

(d = 1, 2, 3) is a domain. At the domain boundary ∂Ω, we will use either homogeneous
Neumann or periodic boundary condition. It is obvious that the Eq. (6.1) with f ≡ 0
has a length-preserving property during the evolution process. To see this, we do scalar
multiplication of Eq. (6.1) with m.

∂m

∂t
·m = −(m × ∆m) · m = 0. (6.2)

Then, ∂|m|2/∂t = 0, which implies |m(x, t)| is constant for all t and each x. And
we assume that |m(x, 0)| = 1. Let E(m(x, t)) be an energy defined by E(m(t)) :=
‖∇m(t)‖2

L2(Ω). By taking an inner product of Eq. (6.1) with ∆m, we obtain

∂m

∂t
· ∆m = −(m × ∆m) · ∆m = 0. (6.3)
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Using homogeneous Neumann or periodic boundary conditions, from Eq. (6.3) we
have

0 =

∫

Ω

∂m

∂t
· ∆mdx =

∫

∂Ω

∂m

∂t
· ∂m
∂n

ds−
∫

Ω
∇∂m

∂t
: ∇mdx

= −1

2

dE(m(t))

dt
, (6.4)

which implies that E(m(t)) is constant and this problem has an energy conservation
property. Here, n is a unit normal vector to ∂Ω and the operator ‘:’ is defined as
A : B =

∑
ij aijbij .

The Crank-Nicolson (CN) scheme is a popular implicit method for solving partial
differential equations with second-order accuracy in time and space [61]. However, the
method does not always produce accurate results when it is applied to the Landau-
Lifshitz equation. It is the objective of this article to enumerate the problems and
then to propose an accurate and robust numerical solution algorithm. One and two
dimensional discrete schemes for the discretized Landau-Lifshitz equation with an exact
solution are described and numerically solved using a nonlinear multigrid method.
Also, we show the proposed scheme has a second-order convergence in space and time
numerically.

The Chapter is organized as follows. In section 6.2, we describe the discrete scheme
of Landau-Lifshitz equation. And we present the nonlinear multigrid method for the
discrete system. In section 6.3, the numerical results showing performance of the pro-
posed scheme are given. Conclusions are made in section 6.4.

6.2. Crank-Nicolson method

6.2.1. Discretization. For simplicity of presentation, we will describe spatial and
temporal discretizations of the governing equation in one dimensional space. Two and
three dimensional spaces are straight forward extensions. Let us first discretize the
given computational domain Ω = (0, 1) as a uniform grid with the number of grid
points Nx, a space step h = 1/Nx, and a time step ∆t = T/Nt. Let us denote the
numerical approximation of the solution by

mn
i = m(xi, t

n) = (un
i , v

n
i , w

n
i )

= (u((i − 0.5)h, n∆t), v((i − 0.5)h, n∆t), w((i − 0.5)h, n∆t)),

where i = 1, · · · , Nx and n = 0, 1, · · · , Nt. We use a cell centered discretization. See
Fig. 6.1.

x1 x2 x
Nx−1

x
Nx· · · · · ·0 1

Figure 6.1. Cell centered grid

Neumann boundary condition is mx(0, t) = mx(1, t) = 0. Therefore we put the
m0 = m1 and mNx+1 = mNx as the boundary condition. The Crank-Nicolson scheme
is given as

mn+1 − mn

∆t
= −mn+1 + mn

2
× ∆h

mn+1 + mn

2
+ fn+ 1

2 , (6.5)
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where ∆h is the standard discretization of ∆:

∆hmi =
1

h2
(mi+1 − 2mi + mi−1).

Let Eh(mn) be the discrete energy defined by

Eh(mn) =
1

h

Nx∑

i=1

[(
un

i+1 − un
i

)2
+
(
vn
i+1 − vn

i

)2
+
(
wn

i+1 − wn
i

)2]

=
1

h

Nx∑

i=1

|mn
i+1 − mn

i |2.

We note that Cimrák in [56] established a weak convergence of the approximate solu-
tions to weak solutions of the Landau-Lifshitz equation.

6.2.2. Properties of the scheme. First, we show that the scheme (6.5) conserves
the magnitude of magnetization.

mn+1 − mn

∆t
= −mn+ 1

2 × ∆hm
n+ 1

2 . (6.6)

Taking an inner product of Eq. (6.6) with mn+1 + mn, we obtain

mn+1 − mn

∆t
· (mn+1 + mn) = −

(
mn+ 1

2 × ∆hm
n+ 1

2

)
· (mn+1 + mn) = 0,

hence

|mn+1|2 = |mn|2. (6.7)

Second, we show the discrete energy is conserved. Forming an inner product be-
tween Eq. (6.6) and ∆h(mn+1 + mn), we obtain

mn+1 − mn

∆t
· ∆h(mn+1 + mn) = −

(
mn+ 1

2 × ∆hm
n+ 1

2

)
· ∆h(mn+1 + mn) = 0.

It follows that

(mn+1 − mn) · ∆h(mn+1 + mn) = 0. (6.8)

Summation Eq. (6.8) over i = 1, · · · , Nx leads to

Nx∑

i=1

(mn+1
i − mn

i ) · ∆h(mn+1
i + mn

i ) = 0. (6.9)

Using Eq. (6.7) and periodic boundary condition, Eq. (6.9) becomes

Nx∑

i=1

(
2mn+1

i · mn+1
i+1 − 2mn

i ·mn
i+1

)
= 0. (6.10)
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Now, we get the following energy conservation:

E(mn+1) − E(mn)

=
1

h

Nx∑

i=1

(
|mn+1

i+1 − mn+1
i |2 − |mn

i+1 −mn
i |2
)

=
1

h

Nx∑

i=1

(
|mn+1

i+1 |2 − |mn
i+1|2 + |mn+1

i |2 − |mn
i |2 − 2mn+1

i · mn+1
i+1 + 2mn

i ·mn
i+1

)

= 0,

where we have used Eqs. (6.7) and (6.10).
Finally, we show that the truncation error of the scheme is second order in time

and space. Let u, v,w be the exact solution of the partial differential equation (6.1)
without a forcing term. Then, the local truncation error of the first component of the
equations is

T
n+ 1

2
i =

un+1
i − un

i

∆t
+
vn+1
i + vn

i

2
∆h

(
wn+1

i + wn
i

2

)

−w
n+1
i + wn

i

2
∆h

(
vn+1
i + vn

i

2

)

= (ut)
n+ 1

2
i +O(∆t2) + (v

n+ 1
2

i +O(∆t2))((wxx)
n+ 1

2
i +O(h2) +O(∆t2))

−(w
n+ 1

2
i +O(∆t2))((vxx)

n+ 1
2

i +O(h2) +O(∆t2))

= (ut + vwxx − wvxx)
n+ 1

2
i +O(h2) +O(∆t2).

Since u, v,w is the solution of the differential equation so

(ut + vwxx − wvxx)
n+ 1

2
i = 0.

Therefore the principal part of the local truncation error is

T
n+ 1

2
i = O(h2) +O(∆t2).

For the second and third components of the equations, we get same results.

6.2.3. Solving the nonlinear system - a nonlinear multigrid method.
Multigrid methods are generally accepted as among the fastest numerical methods
for solving this type of partial differential equations. Since the scheme (6.5) is nonlin-
ear, we use a nonlinear full approximation storage (FAS) multigrid method to solve the
nonlinear discrete system (6.5) at the implicit time level. A pointwise Gauss-Seidel re-
laxation scheme is used as the smoother in the multigrid method. See the reference text
[122] for additional details and background. The algorithm of the nonlinear multigrid
method for solving the discrete equation is : First, let us rewrite Eq. (6.5) as

N(mn+1) = φn, (6.11)

where the nonlinear system operator (N) is defined as

N(mn+1) = mn+1 +
∆t

2
(m× ∆hm)n+1
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and the source term is

φn = mn − ∆t

2
(m × ∆hm)n + ∆tfn+ 1

2 .

In the following description of one FAS cycle, we assume a sequence of grids Ωk (Ωk−1

is coarser than Ωk by factor 2). Given the number β of pre- and post-smoothing
relaxation sweeps, an iteration step for the nonlinear multigrid method using the V-
cycle is formally written as follows [122]:
FAS multigrid cycle

mm+1,k = FAScycle(k,mm,k , Nk,φ
n,k, β).

That is, mm,k and mm+1,k are the approximation of mn+1,k before and after an FAS-
cycle. If Ωk is the finest mesh and ‖mm+1,k − mm,k‖∞ < tol , then we let mn+1 =
mm+1,k. Now, we define the FAScycle.
Step 1) Presmoothing

m̄m,k = SMOOTHβ(mm,k, Nk,φ
n,k), (6.12)

which means performing β smoothing steps with the initial approximation mm,k, source
term φn,k, and SMOOTH relaxation operator to get the approximation m̄m,k. In its
component form, Eq. (6.11) becomes




un+1
i

vn+1
i

wn+1
i


+

∆t

2




vi∆hwi − wi∆hvi

wi∆hui − ui∆hwi

ui∆hvi − vi∆hui




n+1

= φn
i for i = 1, · · · , Nx. (6.13)

The main idea of the proposed scheme is a cancelation. Note that

vi∆hwi − wi∆hvi = vi
wi−1 − 2wi + wi+1

h2
− wi

vi−1 − 2vi + vi+1

h2

= vi
wi−1 + wi+1

h2
− wi

vi−1 + vi+1

h2

= vi∆̃hwi − wi∆̃hvi for i = 1, · · · , Nx, (6.14)

where ∆̃hwi = (wi−1 + wi+1)/h
2. Similarly, we have

wi∆hui − ui∆hwi = wi∆̃hui − ui∆̃hwi, (6.15)

ui∆hvi − vi∆hui = ui∆̃hvi − vi∆̃hui. (6.16)

This cancelation stabilizes the scheme. By Eqs. (6.14), (6.15), and (6.16) we rewrite
the above equation.

Ai




un+1
i

vn+1
i

wn+1
i


 =




αi

βi

γi


 ,

where

Ai =




1 ∆t
2 ∆̃hw

n+1
i −∆t

2 ∆̃hv
n+1
i

−∆t
2 ∆̃hw

n+1
i 1 ∆t

2 ∆̃hu
n+1
i

∆t
2 ∆̃hv

n+1
i −∆t

2 ∆̃hu
n+1
i 1


 =




1 c −b
−c 1 a
b −a 1



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and (αi, βi, γi)
T is the right hand side term in Eq. (6.13). Then using Cramer’s rule,

we obtain

(un+1
i , vn+1

i , wn+1
i ) = 1/|Ai|(|Ai,1|, |Ai,2|, |Ai,3|), i = 1, · · · , Nx

where Ai,j is obtained by replacing the jth column of Ai with (αi, βi, γi)
T .

|Ai| = 1 + a2 + b2 + c2,

|Ai,1| = αi(1 + a2) − βi(c− ab) + γi(ac+ b),

|Ai,2| = αi(ab+ c) + βi(1 + b2) − γi(a− bc),

|Ai,3| = αi(ac− b) + βi(a+ bc) + γi(1 + c2).

We can rewrite Eq. (6.11) as a matrix form:



1 c −b
−c 1 a
b −a 1


mn+1

i = φn
i , (6.17)

where a =
∆t

2
∆̃hu

n+1
i , b =

∆t

2
∆̃hv

n+1
i , and c =

∆t

2
∆̃hw

n+1
i .

To derive a Gauss-Seidel type iteration, we replace mn+1
α in the Eq. (6.17) with m̄m,k

α

if α ≤ i, otherwise with mm,k
α , i.e.,



1 c −b
−c 1 a
b −a 1


 m̄m,k

i = φn
i , (6.18)

where

a =
∆t

2

ūm,k
i−1,j + um,k

i+1,j

h2
, b =

∆t

2

v̄m,k
i−1,j + vm,k

i+1,j

h2
, c =

∆t

2

w̄m,k
i−1,j + wm,k

i+1,j

h2
.

Step 2) Coarse grid correction

• Compute the defect: d̄
m,k

= φn,k −Nk(m̄
m,k).

• Restrict the defect and m̄m,k: d̄
m,k−1

= Ik−1
k (d̄

m,k
), m̄m,k−1 = Ik−1

k (m̄m,k).

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1

4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

• Compute the right-hand side: φn,k−1 = d̄
m,k−1

+Nk−1(m̄
m,k−1).

• Compute an approximate solution m̂m,k−1 of the coarse grid equation on Ωk−1,
i.e.

Nk−1(m
m,k−1) = φn,k−1. (6.19)

If k = 1, we apply the smoothing procedure in (6.12) to obtain the approximate solution.
If k > 1, we solve (6.19) by performing a FAS k-grid cycle using m̄m,k−1 as an initial
approximation:

m̂m,k−1 = FAScycle(k − 1, m̄m,k−1, Nk−1,φ
n,k−1, β).
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• Compute the coarse grid correction (CGC): v̂m,k−1 = m̂m,k−1 − m̄m,k−1.

• Interpolate the correction: v̂m,k = Ik
k−1v̂

m,k−1.

• Compute the corrected approximation on Ωk: mm,after CGC,k = m̄m,k+v̂m,k. Step

3) Postsmoothing: mm+1,k = SMOOTHβ(mm, after CGC,k, Nk,φ
n,k). This completes

the description of a nonlinear FAScycle. After we get a solution after one FAScycle,
using an updated source term, we repeatedly perform iterations until the numerical
solution converges.

Now we consider the scheme with no cancelation. We rewrite the equation (6.13).

Ai




un+1
i

vn+1
i

wn+1
i


 = φn

i for i = 1, · · · , Nx.

To discuss the stability of the Crank-Nicolson scheme, we compute the charateristic
polynomial of Ai.

det(Ai − λI) = (1 − λ)3 + (1 − λ)(a2 + b2 + c2).

The three eigenvalues of Ai are

λ1 = 1, λ2 = 1 + i
√
a2 + b2 + c2, and λ3 = 1 − i

√
a2 + b2 + c2.

Thus, the three eigenvalues of A−1
i are

γ1 = 1/λ1, γ2 = 1/λ2, and γ3 = 1/λ3.

The absolute values of three eigenvalues of A−1
i are

|γ1| = 1, |γ2| = |γ3| =
1√

1 + a2 + b2 + c2
≤ 1.

Without cancelation, a, b, and c are small compared to 1, on the other hand, with
cancelation a2 + b2 + c2 ≈ O(1/h4). Therefore, 1/

√
1 + a2 + b2 + c2 ≈ O(h2) ≪ 1 and

this makes the iterations stable.

6.3. Numerical results

In this section we perform numerical experiments with exact solutions to verify the
second-order accuracy of the proposed scheme in time and space. Without the forcing
term, we also show the energy conservation property.

6.3.1. One space dimension.
6.3.1.1. Convergence test. We consider one-dimensional Landau-Lifshitz equation

with a source:

mt = −m× mxx + f on Ω = (0, 1). (6.20)

An exact solution of Eq. (6.20) is

me =




ue

ve

we


 =




cos(x2(1 − x)2) sin(t)
sin(x2(1 − x)2) sin(t)

cos(t)


 .
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In its component form, the forcing term f = me
t + me × me

xx can be calculated as
follows.

f =




cos(X) cos(t) + [(X ′)2 sin(X) −X ′′ cos(X)] sin(t) cos(t)
sin(X) cos(t) − [(X ′)2 cos(X) +X ′′ sin(X)] sin(t) cos(t)

− sin(t) +X ′′ sin2(t)


 ,

where X = x2(1−x)2. Now, we will solve Eq. (6.20) with an initial condition m(x, 0) =
(0, 0, 1) and zero Neumann boundary condition; i.e., mx = 0 at ∂Ω = {0, 1}. We
define the numerical error en

i = mn
i − me(xi, t

n) for i = 1, 2, · · · , Nx. The discrete
l2-norm and the maximum norm are defined as

‖en‖l2 =

√ ∑

1≤i≤Nx

en
i · en

i

3Nx
and ‖en‖∞ = max

1≤i≤Nx

√
en

i · en
i .
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Figure 6.2. Magnetization distribution for one dimensional equation:
(a) u, (b) v, (c) w, and (d) m at T = 1.

To obtain an estimate of the convergence rate, we performed a number of simu-
lations on a set of increasingly finer grids. We computed the numerical solutions on



6.3. NUMERICAL RESULTS 59

uniform grids, h = 1/2n for n = 6, 7, 8, 9, and 10. For each case, we ran the calculation
to time T = 1 with a time step ∆t = 0.32h. Fig. 6.2 shows the numerical results for
the one dimensional equation: (a) u, (b) v, (c) w, and (d) m at T = 1. The numerical
results agree very well with the exact solution. The errors and rates of convergence are
given in Table 6.1. The results suggest that the scheme is indeed second-order accurate
in space and time. Also, the convergence results imply the preservation of the length
of the vector field, m.

case 64 rate 128 rate 256 rate 512 rate 1024
‖en‖l2 6.5E-5 1.99 1.6E-5 1.99 4.1E-6 2.00 1.0E-6 2.00 2.5E-7
‖en‖∞ 1.1E-4 1.99 2.7E-5 1.99 6.7E-6 2.00 1.7E-6 1.99 4.2E-7
Table 6.1. The l2 and maximum norms and convergence rates with
space step h = 1/Nx, time step ∆t = 0.32h, total time T = 1, and an
iteration convergence tolerance of 10−10.

We calculate the stability constraint for the proposed scheme and take a similar
test problem in [62]. We try to find the maximum ∆t corresponding to different spatial
grid sizes h so that stable solutions can be computed up to T = 1. The results are
shown in Table 6.2 and we obtain stable solutions for all five mesh sizes. The results
indicate that the proposed CN scheme is practically unconditionally stable because
time step constraint from accuracy concern is more restrictive than one from stability
of the numerical scheme.

mesh size h = 1/64 h = 1/128 h = 1/256 h = 1/512 h = 1/1024
time step ∆t ≥ h ∆t ≥ h ∆t ≥ h ∆t ≥ h ∆t ≥ h

Table 6.2. Stability constraint of ∆t for the proposed scheme.

6.3.1.2. Energy conservation. Next, we investigate the energy conservation prop-
erty when f ≡ 0. An exact solution of the equation is

ue(x, t) = sin(α) cos(kx+ tk2 cos(α)),

ve(x, t) = sin(α) sin(kx+ tk2 cos(α)),

we(x, t) = cos(α).

We see that the function m(x, t) = (ue(x, t), ve(x, t), we(x, t)) satisfies the Eq. (6.1).
Now we apply an initial condition to the Eq. (6.1)

(u0, v0, w0) = (sin(α) cos(kx), sin(α) sin(kx), cos(α)),

where α = π/4, k = 2π, and a periodic boundary condition is applied; i.e., m0 = mNx

and mNx+1 = m1.
Theoretically, this energy is constant irrespective of time. Now we confirm that

numerically. Fig. 6.3 shows a numerical result for the evolution of the discrete energy
up to time T = 1 by the proposed scheme withNx = 64, h = 1/Nx, and ∆t = 0.32h. We
can see that the conservation of energy holds. Fig. 6.4 shows magnetization distribution
for one dimensional equation:(a) u, (b) v, (c) w, and (d) m at T = 1 without forcing
term and periodic boundary condition.
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Figure 6.3. A temporal evolution of the discrete energy of the numer-
ical solution.

We also calculated the rate of convergence. The errors and rates of convergence are
given in Table 6.3. The results suggest that the scheme is indeed second-order accurate
in space and time.

case 64 rate 128 rate 256 rate 512 rate 1024
‖en‖l2 3.2E-2 1.99 8.0E-3 1.99 2.0E-3 1.99 5.0E-4 1.99 1.2E-4
‖en‖∞ 5.5E-2 1.99 1.4E-2 1.99 3.5E-3 1.99 8.6E-4 1.99 2.2E-4
Table 6.3. The l2 and maximum norms and convergence rates with
space step h = 1/Nx, time step ∆t = 0.32h, total time T = 1, and an
iteration convergence tolerance of 10−10.

6.3.2. Two space dimensions. In this section we perform two-dimensional nu-
merical experiments with exact solutions to verify the second-order accuracy of the
proposed scheme in time and space. Without the forcing term, we also show the energy
conservation property.

6.3.2.1. Convergence test. The two-dimensional equation on Ω = (0, 1)×(0, 1) with
zero Neumann boundary conditions is considered. An exact solution is

me =




ue

ve

we


 =




cos(x2(1 − x)2y2(1 − y)2) sin(t)
sin(x2(1 − x)2y2(1 − y)2) sin(t)

cos(t)


 .
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Figure 6.4. Magnetization distribution for one dimensional equa-
tion:(a) u, (b) v, (c) w, and (d) m at T = 1 without forcing term
and periodic boundary condition.

The forcing term f = (f1, f2, f3) = me
t + me × ∆me can be calculated as follows.

f1 = cos(XY ) cos(t)

+[(Y 2(X ′)2 +X2(Y ′)2) sin(XY ) − (Y X ′′ +XY ′′) cos(XY )] sin(t) cos(t),

f2 = sin(XY ) cos(t)

−[(Y 2(X ′)2 +X2(Y ′)2) cos(XY ) + (Y X ′′ +XY ′′) sin(XY )] sin(t) cos(t),

f3 = − sin(t) + (Y X ′′ +XY ′′) sin2(t),

where X = x2(1 − x)2, Y = y2(1 − y)2, and prime denotes a derivative of functions
with respect to its argument variable. Now, we will solve the following equation with
an initial condition m(x, y, 0) = (0, 0, 1).

mt = −m× (mxx + myy) + f (6.21)
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with zero Neumann boundary condition

mx(0, y, t) = mx(1, y, t) = my(x, 0, t) = my(x, 1, t) = 0.

We let en
ij = mn

ij − me(xi, yj , t
n) for i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny. The

discrete l2-norm and the maximum norm are defined as

‖en‖l2 =

√√√√
∑

1≤i≤Nx

∑

1≤j≤Ny

en
ij · en

ij

3NxNy
and ‖en‖∞ = max

1≤i≤Nx

max
1≤j≤Ny

√
en

ij · en
ij.

We performed a number of simulations on a set of increasingly finer grids to calculate
the rate of convergence. The results are shown in Table 6.4. The l2 and the maximum
norms and convergence rates for m of CN scheme with space step h = 1/Nx, time step
∆t = 0.32h, total time T = 0.01, α = π/24, and an iteration convergence tolerance of
10−10. The results suggest that the scheme is indeed second-order accurate in space
and time.

case 642 rate 1282 rate 2562 rate 5122 rate 10242

‖en‖l2 6.6E-9 1.99 1.6E-9 1.99 4.1E-10 1.99 1.0E-10 2.00 2.6E-11
‖en‖∞ 1.3E-8 1.99 3.4E-9 1.98 8.4E-10 2.00 2.1E-10 2.00 5.3E-11

Table 6.4. The l2 and the maximum norms and convergence rates for
m of CN scheme with space step h = 1/Nx, time step ∆t = 0.32h, total
time T = 0.01, and an iteration convergence tolerance of 10−10.

6.3.2.2. Energy conservation. We consider Eq. (6.1) in its component form with
the source term f ≡ 0 on the two-dimensional unit domain. An exact solution of the
equation is

ue(x, y, t) = sin(α) cos(k(x+ y) + 2tk2 cos(α)),

ve(x, y, t) = sin(α) sin(k(x+ y) + 2tk2 cos(α)),

we(x, y, t) = cos(α),

where α = π/24, k = 2π. We see that the function m(x, y, t) = (ue(x, y, t), ve(x, y, t), we(x, y, t))
satisfies the Eq. (6.1). Now we apply an initial conditions to Eq. (6.1)

(u0, v0, w0) = (sin(α) cos(k(x+ y)), sin(α) sin(k(x+ y)), cos(α))

and a periodic boundary condition is applied; i.e.,

m0,j = mNx,j, mNx+1,j = m1,j for 1 ≤ j ≤ Ny,

mi,0 = mi,Ny , mi,Ny+1 = mi,1 for 1 ≤ i ≤ Nx.

Table 6.5 shows the l2 and maximum norms and convergence rates with space step
h = 1/Nx, time step ∆t = 0.32h, total time T = 0.01, α = π/24, and an iteration
convergence tolerance of 10−10. The results suggest that the scheme is second-order
accurate in space and time.

Fig. 6.5 shows the orthogonal projection of the vector field 0.1m of the numerical
solution onto the xy plane at (a) T = 0 and (b) T = 0.1. We observe that the solution
at T = 0.1 is a translation of the initial configuration without changing its magnitude.
Here we scaled m as 0.1m for a visual clarity.
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case 642 rate 1282 rate 2562 rate 5122 rate 10242

‖en‖l2 7.8E-4 1.97 2.0E-4 1.99 5.0E-5 1.99 1.3E-5 1.99 3.1E-6
‖en‖∞ 1.4E-3 1.97 3.4E-4 1.99 8.7E-5 1.99 2.2E-5 1.99 5.4E-6
Table 6.5. The l2 and maximum norms and convergence rates with
space step h = 1/Nx, time step ∆t = 0.32h, total time T = 0.01, α =
π/24, and an iteration convergence tolerance of 10−10.
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Figure 6.5. 2D Landau-Lifshitz equation with periodic boundary con-
dition. (a) initial vector field (b) the numerical solution at T = 0.1.

Next, we test an energy conservation property. We define a discrete energy as

E(mn) =
Nx∑

i=1

Ny∑

j=1

[(
un

i+1,j − un
ij

)2
+
(
vn
i+1,j − vn

ij

)2
+
(
wn

i+1,j − wn
ij

)2

+
(
un

i,j+1 − un
ij

)2
+
(
vn
i,j+1 − vn

ij

)2
+
(
wn

i,j+1 − wn
ij

)2]
.

Theoretically, this energy is constant irrespective of time. Now we confirm that numer-
ically. Fig. 6.6 shows the time evolution of the energy E(mn) with Nx = Ny = 64, h =
1/Nx, ∆t = 0.32h, T = 0.01, and α = π/24. As expected from (6.4), the energy is
constant throughout the evolution.
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Figure 6.6. A temporal evolution of the discrete energy of the numer-
ical solution.

6.4. Conclusion

In this Chapter, we have proposed a Crank-Nicolson time-stepping procedure for
LL equation which has a second-order convergence in time and space. We overcame the
difficulties with CN scheme associated with LL equation by a cancelation. We used a
nonlinear multigrid method for handling the nonlinearities of the discrete system at each
time step. We validated our numerical algorithm by various numerical experiments. We
tested the second-order convergence and an energy conservation of the proposed scheme.
We also showed that the time step restriction for the stability is less restrictive than
the accuracy. As future research, the full version of Landau-Liftshitz equation will be
investigated.

This chapter is published in Journal of Computational and Applied
Mathematics, Vol. 234, pp. 613-623, (2010).
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Chapter 7

An accurate and efficient numerical method for

Black-Scholes model

We present an efficient and accurate finite-difference method for computing Black-
Scholes partial differential equations with multi-underlying assets. We directly solve
Black-Scholes equations without transformations of variables. We provide computa-
tional results showing the performance of the method for two underlying asset option
pricing problems.

7.1. Introduction

Black and Scholes [85], and Merton [75] derived a parabolic second order partial
differential equation (PDE) for the value u(s, t) of an option on stocks. We propose
a finite difference method to solve the generalized multi-asset Black-Scholes PDE. Let
si, i = 1, 2, ..., n denote the price of the underlying i-th asset and u(s1, s2, ..., sn, t)
denote the value of the option. The prices si of the underlying assets are described by
geometric Brownian motions

dsi = µisidt+ σisidWi, i = 1, 2, ..., n,

where µi and σi denote a constant expected rate of return and a constant volatility of
the i-th asset, respectively. Here, Wi is the standard Brownian motion. Let ρij denote
the correlation coefficient between two Brownian motions Wi and Wj where

dWidWj = ρijdt, i, j = 1, 2, ..., n, i 6= j.

Then, the no arbitrage principle leads to the following generalized n-asset Black-Scholes
equation [63, 65, 95]:

∂u(s, t)

∂t
+

1

2

n∑

i,j=1

σiσjρijsisj
∂2u(s, t)

∂si∂sj
+ r

n∑

i=1

si
∂u(s, t)

∂si
= ru(s, t), (7.1)

for (s, t) = (s1, s2, . . . , sn, t) ∈ Rn
+ × [0, T )

where r > 0 is a constant riskless interest rate. The final condition is the payoff function
uT (s) at expiry T

u(s, T ) = uT (s). (7.2)

The analytic solutions of Eqs. (7.1) and (7.2) for exotic options are very limited.
Therefore, we need to rely on a numerical approximation. To obtain an approximation
of the option value, we can compute a solution of Black-Scholes PDEs (7.1) and (7.2)
using a finite difference method (FDM) [86, 92, 93, 94, 95].

We apply the FDM to the equation over a truncated finite domain. The original
asymptotic infinite boundary conditions are shifted to the ends of the truncated finite
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domain. To avoid generating large errors in the solution due to this approximation of
the boundary conditions, the truncated domain must be large enough resulting in large
computational costs. The purpose of our work is to propose an efficient and accurate
FDM to directly solve the Black-Scholes PDEs (7.1) and (7.2) without transformations
of variables.

The outline of this Chapter is the following. In Sec. 7.2 we formulate the Black-
Scholes (BS) partial differential equation with two underlying assets. In Sec. 7.3, we
focus on the details of a multigrid solver for the BS equation. In Sec. 7.4, we present
the results of numerical experiments. We draw conclusions in Sec. 7.5.

7.2. The Black-Scholes model

We use a Black-Scholes model with two underlying assets to keep this presentation
simple. However, we can easily extend the current method for more than two underlying
assets. Let us consider the computational domain Ω = (0, L)×(0,M) for the two assets
case. Let x = s1 and y = s2. Then from the change of variable τ = T − t, we obtain
an initial value problem:

∂u

∂τ
=

1

2
(σ1x)

2 ∂
2u

∂x2
+

1

2
(σ2y)

2∂
2u

∂y2
+ σ1σ2ρxy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru, (7.3)

with (x, y, τ) ∈ Ω × (0, T ] and an initial condition u(x, y, 0) = uT (x, y) for (x, y) ∈ Ω.
There are several possible boundary conditions such as Neumann [86, 64], Dirichlet,
linear, and PDE [86, 94] that can be used for these kinds of problems. In this work, we
use a linear boundary condition on all boundaries, i.e.,

∂2u

∂x2
(0, y, τ) =

∂2u

∂x2
(L, y, τ) =

∂2u

∂y2
(x, 0, τ) =

∂2u

∂y2
(x,M, τ) = 0,

∀τ ∈ [0, T ], for 0 ≤ x ≤ L, 0 ≤ y ≤M.

7.3. A numerical solution

7.3.1. Discretization with finite differences. A finite difference method is a
common numerical method that has been used by many researchers in computational
finance. For an introduction to these methods we recommend the books [86, 92, 93, 94,
95]. They all introduce the concept of finite differences for option pricing and provide
basic knowledge needed for a simple implementation of the method. An approach for
the Black-Scholes option problem is to use an efficient solver such as the Bi-CGSTAB
(Biconjugate gradient stabilized) method [66, 77, 79], GMRES (Generalized minimal
residual algorithm) method [91, 76], ADI (Alternating direction implicit) method [81,
86], and the OS (Operator splitting) method [86, 69].

Let us first discretize the given computational domain Ω = (0, L) × (0,M) as a
uniform grid with a space step h = L/Nx = M/Ny and a time step ∆t = T/Nt. Let us
denote the numerical approximation of the solution by

un
ij ≡ u(xi, yj, t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx and j = 1, . . . , Ny. We use a cell centered discretization since we
use a linear boundary condition. By applying the implicit time scheme and centered
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difference for space derivatives to Eq. (7.3), we have

un+1
ij − un

ij

∆t
= LBSu

n+1
ij , (7.4)

where the discrete difference operator LBS is defined by

LBSu
n+1
ij =

(σ1xi)
2

2

un+1
i−1,j − 2un+1

ij + un+1
i+1,j

h2

+
(σ2yj)

2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2

+σ1σ2ρxiyj

un+1
i+1,j+1 + un+1

i−1,j−1 − un+1
i−1,j+1 − un+1

i+1,j−1

4h2

+rxi

un+1
i+1,j − un+1

i−1,j

2h
+ ryj

un+1
i,j+1 − un+1

i,j−1

2h
− run+1

ij .

7.3.2. A multigrid method. Multigrid methods belong to the class of fastest
iterations, because their convergence rate is independent of the space step size [115]. In
order to explain clearly the steps taken during a single V-cycle, we focus on a numerical
solution on a 16 × 16 mesh. We define discrete domains, Ω3, Ω2, Ω1, and Ω0, where

Ωk = {(xk,i = (i− 0.5)hk , yk,j = (j − 0.5)hk)|1 ≤ i, j ≤ 2k+1 and hk = 23−kh}.
Ωk−1 is coarser than Ωk by a factor of 2. The multigrid solution of the discrete BS Eq.
(7.4) makes use of a hierarchy of meshes (Ω3, Ω2, Ω1, and Ω0) created by successively
coarsening the original mesh, Ω3 as shown in Fig. 7.1. A pointwise Gauss-Seidel
relaxation scheme is used as the smoother in the multigrid method. We use a notation
un

k as a numerical solution on the discrete domain Ωk at time t = n∆t. The algorithm
of the multigrid method for solving the discrete BS Eq. (7.4) is as follows. We rewrite
the above Eq. (7.4) by

L3(u
n+1
3,ij ) = φn

3,ij on Ω3, (7.5)

where

L3(u
n+1
3,ij ) = un+1

3,ij − ∆tLBS3u
n+1
3,ij and φn

3,ij = un
3,ij.

Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation sweeps, an
iteration step for the multigrid method using the V-cycle is formally written as follows
[122]. That is, starting an initial condition u0

3, we want to find un
3 for n = 1, 2, · · · .

Given un
3 , we want to find the un+1

3 solution that satisfies Eq. (7.4). At the very
beginning of the multigrid cycle the solution from the previous time step is used to
provide an initial guess for the multigrid procedure. First, let un+1,0

3 = un
3 .

Multigrid cycle

un+1,m+1
k = MGcycle(k, un+1,m

k , Lk, φ
n
k , ν1, ν2).

That is, un+1,m
k and un+1,m+1

k are the approximations of un+1
k before and after an MG-

cycle. Now, define the MGcycle.
Step 1) Presmoothing

ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, φ
n
k ),
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(a) Ω3 (16 × 16) h

(c) Ω1 (4 × 4) 4h

(b) Ω2 (8 × 8) 2h

(d) Ω0 (2 × 2) 8h (e)

Figure 7.1. (a), (b), (c), and (d) are a sequence of coarse grids starting
with h = L/Nx. (e) is a composition of grids, Ω3, Ω2, Ω1, and Ω0.

means performing ν1 smoothing steps with the initial approximation un+1,m
k , source

terms φn
k , and a SMOOTH relaxation operator to get the approximation ūn+1,m

k .
Here, we derive the smoothing operator in two dimensions.

Now we derive a Gauss-Seidel relaxation operator. First, we rewrite Eq. (7.5) as

un+1
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)

2

2

un+1
k,i−1,j + un+1

k,i+1,j

h2
k

+
(σ2yk,j)

2

2

un+1
k,i,j−1 + un+1

k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1
k,i+1,j+1 + un+1

k,i−1,j−1 − un+1
k,i−1,j+1 − un+1

k,i+1,j−1

4h2
k

+ rxk,i

un+1
k,i+1,j − un+1

k,i−1,j

2hk
+ ryk,j

un+1
k,i,j+1 − un+1

k,i,j−1

2hk

)]/

[
1 + ∆t

(
(σ1xk,i)

2 + (σ2yk,j)
2

h2
k

+ r

)]
. (7.6)

Next, we replace un+1
k,αβ in Eq. (7.6) with ūn+1,m

k,αβ if (α < i) or (α = i and β ≤ j),

otherwise with un+1,m
k,αβ , i.e.,
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ūn+1,m
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)

2

2

ūn+1,m
k,i−1,j + un+1,m

k,i+1,j

h2
k

+
(σ2yk,j)

2

2

ūn+1,m
k,i,j−1 + un+1,m

k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1,m
k,i+1,j+1 + ūn+1,m

k,i−1,j−1 − ūn+1,m
k,i−1,j+1 − un+1,m

k,i+1,j−1

4h2
k

+ rxk,i

un+1,m
k,i+1,j − ūn+1,m

k,i−1,j

2hk
+ ryk,j

un+1,m
i,j+1 − ūn+1,m

k,i,j−1

2hk

)]
/

[
1 + ∆t

(
(σ1xk,i)

2 + (σ2yk,j)
2

h2
k

+ r

)]
. (7.7)

Therefore, in a multigrid cycle, one smooth relaxation operator step consists of
solving Eq. (7.7) given above for 1 ≤ i ≤ 2k−3Nx and 1 ≤ j ≤ 2k−3Ny. Step 2) Coarse
grid correction

• Compute the defect: d̄m
k = φn

k − Lk(ū
n+1,m
k ).

• Restrict the defect and ūm
k : d̄m

k−1 = Ik−1
k d̄m

k

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions as

shown in Fig. 7.2(a).

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1

4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

(a) (b)

Figure 7.2. Transfer operators : (a) restriction and (b) interpolation.

• Compute an approximate solution ûn+1,m
k−1 of the coarse grid equation on Ωk−1,

i.e.

Lk−1(u
n+1,m
k−1 ) = d̄m

k−1. (7.8)



7.4. COMPUTATIONAL RESULTS 70

If k = 1, we use a direct or fast iteration solver for Eq. (7.8). If k > 1, we solve
Eq. (7.8) approximately by performing k-grid cycles using the zero grid function as an
initial approximation:

v̂n+1,m
k−1 = MGcycle(k − 1, 0, Lk−1, d̄

m
k−1, ν1, ν2).

• Interpolate the correction: v̂n+1,m
k = Ik

k−1v̂
n+1,m
k−1 . Here, the coarse values are

simply transferred to the four nearby fine grid points as shown in Fig. 7.2(b), i.e.
vk(xi, yj) = Ik

k−1vk−1(xi, yj) = vk−1(xi+ 1
2
, yj+ 1

2
) for the i and j odd-numbered integers.

• Compute the corrected approximation on Ωk

um, after CGC
k = ūn+1,m

k + v̂n+1,m
k .

Step 3) Postsmoothing: un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, φ
n
k ).

This completes the description of a MGcycle. An illustration of the corresponding
two-grid cycle is given in Fig. 7.3. For the multi-grid V-cycle, it is given in Fig. 9.4.

smooth
ν1

un+1,m
k ūn+1,m

k

d̄m
k = φn

k −Lk(ūn+1,m
k )

Restrict(Ik−1

k )

d̄m
k−1 = Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1)

v̂n+1,m
k = Ik

k−1v̂
n+1,m
k−1

un+1,m+1

k

smooth
ν2

um,afterCGC
k

= ūn+1,m
k + v̂n+1,m

k

Figure 7.3. The MG (k, k − 1) two-grid method.

7.4. Computational results

In this section, we perform a convergence test of the scheme and present several
numerical experiments. Two-asset cash or nothing options can be useful building blocks
for constructing more complex exotic option products. Let us consider a two-asset cash
or nothing call option. This option pays out a fixed cash amount K if asset one, x, is
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Ω3, h

Ω2, 2h

Ω1, 4h

Ω0, 8h

Figure 7.4. Schedule of grids for V-cycle.

above the strike X1 and asset two, y, is above strike X2 at expiration. The payoff is
given by

u(x, y, 0) =

{
K if x ≥ X1 and y ≥ X2,
0 otherwise .

(7.9)

The formula for the exact value is known in [87] by

u(x, y, T ) = Ke−rTM(α, β; ρ), (7.10)

where

α =
ln(x/K1)+(r−σ2

1/2)T

σ1

√
T

, β =
ln(y/K2)+(r−σ2

2/2)T

σ2

√
T

.

Here, M(α, β; ρ) denotes a standardized cumulative normal function where one random
variable is less than α and a second random variable is less than β. The correlation
between the two variables is ρ:

M(α, β; ρ) =
1

2π
√

1 − ρ2

∫ α

−∞

∫ β

−∞
exp

[
−x

2 − 2ρxy + y2

2(1 − ρ2)

]
dxdy. (7.11)

The MATLAB code for the closed form solution of a two-asset cash or nothing call
option is given as following.

L=300; K=1; T=0.1; r=0.03; sigma1=0.5; sigma2=0.5; rho=0.5;
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N=64; h=L/N; S=linspace(h/2,L-h/2,N); VE=zeros(N,N); mu=[0 0];

for i=1:N

for j=1:N

y1 = (log(S(i)/K)+(b1-sigma1^2/2)*T)/(sigma1*sqrt(T));

y2 = (log(S(j)/K)+(b2-sigma2^2/2)*T)/(sigma2*sqrt(T));

X = [y1 y2];

cov = [1 rho; rho 1];

M = mvncdf(X,mu,cov);

V(i,j) = K*exp(-r*T)*M;

end

end

[X, Y] = meshgrid(S); surf(X, Y, V)

7.4.1. Convergence test. To obtain an estimate of the rate of convergence, we
performed a number of simulations for a sample initial problem on a set of increasingly
finer grids. We considered a domain, Ω = [0, 300]×[0, 300]. We computed the numerical
solutions on uniform grids, h = 300/2n for n = 5, 6, 7, and 8. For each case, we ran
the calculation to time T = 0.1 with a uniform time step depending on a mesh size,
∆t = 0.032/2n. The initial condition is Eq. (7.9) with K = 1 and X1 = X2 = 100.
The volatilities are σ1 = 0.5 and σ2 = 0.5. The correlation is ρ = 0.5, and the riskless
interest rate is r = 0.03. Figs. 7.5 (a) and (b) show the initial configuration and final
profile at T , respectively.
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Figure 7.5. (a) The initial condition and (b) numerical result at T = 0.1.

We let e be the error matrix with components eij = u(xi, yj) − uij. u(xi, yj) is
the analytic solution of Eq. (9.15) and uij is the numerical solution. We compute its
discrete L2 norm ‖e‖2 is defined
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‖e‖2 =

√√√√ 1

NxNy

Nx∑

i=1

Ny∑

j=1

e2ij .

The errors and rates of convergence are given in Table 7.1. The results show that
the scheme is first-order accurate.

Table 7.1. The L2 norms of errors and convergence rates for u at time
T = 0.1.

Case 32 × 32 rate 64 × 64 rate 128 × 128 rate 256 × 256

‖e‖2 0.028161 0.95 0.014562 1.07 0.006928 0.96 0.003572

7.4.2. Multigrid performance. We investigated the convergence behavior of our
MG method, especially mesh independence. The test problem was that of a two-asset
cash or nothing call option with the convergence test parameter set. The average
number of iterations per time step (see Fig. 7.6) and the CPU-time in seconds required
for a solution to an identical convergence tolerance are displayed in Table 7.2. Although
the number of multigrid iterations for convergence at each time step slowly increased as
the mesh was refined, from a practical viewpoint, it was essentially grid independent.

7.5. Conclusions

In this paper, we focused on the performance of a multigrid method for option
pricing problems. The numerical results showed that the total computational cost was
proportional to the number of grid points. The convergence test showed that the scheme
was first-order accurate since we used an implicit Euler method. In a forthcoming paper,
we will investigate a switching grid method, which uses a fine mesh when the solution
is not smooth and otherwise uses a coarse mesh.

This chapter is published in Communications of the Korean Mathemat-
ical Society, Vol. 24, No. 4, pp. 617-628, (2009).

Mesh Average iterations per time step CPU(s)
32 × 32 1.00 0.141
64 × 64 1.00 0.579

128 × 128 2.00 2.594
256 × 256 2.24 13.093

Table 7.2. Grid independence with an iteration convergence tolerance
of 10−5, T = 0.1 and ∆t = 0.001.
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Figure 7.6. Number of V-cycles.
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Chapter 8

Comparison of numerical methods (Bi-CGSTAB, OS, and

MG) for 2D Black-Scholes equations

In this Chapter, we perform comparison of numerical methods for two-dimensional
Black-Scholes equations obtained from stock option pricing. The finite difference meth-
ods are applied and the resulting linear system is solved by biconjugate gradient stabi-
lized, operator splitting, and multigrid methods. The performance of these methods is
compared for two asset option problems based on two-dimensional Black-Scholes equa-
tions. Numerical results show that the operator splitting method is the most efficient
among these solvers to get the same level of accuracy.

8.1. Introduction

Black and Sholes [85] and Merton [75] derived a Black-Scholes partial differential
equation for the valuation of an European option under the no-arbitrage assumption as
well as the assumption that the price of its underlyings have log-normal distributions.
As the financial market gets complex and diverse, there have been various types of
exotic options in the market. Because it is not always possible to find the solution of
the Black-Scholes equation with the exotic terminal and the boundary conditions, it is
necessary to apply numerical methods to obtain the values of exotic options.

The finite difference methods (FDM) are very popular to approximate the solution
of Black-Scholes equations (B-S), see the general settings in option pricing [82, 86,
71, 72, 73, 92, 94, 95]. The FDM converts the differential equations into a system
of difference equations. There have been introduced different approaches for efficient
computations of the resulting linear systems, such as biconjugate gradient stabilized
(Bi-CGSTAB) [70, 77, 79], operator splitting (OS) [69], and multigrid (MG) [67, 115,
78, 80] methods. These solvers have been successively used in many applications such
as physics, fluid dynamics, electromagnetics, and biomedical engineering.

For different types of problems, different system solvers gain advantages over the
other methods, see [77]. Therefore in this work, we compare the performance of the
solvers, Bi-CGSTAB, OSM, and multigrid methods, for two-dimensional Black-Scholes
equations obtained from option pricing in finance. There have been other system
solvers, such as ADI (Alternating Direction Method) [81], GMRES (Generalized Mini-
mum Residual) [76], however we omit the comparison in this work since GMRES and
ADI methods are similar to Bi-CGSTAB and OS methods, respectively.

The outline of the Chapter is as follows. In Section 8.2 we first set up the problem
to price stock options. In Section 8.3 we describe the general setting of numerical
strategies and explain different solvers of linear system. In Section 8.4 we show the
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comparison of the numerical experiments between the solvers and the conclusions are
drawn in Section 8.5.

8.2. Black-Scholes Equations

∂V

∂t
+

n∑

i=1

rsi
∂V

∂si
+

1

2

n∑

i=1

n∑

j=1

σ2
ijρijsisj

∂2V

∂si∂sj
− rV = 0. (8.1)

8.3. Numerical methods

8.3.1. Finite difference methods. A finite difference method approximates deriva-
tives by difference operators. FDM is a common numerical method that has been used
in many application areas including finance, see [86, 92, 94, 93, 95] for a general frame-
work of FDM for option pricing.

Let us first discretize the given computational domain Ω = (0, L) × (0,M) as a
uniform grid with a space step h = L/Nx = M/Ny and a time step ∆t = T/Nt. Here,
Nx and Ny are the numerber of grid points, and Nt is the total number of time steps.
Let us denote the numerical approximation of the solution by

Un
ij = U(xi, yj, tn) ≈ u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and n = 0, 1, . . . , Nt. The discrete difference
operator LBS is defined by

LBSU
n+1
ij =

(σ1xi)
2

2

Un+1
i−1,j − 2Un+1

ij + Un+1
i+1,j

h2
(8.2)

+
(σ2yj)

2

2

Un+1
i,j−1 − 2Un+1

ij + Un+1
i,j+1

h2

+σ1σ2ρxiyj

Un+1
i+1,j+1 + Un+1

ij − Un+1
i,j+1 − Un+1

i+1,j

h2

+rxi

Un+1
i+1,j − Un+1

ij

h
+ ryj

Un+1
i,j+1 − Un+1

ij

h
− rUn+1

ij .

The two-dimensional Black-Scholes equation can then be written in reversed time form
as

∂u

∂τ
= LBS for (x, y, τ) ∈ Ω × (0, T ],

where τ = T − t is the time left to maturity T . Consequently, we need to solve the
following system

AU = b, (8.3)

where U is the approximate solution of (7.3). The above system (8.3) can be solved
using Bi-CGSTAB, OS, and multigrid methods. Let us first introduce each method in
the following sections.
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8.3.2. Bi-CGSTAB. The bi-conjugate gradient stabilized method (Bi-CGSTAB)
was developed to solve nonsymmetric linear systems [79]. Bi-CGSTAB solves iteratively
the system (8.3). First, we renumber the initial approximation Uij , i.e.,

Ul = UNx(j−1)+i = Uij ,

where l = 1, . . . , Nx × Ny, i = 1, . . . , Nx, and j = 1, . . . , Ny. For example, when
Nx = Ny = 3. Fig. 8.1 shows the renumbering.

u11 u21 u31

u12 u22 u32

u13 u23 u33

× × ×

× × ×

× × ×

(a)

u1 u2 u3

u4 u5 u6

u7 u8 u9

× × ×

× × ×

× × ×

(b)

Figure 8.1. Renumbering of Uij on 3 × 3 grid.

A =




a11 a8 + a1 0 a9 + a2 −a3 0 0 0 0
−a1 a7 − 2a2 a8 0 a9 + a2 −a3 0 0 0
0 −a1 − a8 a33 0 a3 a36 0 0 0

−a2 0 0 a7 − 2a1 a8 + a1 0 a9 −a3 0
0 −a2 0 −a1 a7 a8 0 a9 −a3

0 0 −a2 0 −a1 − a8 a7 + 2a8 0 a3 a9 − 2a3

0 0 0 −a2 − a9 a3 0 a77 a78 0
0 0 0 0 −a2 − a9 a3 −a1 a7 + 2a9 a8 − 2a3

0 0 0 0 −a3 a96 0 a98 a99




,

where

a1 =
(σ1x)

2

2h2
, a2 =

(σ2y)
2

2h2
, a3 =

σ1σ2ρxy

h2
, a4 =

rx

h
, a5 =

ry

h
, a6 = −r,

a7 =
1

∆t
+ 2(a1 + a2) − a3 + a4 + a5 − a6, a8 = −a1 + a3 − a4,

a9 = −a2 + a3 − a5, a11 = a7 − 2(a1 + a2), a33 = a7 − 2(a2 + a8),

a36 = a9 + a2 − 2a3, a77 = a7 − 2(a1 − a9), a78 = a8 + a1 − 2a3,

a96 = −a2 + 2a3 − a9, a98 = −a1 + 2a3 − a8, a99 = a7 − 2(2a3 − a8 − a9).

The Bi-CGSTAB algorithm is as follows.
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Bi-CGSTAB cycle

Define the maximum number of iteration ITER and the error tolerance TOL

Set r0 = b−AU0, r̂0 = r0, ρ0 = α = ω0 = 1,v0 = p0 = 0

Set k = 1

While (k ≤ ITER & ‖rk‖2 > TOL)

ρk =
N∑

i=1

r̂0i r
k−1
i , β = (ρk/ρk−1)(α/ωk−1)

pk = rk−1 + β(pk−1 − ωk−1vk−1)

vk = Apk

α = ρk/
N∑

i=1

r̂0j v
k
i

s = rk−1 − αvk

t = As

ωk =

N∑

i=1

tisi/

N∑

i=1

t2i

Uk = Uk−1 + αpk + ωks

rk = s − ωkt

k = k + 1

End While

8.3.3. Operator splitting method. The operator splitting method (OS) com-
putes the solutions in two time steps at tn+ 1

2
, tn+1 with time step size ∆t as follows:

Un+1
ij − Un

ij

∆t
= Lx

BSU
n+ 1

2
ij + Ly

BSU
n+1
ij , (8.4)

where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSU

n+ 1
2

ij = σ2
1x

2
i

U
n+ 1

2
i−1,j − 2U

n+ 1
2

ij + U
n+ 1

2
i+1,j

2h2

+λ1σ1σ2ρxiyj

Un
i+1,j+1 + Un

ij − Un
i,j+1 − Un

i+1,j

h2

+rxi

U
n+ 1

2
i+1,j − U

n+ 1
2

ij

h
− λ2rU

n+ 1
2

ij , (8.5)
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Ly
BSU

n+1
ij = σ2

2y
2
j

Un+1
i,j−1 − 2Un+1

ij + Un+1
i,j+1

2h2

+(1 − λ1)σ1σ2ρxiyj

U
n+ 1

2
i+1,j+1 + U

n+ 1
2

ij − U
n+ 1

2
i,j+1 − U

n+ 1
2

i+1,j

h2

+ryj

Un+1
i,j+1 − Un+1

ij

h
− (1 − λ2)rU

n+1
ij , (8.6)

where λ1, λ2 ∈ [0, 1]. The first leg is implicit in x-direction while the second leg is
implicit in y-direction. The OS scheme moves from the time level n to a intermediate
time level n + 1/2 and then to time level n + 1. The idea behind operator splitting is
to split Eq. (7.3) into two one-dimensional problems. We then solve each sub-problem
by a fast direct numerical solver such as the Thomas algorithm. Thus, we consider two
one-dimensional discrete equations.

U
n+ 1

2
ij − Un

ij

∆t
= Lx

BSU
n+ 1

2
ij ,

Un+1
ij − U

n+ 1
2

ij

∆t
= Ly

BSU
n+1
ij .

The OSM algorithm is as follows.

Algorithm OSM
Construct a tridiagonal matrix of the form

Ax =




β1 γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx βNx




.

Here the elements of the matrix are

β1 =
1

∆t
+
rx1

h
+ λ2r, γ1 = −rx1

h
,

αi = −σ
2
1x

2
i

2h2
, βi =

1

∆t
+
σ2

1x
2
i

h2
+
rxi

h
+ λ2r, γi = −σ

2
1x

2
i

2h2
− rxi

h
for i = 2, · · · , Nx − 1,

αNx =
rxNx

h
, βNx =

1

∆t
− rxNx

h
+ λ2r.

Similarly, construct a tridiagonal matrix Ay,

Ay =




β1 γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy βNy




.
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Here the elements of the matrix are

β1 =
1

∆t
+
ry1

h
+ (1 − λ2)r, γ1 = −ry2

h
,

αj = −
σ2

2y
2
j

2h2
, βj =

1

∆t
+
σ2

2y
2
j

h2
+
ryj

h
+ (1 − λ2)r, γj = −

σ2
2y

2
j

2h2
− ryj

h
for j = 2, · · · , Ny − 1,

αNy =
ryNy

h
, βNy =

1

∆t
− ryNy

h
+ (1 − λ2)r.

We note that matrices Ax and Ay do not depend on solution Un.
Step 1: Loop over the y-direction:

For j = 1, ..., Ny

For i = 1, ..., Nx

by(i) = λ1ρσ1σ2xiyj

Un
i+1,j+1 − Un

i+1,j − Un
i,j+1 + Un

ij

h2
+
Un

ij

∆t
.

end

Solve AxU
n+ 1

2 (:, j) = by.

Apply boundary conditions.

end

Step 2: Loop over the x-direction:

For i = 1, ..., Nx

For j = 1, ..., Ny

bx(j) = (1 − λ1)ρσ1σ2xiyj

U
n+ 1

2
i+1,j+1 − U

n+ 1
2

i+1,j − U
n+ 1

2
i,j+1 + U

n+ 1
2

ij

h2
+
U

n+ 1
2

ij

∆t
.

end

Solve AyU
n+1(i, :) = bx.

Apply boundary conditions.

end

8.3.4. Multigrid method. Multigrid methods belong to the class of fastest iter-
ations, because their convergence rate is independent of the step size h, see [115]. We
define a discrete domain by

Ωk = {(h(i − 0.5), h(j − 0.5)|1 ≤ i, j ≤ 2k+1}.
Ωk−1 is coarser than Ωk by factor 2. The multigrid solution of the discrete B-S equation
(8.7)

Un+1
ij − Un

ij

∆t
= LBSU

n+1
ij (8.7)

makes use of a hierarchy of meshes created by successively coarsening the original mesh,
see Fig. 8.2.
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Ω3 (16 × 16) Ω2 (8 × 8) Ω1 (4 × 4) Ω0 (2 × 2)

Figure 8.2. A sequence of coarse grids starting with h.

We use a multigrid cycle to solve the discrete system at the implicit time level.
A pointwise Gauss-Seidel relaxation scheme is used as the smoother in the multigrid
method. We first rewrite the above equation (8.7) by

L(Un+1
ij ) = Un

ij for each (i, j) ∈ Ωk, (8.8)

where

L(Un+1
ij ) = Un+1

ij − ∆tLBSU
n+1
ij .

Given the number ν1 and ν2 of pre- and post- smoothing relaxation sweeps, an iteration
step for the multigrid method using the V-cycle is formally written as follows [122].
We use a notation Un

k as a numerical solution on the discrete domain Ωk at time

t = n∆t. Given Un
k , we want to find Un+1

k solution which satisfies equation (8.7). At
the very beginning of the multigrid cycle the solution from the previous time step is
used to provide an initial guess for the multigrid procedure. First, let Un+1,0

k = Un
k .

The algorithm of the multigrid method for solving the discrete B-S equation (8.7) is
following:

Multigrid cycle

Un+1,m+1
k = MGcycle(k,Un+1,m

k , Lk, U
n
k , ν1, ν2).

Step 1) Presmoothing: perform ν1 Gauss-Seidel relaxation steps.

Ūn+1,m
k = SMOOTHν1(Un+1,m

k , Lk, U
n
k ), (8.9)

Step 2) Coarse grid correction

• Compute the residual on Ωk: d̄
m
k = Un

k − Lk(Ū
n+1,m
k ).

• Restriction to Ωk−1: d̄
m
k−1 = Ik−1

k d̄m
k , Ū

n+1,m
k−1 = Ik−1

k Ūn+1,m
k .

• Compute an approximation soultion on Ωk−1:

Lk−1(U
n+1,m
k−1 ) = d̄m

k−1. (8.10)

• Solve the Eq. (8.10):

Ûn+1,m
k−1 =

{
MGcycle(k − 1, Ūn+1,m

k−1 , Lk−1, d̄
n
k−1, ν1, ν2) for k > 1

apply the smoothing procedure in (8.9) for k = 1.

• Interpolate the correction: Ûm
k = Ik

k−1Û
m
k−1.

• Compute the corrected approximation on Ωk:

Um, after CGC
k = Ūn+1,m

k + Ûm
k .
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Step 3) Postsmoothing: Un+1,m+1
k = SMOOTHν2(Um, after CGC

k , Lk, U
n
k ).

8.4. Computational results

In this section, we compare the performance of the numerical methods (Bi-CGSTAB,
OS, and MG) using CPU times. Each method is implemented using MATLAB [74] in
a desktop computer.

We consider three types of two-asset cash-or-nothing options. The cash-or-nothing
options are useful building blocks for constructing more complex exotic option products
and they are widely traded in the real world financial market.

Case 1: A two asset cash-or-nothing call pays out a fixed cash amount K if asset
one, x, is above the strike X1 and asset two, y, is above strike X2 at expiration.
The payoff is given by

Λ(x, y) =

{
K if x ≥ X1 and y ≥ X2,
0 otherwise .

(8.11)

Case 2: A two asset cash-or-nothing put pays out a fixed cash amount K if asset
one, x, is below the strike X1 and asset two, y, is below strike X2 at expiration.
The payoff is given by

Λ(x, y) =

{
K if x ≤ X1 and y ≤ X2,
0 otherwise .

(8.12)

Case 3: A two asset cash-or-nothing up-down pays out a fixed cash amount K
if asset one, x, is above the strike X1 and asset two, y, is below strike X2 at
expiration. The payoff is given by

Λ(x, y) =

{
K if x ≥ X1 and y ≤ X2,
0 otherwise .

(8.13)

Fig. 8.3(a), (b), and (c) show the payoff function Λ(x, y) for Case 1, Case 2, and
Case 3, respectively.

0
100

200
300

0

100

200

300
0

0.5

1

xy

(a)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(b)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(c)

Figure 8.3. (a), (b), and (c) are payoff functions of Case 1, Case 2,
and Case 3, respectively.
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The formulas published by Heynen and Kat [68] can be used to price these binary
options:

Case 1 : u(x, y, T ) = Ke−rTM(α, β; ρ),

Case 2 : u(x, y, T ) = Ke−rTM(−α,−β; ρ),

Case 3 : u(x, y, T ) = Ke−rTM(−α, β;−ρ),
where α = [ln(x/X1) + (r − σ2

1/2)T ]/(σ1

√
T ), β = [ln(y/X2) + (r − σ2

2/2)T ]/(σ2

√
T )

[87]. Here M(α, β; ρ) denotes a standardized cumulative normal function, Eq. (7.11).
We considered a domain, Ω = [0, 300] × [0, 300]. We computed the numerical

solution on uniform grids, h = 300/2n for n = 5, 6, 7, and 8. For each case, we ran the
calculation to time T = 1 with a uniform time step ∆t = 0.01 with a given strike price
of X1 = 100, X2 = 100 and cash amount K = 1. The volatilities are σ1 = 0.5, σ2 = 0.5
with a correlation ρ = 0.5, and the riskless interest rate r = 0.03. Fig. 8.4 shows the
numerical solution at T = 1 case by case. We let e be the matrix with components
eij = u(xi, yj) − Uij and compute its discrete l2-norm of the error, ‖e‖2.
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Figure 8.4. (a), (b), and (c) are numerical solutions at time T = 1 of
Case 1, Case 2, and Case 3, respectively.

We test the numerical experiments of different case with three solvers, Bi-CGSTAB,
OSM and MG. For fair comparison of these solvers, we match the accuracy of these
solvers by changing iteration parameters. The Table 8.1 shows the result of Case 1.
Fig. 8.5 shows the CPU time with Case 1 and we can see l2 errors are more or less
same order to each other on each mesh size.

Table 8.1. Case 1: Comparison of l2 error and (CPU time).

Mesh Bi-CGStab OSM Multigrid
32 × 32 0.0161 (0.33) 0.0160 (0.31) 0.0150 (2.11)
64 × 64 0.0126 (1.67) 0.0126 (1.17) 0.0131 (6.13)

128 × 128 0.0078 (6.42) 0.0076 (4.67) 0.0066 (27.22)
256 × 256 0.0089 (90.50) 0.0087 (19.34) 0.0086 (160.90)
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Table 8.2. Case 2: Comparison of l2 error and (CPU time).

Mesh Bi-CGStab OSM Multigrid
32 × 32 0.0130 (0.39) 0.0131 (0.30) 0.0137 (2.11)
64 × 64 0.0100 (1.80) 0.0099 (1.17) 0.0097 (5.81)

128 × 128 0.0063 (6.73) 0.0063 (4.64) 0.0060 (19.97)
256 × 256 0.0066 (82.78) 0.0064 (19.22) 0.0059 (80.44)

Table 8.3. Case 3: Comparison of l2 error and (CPU time).

Mesh Bi-CGStab OSM Multigrid
32 × 32 0.0127 (0.41) 0.0128 (0.30) 0.0124 (2.11)
64 × 64 0.0065 (1.94) 0.0064 (1.16) 0.0069 (6.25)

128 × 128 0.0070 (7.80) 0.0069 (4.63) 0.0064 (24.19)
256 × 256 0.0059 (108.88) 0.0058 (19.22) 0.0056 (154.38)
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Figure 8.5. CPU times of Case 1.

Next, let us check the CPU times to compare efficiency of these solvers. Table 8.1
also shows the CPU times with each method. We can confirm that OS method has a
linear CPU time cost as the spatial domain is doubled in each direction. Table 8.2,
Table 8.3 and Fig. 8.6 show the CPU times with Case 2 and Case 3. From all these
results, we can confirm that OS method faster than other methods under the same
accuracy.

8.5. Conclusions

The finite difference methods are applied to the Black-Scholes equations obtained
from stock option pricing. The resulting linear system is solved by biconjugate gra-
dient stabilized, operator splitting, and multigrid methods. The performance of these
methods is compared for two asset option problems based on two-dimentional Black-
Scholes equations. Bi-CGSTAB and multigrid solver have a good accuracy but need a
lot of computing times. On the other hand, operator splitting is faster than other two
methods under the same accuracy.
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Figure 8.6. (a) and (b) are CPU times of Case 2 and Case 3, respectively.
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Chapter 9

A comparison study of ADI and operator splitting

methods on option pricing models

In this Chapter, we perform a comparison study of alternating direction implicit
(ADI) and operator splitting (OS) methods on multi-dimensional Black-Scholes option
pricing models. ADI method is used extensively in mathematical finance for numerically
solving multi-asset option pricing problems. However, most option pricing problems
have nonsmooth payoffs or discontinuous derivatives at the exercise price. ADI scheme
uses source terms which include y derivatives when we solve x derivative involving
equations in a two dimensional space. Then, due to the nonsmooth payoffs, source
term contains abrupt changes which are not in the range of implicit discrete operator
and this leads to difficulty in solving the problem. On the other hand, OS method
does not contain the other variable’s derivatives in the source term. Therefore, OS
scheme does not present those problematic source terms. We provide computational
results showing the performance of the methods for two underlying asset option pricing
problems. The results show that OS method is very efficient and gives better accuracy
and robustness than ADI method.

9.1. Introduction

In today’s financial markets, options are the most common securities that are fre-
quently bought and sold. Under the Black-Scholes partial differential equation (BS
PDE) framework (see [82, 86, 92, 94, 93, 95]), various numerical methods have been
presented by using the finite difference method (FDM) to solve the option pricing
problems. But most option pricing problems have nonsmooth payoffs or discontinu-
ous derivatives at the exercise price. Standard finite difference schemes used to solve
problems with nonsmooth payoff do not work well for discrete options because of discon-
tinuities introduced in the source term. Moreover, these unwanted oscillations become
worse when estimating the hedging parameters, e.g., Delta and Gamma. Alternating
direction implicit (ADI) method is used extensively in mathematical finance for numer-
ically solving multi-asset Black-Scholes option pricing models. However, most option
pricing problems have nonsmooth payoffs at the exercise price. ADI scheme uses source
terms which include y derivatives when we solve x derivative involving equations in a
two dimensional space. Then, due to the nonsmooth payoffs, source term contains
abrupt changes which are not in the range of implicit discrete operator and this leads
to difficulty in solving the problem. On the other hand, operator splitting (OS) scheme
does not present those problematic source terms. The main contribution of this Chap-
ter is to show the limitation of ADI method in computational finance and suggest the
use of OS method instead for accuracy and robust option pricing.



9.2. NUMERICAL SOLUTIONS FOR ADI AND OS METHODS 87

This Chapter is organized as follows. In Section 9.2, we present numerical solution
algorithms for ADI and OS methods. In Section 9.3, we show several numerical results
by ADI and OS methods. Then we draw the conclusions in Section 9.4.

9.2. Numerical solutions for ADI and OS methods

We focus on the two-dimensional Black-Scholes equation. Let LBS be the operator

LBS =
1

2
σ2

1x
2∂

2u

∂x2
+

1

2
σ2

2y
2∂

2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru.

The two-dimensional Black-Scholes equation can then be written in reversed time form
as

∂u

∂τ
= LBS for (x, y, τ) ∈ Ω × (0, T ], (9.1)

where τ = T − t is the time left to maturity T .

9.2.1. Alternating Directions Implicit (ADI) method. The main idea of the
ADI method (see [81]) is to proceed in two stages, treating only one operator implicitly
at each stage. First, a half-step is taken implicitly for the mixed derivative term and
the spatial derivative in the x-direction, then explicitly for the spatial derivative in the
y-direction. Then, a half-step is taken implicitly for the mixed derivative term and
the spatial derivative in the y-direction and explicitly for the spatial derivative in the
x-direction. Therefore, the equations for the ADI method are written as follows:

un+1
ij − un

ij

∆τ
= Lx

ADIu
n+ 1

2
ij + Ly

ADIu
n+1
ij , (9.2)

where the discrete difference operators Lx
ADI and Ly

ADI are defined by

Lx
ADIu

n+ 1
2

ij =
(σ1xi)

2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2

+
(σ2yj)

2

4

un
i,j+1 − 2un

ij + un
i,j−1

h2

+
1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
+

1

2
ryj

un
i,j+1 − un

ij

h

+
1

2
ρσ1σ2xiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
− 1

2
ru

n+ 1
2

ij , (9.3)
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Ly
ADIu

n+1
ij =

(σ1xi)
2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2

+
(σ2yj)

2

4

un+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2

+
1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
+

1

2
ryj

un+1
i,j+1 − un+1

ij

h

+
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2
− 1

2
run+1

ij . (9.4)

Then we approximate each sub-problem by a semi-implicit scheme.

u
n+ 1

2
ij − un

ij

∆τ
= Lx

ADIu
n+ 1

2
ij , (9.5)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

ADIu
n+1
ij . (9.6)

Note that the addition of two Eqs. (9.5) and (9.6) results in Eq. (9.2).
Algorithm ADI

• Step 1
The first stage of the ADI method, Eq. (9.3) is rewritten

αiu
n+ 1

2
i−1,j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1,j = fij, (9.7)

where

αi = −(σ1xi)
2

4h2
, βi =

1

∆τ
+

(σ1xi)
2

2h2
+
rxi

2h
+
r

2
,

γi = −(σ1xi)
2

4h2
− rxi

2h
, for i = 2, ..., Nx − 1.

For a fixed index j, the vector u
n+ 1

2
1:Nx,j may be found by solving the tridiagonal

system

Axu
n+ 1

2
1:Nx,j = f1:Nx,j,

where Ax is a tridiagonal matrix constructed from Eq. (9.7) with a linear bound-
ary condition

Ax =




2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx



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and f1:Nx,j is an Nx-dimensional vector with components

fij =
un

ij

∆τ
+

1

4
(σ2yj)

2
un

i,j+1 − 2un
ij + un

i,j−1

h2
+

1

2
ryj

un
i,j+1 − un

ij

h

+
1

2
ρσ1σ2xiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
. (9.8)

Step 1 of the ADI method is then implemented in a loop over the y-direction:

for j = 1 : Ny

for i = 1 : Nx

Set fij by Eq. (9.8)

end

Solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using the Thomas algorithm

end

• Step 2
The second stage of the ADI method, given by Eq. (9.4) is rewritten

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij ,

where

αj = −(σ2yj)
2

4h2
, βj =

1

∆τ
+

(σ2yj)
2

2h2
+
ryj

2h
+
r

2
,

γj = −(σ2yj)
2

4h2
− ryj

2h
, for j = 2, ..., Ny − 1.

For a fixed index i, the vector un+1
i,1:Ny

may be found by solving the tridiagonal
system

Ayu
n+1
i,1:Ny

= gi,1:Ny ,

where the matrix Ay is given as

Ay =




2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy




and gi,1:Ny is an Ny-dimensional vector with components

gij =
u

n+ 1
2

ij

∆τ
+

(σ1xi)
2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2
+

1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h

+
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2
. (9.9)

Similarly to Step 1, Step 2 is then implemented in a loop over the x-direction:
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for i = 1 : Nx

for j = 1 : Ny

Set gij by Eq. (9.9)

end

Solve Ayu
n+1
i,1:Ny

= gi,1:Ny by using the Thomas algorithm

end

Execution of Step 1 followed by Step 2 advances the solution with a ∆τ -step in
time.

9.2.2. Operator splitting (OS) method. The idea of OS method (see [86, 83])
is to divide each time step into fractional time steps with simpler operators. We shall
introduce the basic OS scheme for the two-dimensional BS equation. The basic idea
behind OS method is to replace a two-dimensional scheme as

un+1
ij − un

ij

∆τ
= Lx

OSu
n+ 1

2
ij + Ly

OSu
n+1
ij , (9.10)

where the discrete difference operators Lx
OS and Ly

OS are defined by

Lx
OSu

n+ 1
2

ij =
(σ1xi)

2

2

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

h2

+
1

2
σ1σ2ρxiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2

+rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− 1

2
ru

n+ 1
2

ij ,

Ly
OSu

n+1
ij =

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2

+
1

2
σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2

+ryj

un+1
i,j+1 − un+1

ij

h
− 1

2
run+1

ij .

We then approximate each sub-problem by a semi-implicit scheme.

u
n+ 1

2
ij − un

ij

∆τ
= Lx

OSu
n+ 1

2
ij , (9.11)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

OSu
n+1
ij . (9.12)

The first leg is implicit in x-direction while the second leg is implicit in y-direction.
The OS scheme moves from the time level n to a intermediate time level n + 1

2 and
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then to time level n + 1. Note that the addition of two Eqs. (9.11) and (9.12) results
in Eq. (9.10).

Algorithm OS

• Step 1
Eq. (9.11) is rewritten as follows:

αiu
n+ 1

2
i−1,j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1,j = fij,

where

αi = −1

2

(σ1xi)
2

h2
, βi =

1

∆τ
+

(σ1xi)
2

h2
+
rxi

h
+

1

2
r,

γi = −1

2

(σ1xi)
2

h2
− rxi

h
, for i = 2, ..., Nx − 1.

The first step of the OS method is then implemented in a loop over the y-direction
for a fixed index i:

for j = 1 : Ny

for i = 1 : Nx

Set fij by Eq. (9.13)

end

Solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using the Thomas algorithm

end

Here Ax is a tridiagonal matrix,

Ax =




2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx




and fij is an Ny-dimensional vector with components

fij =
1

2
ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j − un
i,j+1 + un

ij

h2
+
un

ij

∆τ
. (9.13)

• Step 2

As before, Eq. (9.12) is rewritten as follows:

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij ,

where

αj = −1

2

(σ2yj)
2

h2
, βj =

1

∆τ
+

(σ2yj)
2

h2
+
ryj

h
+

1

2
r,

γj = −1

2

(σ2yj)
2

h2
− ryj

h
, for j = 2, ..., Ny − 1.
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By analogy, this step of the OS method is implemented in a loop over the x-
direction:

Ayu
n+1
i,1:Ny

= gi,1:Ny

where the matrix Ay is tridiagonal,

Ay =




2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy




and gi,1:Ny is an Ny-dimensional vector with components

gij =
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 − u

n+ 1
2

i+1,j − u
n+ 1

2
i,j+1 + u

n+ 1
2

ij

h2
+
u

n+ 1
2

ij

∆τ
. (9.14)

Similarly to Step 1, Step 2 is then implemented in a loop over the x-direction:

for i = 1 : Nx

for j = 1 : Ny

Set gij by Eq. (9.14)

end

Solve Ayu
n+1
i,1:Ny

= gi,1:Ny by using the Thomas algorithm

end

These two steps consist of one time step evolution for OS method.

9.3. Numerical experiments

In this section, various examples are presented to demonstrate the effectiveness
and efficiency of the two different methods, ADI and OS methods, for two-dimensional
cases. All computations are performed using uniform meshes for space and time on
a 2.53 GHz Intel PC with 2GB RAM. Computer programs are written in MATLAB
program.

The error of the numerical solution was defined as eij = ue
ij − uij for i = 1, · · · , Nx

and j = 1, · · · , Ny, where ue
ij is the exact solution and uij is the numerical solution.

We computed discrete l2 norm ‖e‖2 and the maximum norm ‖e‖∞ of the error. We
also used the root mean square error (RMSE). The RMSE was defined as

RMSE =

√√√√ 1

N

N∑

i,j

(
ue

ij − uij

)2
,

where N is the number of points on the gray region in Fig. 9.1.
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Figure 9.1. The gray color region is the region where the RMSE is estimated.

9.3.1. European call option on the maximum of two assets. First, we con-
sider a simple case of a vanilla call option. The payoff for this problem is based on the
best of the two assets x and y and is given as:

Λ(x, y) = max{x(T ) −K1, y(T ) −K2, 0},

whereK1 andK2 are the strike prices of underlying assets x and y, respectively. Fig. 9.2
shows European call option payoff on the maximum of two assets with K1 = K2 = 100.

0
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100

0

20

40

xy

u0

Figure 9.2. European option payoff on the maximum of two assets
with K1 = K2 = 100.

We use the Dirichlet boundary condition at x = L and y = M and the linear
boundary condition at x = 0 and y = 0. For example, as shown in Fig. 9.3 we use
a = 2b−c for the linear boundary condition and α = 2D−β = 2(M−K2 exp(−rτ))−β
for Dirichlet boundary condition.

The errors are computed using the exact solution for the call option on the maximum
of two assets. The formula for the exact value is known in [87] by

u(x, y, T ) = xM(α1, d; ρ1) + yM(α2,−d+ σ
√
T ; ρ2)

−Ke−rT [1 −M(−α1 + σ1

√
T ,−α2 + σ2

√
T ; ρ)],
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Figure 9.3. Boundary conditions.

where

d = ln(x/y)+(σ2/2)T

σ
√

T
, α1 =

ln(x/K)+(r+σ2
1/2)T

σ1

√
T

, α2 =
ln(y/K)+(r+σ2

2/2)T

σ2

√
T

,

σ =
√
σ2

1 + σ2
2 − 2ρσ1σ2, ρ1 = σ1−ρσ2

σ , ρ2 = σ2−ρσ1

σ .

Here M(a, b; ρ) denotes a standardized cumulative normal function, Eq. (7.11).
The MATLAB code for the closed form solution of a call option on the maximum

of two assets is given as following.

clear;K=100;T=0.5;r=0.03;X1=100;X2=100;sigma1=0.3;sigma2=0.3;rho=0.5;

Nx=30;Ny=30;L=300;M=300;h=L/Nx;

x=linspace(h/2,L-h/2,Nx);y=linspace(h/2,M-h/2,Ny);

mu=[0 0]; sigma=sqrt(sigma1^2+sigma2^2-rho*sigma1*sigma2);

rho1=(sigma-rho*sigma2)/sigma; rho2=(sigma-rho*sigma1)/sigma;

cov=[1 rho; rho 1]; cov1=[1 rho1; rho1 1]; cov2=[1 rho2; rho2 1];

for i=1:Nx

for j=1:Ny

y1=(log(x(i)/X1)+(r+sigma1^2/2)*T)/(sigma1*sqrt(T));

y2=(log(y(j)/X2)+(r+sigma2^2/2)*T)/(sigma2*sqrt(T));

d=(log(x(i)/y(j))+(sigma^2/2)*T)/(sigma*sqrt(T));

M1=mvncdf([y1 d],mu,cov1); M2=mvncdf([y2 -d+sigma*sqrt(T)],mu,cov2);

M3=mvncdf([-y1+sigma1*sqrt(T) -y2+sigma2*sqrt(T)],mu,cov);

V(i,j)=x(i)*M1+x(j)*M2-K*exp(-r*T)*(1-M3);

end

end

[xx,yy]=meshgrid(x,y);surf(xx,yy,V)

The following parameters have been used. Time to expiry, T = 0.5, strike prices,
K1 = K2 = 100, risk-free interest rate, r = 0.03, volatilities, σ1 = σ2 = 0.3, correlation
coefficient, ρ = 0.5, and domain size [0, 300] × [0, 300] are used.

Table 9.1 and Fig. 9.4 show the comparison of errors for ADI and OS methods
at time T = 0.5. The errors ‖e‖2 and ‖e‖∞ with ADI method do not decrease with
increasing number of grid points and reduced time steps. On the other hand, the errors



9.3. NUMERICAL EXPERIMENTS 95

Time Space ADI OSM
∆τ h ‖e‖2 ‖e‖∞ RMSE ‖e‖2 ‖e‖∞ RMSE

0.10000 10.000 0.799995 3.234941 0.103232 0.167018 0.724133 0.032905
0.05000 5.000 0.784638 3.307959 0.042493 0.072011 0.294831 0.007333
0.02500 2.500 0.774776 3.319771 0.018888 0.033195 0.134448 0.001670
0.01250 1.250 0.769149 3.319762 0.008845 0.015901 0.064073 0.000395

Table 9.1. ‖e‖2 and ‖e‖∞ are measured in a quarter of the domain,
[0, 150]× [0, 150]. RMSE is measured in the region as shown in Fig. 9.1.

with OS method do decrease linearly and smaller than errors from ADI method. It can
be seen that for ADI method, RMSE results exhibit O(h) + O(∆τ) convergence. On
the other hand, for OS method, RMSE results exhibit O(h2) +O(∆τ2) convergence.
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Figure 9.4. Comparison with (a) ‖e‖2, (b) ‖e‖∞, and (c) RMSE of
ADI and OSM. Lines with symbols, ‘2’, ‘◦’, and ‘△’ represent results
with ADI and symbols, ‘�’,‘•’, and ‘N’ represent results with OSM.

Fig. 9.5 shows numerical results using ADI and OS methods for European call
option on the maximum of two assets with a relatively large time step ∆τ = 0.5.
The first and the second columns are results from ADI and OS methods, respectively.
The first row (a) shows source term f at Step 1, Eq. (9.8). The result from ADI
shows oscillation at the strike price y = K due to the y-directional derivatives in the
source term. Both ADI and OS schemes show oscillations at x = y due to the cross
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Figure 9.5. Comparison of numerical results of ADI and OS methods
on the European call option on the maximum of two assets. (a) Source

term f at Step 1, (b) solution un+ 1
2 after Step 1, (c) source term g at

Step 2, and (d) solution un+1 after Step 2.

derivatives. Intermediate solution results (b) demonstrate that these oscillations in the
diagonal position do not make problem for both schemes. In Fig. 9.5(c), we observe
that there is discontinuous profile at the strike price x = K in the case of ADI. On the
other hand, we see smooth profile with OS method. Finally, solution un+1 after Step
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2 suggests that OS method performs better than ADI with a large time step size (see
Fig. 9.5(d)).

9.3.2. Cash or nothing option. Next, let us consider the European two-asset
cash or nothing call option (see [87]). Given two stock prices x and y, the payoff of the
call option is

Λ(x, y) =

{
K if x ≥ K1 and y ≥ K2,
0 otherwise,

where K1 and K2 are the strike prices of x and y, respectively (see Fig. 9.6).
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Figure 9.6. Payoff of a two-asset cash or nothing option on a compu-
tational domain [0, 300] × [0, 300].

The formula for the exact value is known in [87] by

u(x, y, T ) = Ke−rTM(α, β; ρ), (9.15)

where

α =
ln(x/K1)+(r−σ2

1/2)T

σ1

√
T

, β =
ln(y/K2)+(r−σ2

2/2)T

σ2

√
T

.

The MATLAB code for the closed form solution of a two-asset cash or nothing call
option is given in Sec. 7.4 in Chapter 7. The following parameters have been used.
Time to expiry, T = 0.5, cash, K = 1, strike prices, K1 = K2 = 100, risk-free interest
rate, r = 0.03, volatilities, σ1 = σ2 = 0.3, correlation coefficient, ρ = 0.5, and domain
size [0, 300] × [0, 300] are used.

Time Space ADI OSM
∆τ h ‖e‖2 ‖e‖∞ RMSE ‖e‖2 ‖e‖∞ RMSE

0.10000 10.000 0.010196 0.041681 0.002564 0.004887 0.019115 0.000689
0.05000 5.000 0.009769 0.041316 0.001239 0.002043 0.007660 0.000126
0.02500 2.500 0.009530 0.040797 0.000610 0.000960 0.003310 0.000030
0.01250 1.250 0.009410 0.040564 0.000303 0.000469 0.001710 0.000008

Table 9.2. ‖e‖2 and ‖e‖∞ are measured in a quarter of the domain,
[0, 150]× [0, 150]. RMSE is measured in the region as shown in Fig. 9.1.
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Figure 9.7. Comparison with (a) ‖e‖2, (b) ‖e‖∞, and (c) RMSE of
ADI and OSM. Lines with symbols, ‘2’, ‘◦’, and ‘△’ represent results
with ADI and symbols,‘�’,‘•’, and ‘N’ represent results with OSM.

Table 9.2 and Fig. 9.7 show the comparison of errors for ADI and OS methods
at time T = 0.5. The errors ‖e‖2 and ‖e‖∞ with ADI method do not decrease with
increasing number of grid points and reduced time steps. On the other hand, the errors
with OS method do decrease linearly and smaller then errors from ADI method. It can
be seen that for ADI method, RMSE results exhibit O(h) + O(∆τ) convergence. On
the other hand, for OS method, RMSE results exhibit O(h2) +O(∆τ2) convergence.

Similar to the result with European call option on the maximum of two assets, we
have same result with two-asset cash or nothing call option as shown in Fig. 9.8.

9.4. Conclusions

In this Chapter, we performed a comparison study of alternating direction implicit
(ADI) and operator splitting (OS) methods on multi-dimensional Black-Scholes option
pricing models. ADI method has been used extensively in mathematical finance for
numerically solving multi-asset option pricing problems. However, most option pricing
problems have nonsmooth payoffs or discontinuous derivatives at the exercise price.
ADI scheme uses source terms which include y derivatives when we solve x deriva-
tive involving equations. Then, due to the nonsmooth payoffs, source term contains
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Figure 9.8. Comparison of numerical results of ADI and OS methods
on the cash or nothing option. (a) Source term f at Step 1, (b) solution

un+ 1
2 after Step 1, (c) source term g at Step 2, and (d) solution un+1

after Step 2.

abrupt changes which are not in the range of implicit discrete operator and this leads
to difficulty in solving the problem. On the other hand, OS method does not contain
the other variable’s derivatives in the source term. We provided computational results
showing the performance of the methods for two underlying asset option pricing prob-
lems. The results showed that OS method is very efficient and gives better accuracy
and robustness than ADI method in computational finance problems.
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Chapter 10

An operator splitting method for pricing the ELS option

This Chapter presents the numerical valuation of the two-asset step-down equity-
linked securities (ELS) option by using the operator-splitting method (OSM). The
ELS is one of the most popular financial options. The value of ELS option can be
modeled by a modified Black-Scholes partial differential equation. However, regardless
of whether there is a closed-form solution, it is difficult and not efficient to evaluate the
solution because such a solution would be represented by multiple integrations. Thus,
a fast and accurate numerical algorithm is needed to value the price of the ELS option.
This Chapter uses a finite difference method to discretize the governing equation and
applies the OSM to solve the resulting discrete equations. The OSM is very robust and
accurate in evaluating finite difference discretizations. We provide a detailed numerical
algorithm and computational results showing the performance of the method for two
underlying asset option pricing problems such as cash-or-nothing and step-down ELS.
Final option value of two-asset step-down ELS is obtained by a weighted average value
using probability which is estimated by performing a MC simulation.

10.1. Introduction

Equity-linked securities (ELS) are securities whose return on investment is depen-
dent on the performance of the underlying equities linked to the securities. Since ELS
were introduced to Korea in 2003, the booming world economy and expanding financial
markets have shifted funds previously focused on real estate to new investment vehi-
cles. The ELS option represents one of the new investment vehicles in that they can be
used to structure various products according to the needs of investors. We can model
the value of the ELS option by a modified Black-Scholes partial differential equation
(BSPDE) [82, 86, 92, 94, 93, 95]. Typically, there is no closed-form solution, and even
if there were such a solution, evaluating it would be difficult because it would be rep-
resented by multiple integrations. Therefore, a fast and accurate numerical algorithm
is needed to price the ELS option. We use a finite difference method to discretize the
BSPDE and apply the operator-splitting method (OSM) [86, 83] to solve the resulting
discrete equations. The basic idea behind the OSM is to reduce multi-dimensional
equations into multiple one-dimensional problems. The OSM is very robust and accu-
rate in evaluating finite difference discretizations. The rest of the Chapter is organized
as follows. Section 10.2 provides a basic information and discuss the payoff of two-
asset step-down ELS. Section 10.3 presents the finite difference discretizations for the
BSPDE and a numerical solution algorithm using the OSM. Section 10.4 presents the
computational results showing the performance of the method for option pricing prob-
lems with two underlying assets: cash-or-nothing and step-down ELS. Conclusions are
presented in Section 10.5.
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10.2. Two-asset step-down ELS

The payoff of two-asset step-down ELS is as follows:

• Early obligatory redemption occurs and a given rate of return is paid if the value
of the worst performer is greater than or equal to the prescribed exercise price
on the given observation date. Here, Here the worst performer is defined as one
of the two underlying assets whose value is lower than that of the other.

• If early obligatory redemptions did not occur until the maturity time, then the
return is determined by the Knock-In criterion.

The basic parameters of two-asset step-down ELS are as follows:

- Maturity : T
- Face value : F
- Underlying assets at time t : x(t) and y(t)
- Worst performer : St = min [x(t), y(t)]
- Conditions for early redemption : Let N be the number of observation dates.

Observation date t1 t2 · · · tN = T
Exercise price K1 K2 · · · KN

Rate of return c1 c2 · · · cN

Case 1) Early obligatory redemptions happened
If the value of the worst performer Sti is greater than or equal to the exercise

price Ki at time t = ti, then (1 + ci)F is paid, and the contract expires.

Case 2) Early obligatory redemptions did not happen
Let D denote the Knock-In barrier level and d denote a dummy.

(i) If a Knock-in event does not occur, that is, mT = min {St| 0 ≤ t ≤ T} >
D, then (1 + d)F is paid.

(ii) If a Knock-in event occurs, (1 + ST /S0)F is paid.

We now summarize the payoff function. Let χ
i
= χAi

, where χ
i
denotes the charac-

teristic function of Ai = {x ≥ Ki and y ≥ Ki}. Here Ki is the exercise price at time ti.
Let u(x, y, t) denote the value of the option. Generally, the payoff function of two-asset
step-down ELS is constructed as follows:

u (x, y, ti) =





χ1 = 1 Payoff = (1 + c1)F

χ1 = 0





χ2 = 1 Payoff = (1 + c2)F

χ2 = 0





χ3 = 1 Payoff = (1 + c3)F

χ3 = 0





χ4 = 1 Payoff = (1 + c4)F

χ4 = 0





mT > D, then

Payoff = (1 + d)F

mT ≤ D, then

Payoff = (1 + ST /S0)F

In this Chapter, we chose the following parameters: the reference price K0 = 100,
the interest rate r = 5%, the volatilities of the underlying assets σ1 = 25%, σ2 = 30%,
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the total time T = 1 year, the face price F = 100, the Knock-In barrier level D = 0.6K0,
and the dummy rate d = 16%. The other parameters are listed in Table 10.1.

Observation date t1 t2 t3 t4 = T
Exercise price K1 = 0.90K0 K2 = 0.85K0 K3 = 0.80K0 K4 = 0.75K0

Return rate c1 = 5.5% c2 = 11% c3 = 16.5% c4 = 22%

Table 10.1. Parameters of two-asset step-down ELS.

Figure 10.1 shows the profit-and-loss diagram of two-asset step-down ELS.
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60% 75% 80% 85% 90%

Profit & Loss

−100%

−40%
−25%

0%

5.5%

11%

16%
16.5%

22%

Starting
index level

(1) After 3 months

(2) After 6 months

(3) After 9 months

(4) At maturity

(6) Knock-In event occurs

(5) Knock-In event does not occur

Figure 10.1. Profit-and-loss diagram at early redemption and matu-
rity for two-asset step-down ELS.

10.3. Numerical solution

In this section, we describe the numerical discretization of Eq. (7.1). We also
present the operator-splitting algorithm in detail.

10.3.1. Discretization. Let LBS be the operator

LBS =
1

2
σ2

1x
2∂

2u

∂x2
+

1

2
σ2

2y
2∂

2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru.

Then the two-dimensional Black-Scholes equation can be rewritten as

∂u

∂τ
= LBS , for (x, y, τ) ∈ Ω × (0, T ],

where τ = T − t and T is the expiration time.
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We use a cell-centered discretization because we use the following linear boundary
condition:

u0j = 2u1j − u2j , uNx+1,j = 2uNx,j − uNx−1,j for j = 1, · · · , Ny,

ui0 = 2ui1 − ui2, ui,Ny+1 = 2ui,Ny − ui,Ny−1 for i = 1, · · · , Nx.

10.3.2. Operator-splitting method. The basic idea behind the operator-splitting
method is to reduce multi-dimensional equations into multiple one-dimensional prob-
lems [86, 83]. We introduce the basic OS scheme for the two-dimensional Black-Scholes
equation as follows:

un+1
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij + Ly

BSu
n+1
ij , (10.1)

where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSu

n+ 1
2

ij =
(σ1xi)

2

2

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

h2

+λ1σ1σ2ρxiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2

+rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− λ2ru

n+ 1
2

ij ,

Ly
BSu

n+1
ij =

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2

+(1 − λ1)σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2

+ryj

un+1
i,j+1 − un+1

ij

h
− (1 − λ2)ru

n+1
ij .

The first step is implicit in the x-direction, whereas the second step is implicit in the
y-direction. The OS scheme moves from the time level n to an intermediate time level
n+ 1

2 and then to the time level n+1. Through this process, the OS method is to split
two problems. We then approximate each subproblem by an implicit scheme:

u
n+ 1

2
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij , (10.2)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

BSu
n+1
ij . (10.3)

Note that combining two Eqs. (10.2) and (10.3) results in Eq. (10.1). The following
describes an algorithm of the OS method.
Algorithm OS

• Step 1
Eq. (10.2) is rewritten as follows. For each j, we have

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij , (10.4)
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where

αi = −1

2

σ2
1x

2
i

h2
, βi =

1

∆τ
+
σ2

1x
2
i

h2
+
rxi

h
+ λ2r,

γi = −1

2

σ2
1x

2
i

h2
− rxi

h
, for i = 1, ..., Nx

and

fij = λ1ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j − un
i,j+1 + un

ij

h2
+
un

ij

∆τ
. (10.5)

The first step of the OS method is then implemented in a loop over the
y-direction:

for j = 1 : Ny

for i = 1 : Nx

Set fij by Eq. (10.5)

end

Solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using Thomas algorithm (see Fig. 10.2(a))

end

Here the matrix Ax is a tridiagonal matrix constructed from Eq. (10.4) with a
linear boundary condition

Ax =




2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx




.

· · ·

· · ·

· · ·

· · ·

· · ·

u
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u
Nxj

(a) Step 1

··
·

··
·

··
·

··
·

··
·

u
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u
i2

u
iNy

(b) Step 2

Figure 10.2. Two steps of the OSM.
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• Step 2

As in Step 1, Eq. (10.3) is rewritten as follows:

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij , (10.6)

where

αj = −1

2

σ2
2y

2
j

h2
, βj =

1

∆τ
+
σ2

2y
2
j

h2
+
ryj

h
+ (1 − λ2)r,

γj = −1

2

σ2
2y

2
j

h2
− ryj

h
, for j = 1, ..., Ny

and

gij = (1 − λ1)ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 − u

n+ 1
2

i+1,j − u
n+ 1

2
i,j+1 + u

n+ 1
2

ij

h2
+
u

n+ 1
2

ij

∆τ
. (10.7)

As with Step 1, Step 2 is then implemented in a loop over the x-direction:

for i = 1 : Nx

for j = 1 : Ny

Set gij by Eq. (10.7)

end

Solve Ayu
n+1
i,1:Ny

= gi,1:Ny by using Thomas algorithm (see Fig. 10.2(b))

end

Here Ay is tridiagonal matrix constructed from Eq. (10.6) with a linear boundary
condition

Ay =




2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy




.

10.4. Computational results

This section presents the convergence test (which determined the accuracy of the
OS method) and the numerical experiments for two-asset step-down ELS.

10.4.1. Convergence test. Since the two-asset cash-or-nothing option can be
useful building block for constructing more complex and exotic option products, con-
sider the European two-asset cash-or-nothing call option [87]. Given two stock prices
x and y, the payoff of the call option is

u(x, y, 0) =

{
Cash if x ≥ K1 and y ≥ K2,
0 otherwise,

(10.8)

where K1 and K2 are the strike prices of x and y, respectively. The formula for the
exact value of the cash-or-nothing option is known [87]. To estimate the convergence
rate, we performed numerical simulations with a set of increasingly finer grids up to
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T = 1. We considered a computational domain, Ω = [0, 300] × [0, 300]. The initial
condition was Eq. (10.8) with the strike prices K1 = K2 = 100 and Cash = 1. The
volatilities were σ1 = 0.25, σ2 = 0.3, the correlation was ρ = 0.5, and the risk-free
interest rate was r = 0.05. Also, the weighting factors were λ1 = λ2 = 0.5. The
error of the numerical solution was defined as eij = ue

ij − uij for i = 1, · · · , Nx and
j = 1, · · · , Ny, where ue

ij is the exact solution and uij is the numerical solution. We

computed discrete l2 norm of the error, ‖e‖2.
Table 10.2 shows the discrete l2 norms of the errors in a quarter of the domain,

[0, 150] × [0, 150], the RMSE which is estimated in the gray region shown in Fig. 9.1
and the rates of convergence for ‖e‖2 and RMSE. The results suggest that the scheme
has first-order accuracy and the RMSE has second-order accuracy in space and time.

Mesh h ∆t ‖e‖2 order RMSE order
128 × 128 2.3437 0.1000 0.005344 0.000177
256 × 256 1.1719 0.0500 0.002716 0.9764 0.000053 1.7397
512 × 512 0.5859 0.0250 0.001335 1.0246 0.000011 2.2685

1024 × 1024 0.2930 0.0125 0.000679 0.9754 0.000003 1.8745

Table 10.2. Convergence test.

10.4.2. Numerical test of a two-asset step-down ELS. Let u and v be the
solutions with payoffs which knock-in event happens and does not happen, respectively.
Fig. 10.3(a) and (b) show the initial configurations of u and v, respectively.
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Figure 10.3. (a) and (b) are the initial conditions for u and v, respectively.

And Fig. 10.4(a) and (b) show the final profiles of u and v, respectively, at T = 1
with Nx = Ny = 100, K0 = 100, L = 300, and the parameters listed in Table. 10.1.

The final two-asset step-down ELS price is obtained by a weighted average of u and
v by each probability. By performing a Monte Carlo (MC) simulation [84] for 20000
samples, we estimated that a knock-in event occurs with a probability of approximately
0.1. Therefore, we defined the final ELS value as 0.1u + 0.9v. Fig. 10.5 (a) shows the
weighted average value 0.1u + 0.9v, and (b) shows the overlapped contour lines of the
weighted average values.
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Figure 10.4. (a) and (b) are the numerical results for u and v, respec-
tively, at T = 1.
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Figure 10.5. (a) The weighted average value 0.1u+0.9v at T = 1. (b)
The contour lines of the weighted average values.

Usually, the position of current underlying assets does not coincide with the nu-
merical grid points. Therefore, we needed to use an interpolation method. As shown
in Fig. 10.6, we obtained the numerical values at the specific point X by using the
bilinear interpolation.

Table 10.3 shows the results for two-asset step-down ELS obtained using the OSM
at the point (100, 100) with different meshes and time steps.

Mesh Nt v(100, 100) u(100, 100) Weighted average 0.1u + 0.9v
300 × 300 365 103.041093 101.306561 102.867640
600 × 600 730 103.028876 101.359551 102.861944

1200 × 1200 1460 103.007394 101.369623 102.843617
2400 × 2400 2920 102.987068 101.361671 102.824528

Table 10.3. Two-asset step-down ELS prices u, v, and the weighted
average value 0.1u+0.9v obtained using the OSM at the point (100, 100)
with different meshes and time steps.
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Figure 10.6. A diagram of the bilinear interpolation: the specific value
X is obtained from the numerical solutions A,B,C, and D near the
specific point X by the bilinear interpolation.

Fig. 10.7 shows the two-asset step-down ELS price at position (x, y) = (100, 100)
obtained using the OSM and the MC simulation. The solid line is the result obtained
using the OSM with a 2400×2400 mesh. The symbol lines are the results from three trial
MC simulations with an increasing number of samples. Generally, MC simulations in
computational finance are easy to apply than the FDM. Because results obtained using
the MC simulation are affected by the distribution of random numbers, the accuracy
of MC simulation can be guaranteed through many trials.
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Figure 10.7. Two-asset step-down ELS price obtained using the OSM
and the Monte-Carlo simulation versus the number of simulations.
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10.5. Conclusions

In this Chapter, we presented a numerical algorithm for the two-asset step-down
ELS option by using the OSM. We modeled the value of ELS option by using a modified
Black-Scholes partial differential equation. A finite difference method was used to
discretize the governing equation, and the OSM was applied to solve the resulting
discrete equations. We provided a detailed numerical algorithm and computational
results demonstrating the performance of the method for two underlying asset option
pricing problems such as cash-or-nothing and step-down ELS. In addition, we applied a
weighted average value with a probability obtained using the MC simulation to obtain
the option value of two-asset step-down ELS.

This chapter is published in Journal of the Korean Society for Industrial
and Applied Mathematics, Vol. 14, No. 3, pp. 175-187, (2010).
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Chapter 11

An adaptive grid generation depending on a far-field

boundary position for the Black-Scholes equation

This Chapter presents an accurate and efficient numerical method for the Black-
Scholes equations. The method uses an adaptive grid technique which is based on a far-
field boundary position of the equation. Numerical tests are presented to demonstrate
the accuracy and efficiency of the method. The results show that the computational
time of the new adaptive grid method is reduced substantially when compared to that
of a uniform grid method.

11.1. Introduction

In this Chapter, we consider an accurate and efficient numerical method for the
Black-Scholes equation:

∂u

∂t
= −1

2
(σx)2

∂2u

∂x2
− rx

∂u

∂x
+ ru, (x, τ) ∈ (0,∞) × (0, T ], (11.1)

where u(x, t) represents the value of the derivative security, x is the value of the
underlying security, t is the time, r is the risk-free interest rate, and σ is the volatility
of the underlying asset [85]. By changing variable to τ = T − t, we obtain the following
equation:

∂u

∂τ
=

1

2
(σx)2

∂2u

∂x2
+ rx

∂u

∂x
− ru (11.2)

with an initial condition u(x, 0) = p(x). For example, for the call option, the payoff
function is p(x) = max(x−K, 0) with a given strike price K [87].

By extending one-dimension Black-Scholes Eq. (11.1) to two-dimensional problem,
we can written as

∂u

∂τ
= BSu, (x, y, τ) ∈ (0,∞) × (0,∞) × (0, T ], (11.3)

where BS is the operator

BS =
1

2
σ2

1x
2 ∂

2

∂x2
+

1

2
σ2

2y
2 ∂

2

∂y2
+ ρσ1σ2xy

∂2

∂x∂y
+ rx

∂

∂x
+ ry

∂

∂y
− r.

The partial derivatives in Eq. (11.3) are defined in the unbounded domain

{(x, y, t)|x ≥ 0, y ≥ 0, t ∈ [0, T ]} .
We truncate this domain into a finite computational domain

(x, y, t) ∈ [0, L] × [0,M ] × [0, T ],
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where L and M are large enough so that the error in the price u due to the truncation
is negligible. On the boundary, we apply the linear boundary conditions,

The finite difference method is applied to the equation over a truncated finite do-
main and the original asymptotic infinite boundary conditions are shifted to the ends
of the truncated finite domain. To avoid generating large errors in the solution due to
this approximation of the boundary conditions, the truncated domain must be large
enough. The purpose of this work is to propose an adaptive grid distribution depend-
ing on a far-field boundary position to solve the Black-Scholes equation accurately and
efficiently.

The outline of the Chapter is the following. In Sec. 11.2, we present the pro-
posed numerical scheme. Sec. 11.3 presents the results of the numerical experiments.
Conclusions are made in Sec. 11.4.

11.2. Numerical solution

11.2.1. Discretization with finite differences. The finite difference method
approximates the derivatives by difference operators. This finite difference method is
a common numerical method that has been used in computational finance by many
authors. For an introduction to these methods we can recommend the books [86, 92,
93, 94, 95].

11.2.1.1. One dimensional space. The BS equation is discretized on a non-uniform
grid defined by x0 = 0 and xi+1 = xi + hi for i = 0, · · · , Nx − 1, where Nx is the total
number of grid intervals and hi is the grid spacing, see Fig. 11.1.

0

x0 x1 · · · xi−1 xi xi+1 · · ·

L

xNx
x

hi−1 hi

Figure 11.1. A non-uniform grid with space step sizes hi.

Let us denote the numerical approximation of the solution by

un
i ≡ u(xi, τ

n), for i = 0, . . . , Nx and n = 0, . . . , Nτ ,

where τn = n∆τ , ∆τ = T/Nτ , and Nτ is the total number of time steps. By
applying the implicit scheme to Eq. (11.2), we have

un+1
i − un

i

∆τ
= BSun+1

i , (11.4)

where the discrete difference operator BSun+1
i is defined by

BSun+1
i =

σ2x2
i

2

(
∂2u

∂x2

)n+1

i

+ rxi

(
∂u

∂x

)n+1

i

− run+1
i .
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For the first and the second derivatives we have
(
∂u

∂x

)n+1

i

≈ hi−1

hi(hi−1 + hi)
un+1

i+1 +
hi − hi−1

hi−1hi
un+1

i − hi

hi−1(hi−1 + hi)
un+1

i−1 ,

(
∂2u

∂x2

)n+1

i

≈ 2

hi(hi−1 + hi)
un+1

i+1 − 2

hi−1hi
un+1

i +
2

hi−1(hi−1 + hi)
un+1

i−1 .

Rewrite the above Eq. (11.4) by

αiu
n+1
i−1 + βiu

n+1
i + γiu

n+1
i+1 =

un
i

∆τ
, (11.5)

where αi = − σ2x2
i

hi−1(hi−1+hi)
+ rxihi

hi−1(hi−1+hi)
, βi =

σ2x2
i

hi−1hi
− rxi(hi−hi−1)

hi−1hi
+ r + 1

∆τ ,

γi = − σ2x2
i

hi(hi−1+hi)
− rxihi−1

hi(hi−1+hi)
.

Linear boundary condition [91, 94, 96] is defined by ∂2u
∂x2 (L, τ) = 0, ∀τ ∈ [0, T ]. We

discretize the linear boundary condition as

un+1
Nx−1 − 2un+1

Nx
+ un+1

Nx+1

h2
= 0. (11.6)

By substituting Eq. (11.6) in Eq. (11.4) we can get

rxNx

h
un+1

Nx−1 +

(
1

∆τ
− rxNx

h
+ r

)
un+1

Nx
=
un

Nx

∆τ
. (11.7)

And we can rewrite this Eq. (11.7) by matrix form




β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−1 βNx−1 γNx−1

0 . . . 0 αNx βNx







un+1
1

un+1
2
...

un+1
Nx−1

un+1
Nx




=




b1
b2
...
bNx−1

bNx



,

where αNx = rNx, βNx = 1
∆τ − rNx + r, and bNx =

un
Nx

∆τ .
As one dimensional space, the BS equation is discretized on a non-uniform grid

defined by x0 = y0 = 0, xi+1 = xi + hi and yj+1 = yj + hj for i = 0, 1, · · · , Nx − 1 and
j = 0, 1, · · · , Ny −1, where Nx, Ny are the total number of grid intervals and hi, hj are
the grid spacing. Fig. 11.2 (a) and (b) represent such assumptions.

The numerical approximations of the solution are denoted by

un
ij ≡ u(xi, yj, τ

n),

where i = 0, · · · , Nx, j = 0, · · · , Ny and n = 0, · · · , Nt. By applying the implicit scheme
to Eq. (11.3), we have

un+1
ij − un

ij

∆τ
= BSun+1

ij , (11.8)
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Figure 11.2. (a) A non-uniform grid with space step size hi and hj .
(b) Two-dimensional adaptive mesh.

where the discrete difference operator BSun+1
ij is defined by

BSun+1
ij =

σ2
1x

2
i

2

(
∂2uij

∂x2
i

)n+1

+
σ2

2y
2
j

2

(
∂2uij

∂y2
j

)n+1

+ ρσ1σ2xiyj

(
∂2uij

∂xi∂yj

)n+1

(11.9)

+ rxi

(
∂uij

∂xi

)n+1

+ ryj

(
∂uij

∂yj

)n+1

− run+1
ij . (11.10)

For the first and second derivatives we have

(
∂u

∂x

)n+1

i

≈ hi−1

hi(hi−1 + hi)
un+1

i+1,j +
hi − hi−1

hi−1hi
un+1

ij − hi

hi−1(hi−1 + hi)
un+1

i−1,j ,

(
∂2u

∂x2

)n+1

i

≈ 2

hi(hi−1 + hi)
un+1

i+1,j −
2

hi−1hi
un+1

ij +
2

hi−1(hi−1 + hi)
un+1

i−1,j ,

(
∂2u

∂x∂y

)n+1

≈
un+1

i+1,j+1 − un+1
i+1,j − un+1

i,j+1 + un+1
ij

hihj
.

Now, to solve the two-dimensional Black-Scholes equation, we use the basic operator
splitting(OS) methods. The OS scheme is to divide each time step into fractional time
steps with simpler operators. Therefore, the basic idea behind OS method is to replace
a two-dimensional scheme as

un+1
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij + Ly

BSu
n+1
ij , (11.11)
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where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSu

n+ 1
2

ij = σ2
1x

2
i


 u

n+ 1
2

i−1,j

hi−1(hi−1 + hi)
−

u
n+ 1

2
ij

hi−1hi
+

u
n+ 1

2
i+1,j

hi(hi−1 + hi)




+λ1σ1σ2ρxiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

hihj

+rxi


−

hiu
n+ 1

2
i−1,j

hi−1(hi−1 + hi)
+

(hi − hi−1)u
n+ 1

2
ij

hi−1hi
+

hi−1u
n+ 1

2
i+1,j

hi(hi−1 + hi)




−λ2ru
n+ 1

2
ij , (11.12)

Ly
BSu

n+1
ij = σ2

2y
2
j

(
un+1

i,j−1

hj−1(hj−1 + hj)
−

un+1
ij

hj−1hj
+

un+1
i,j+1

hj(hj−1 + hj)

)

+(1 − λ1)σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

hihj

+ryj

(
−

hju
n+1
i,j−1

hj−1(hj−1 + hj)
+

(hj − hj−1)u
n+1
ij

hj−1hj
+

hj−1u
n+1
i,j+1

hj(hj−1 + hj)

)

−(1 − λ2)ru
n+1
ij , (11.13)

where hi = xi+1 − xi, hj = yj+1 − yj.

The first leg is implicit in x-direction while the second leg is implicit in y-direction.
The OS scheme moves from the time level n to a intermediate time level n + 1/2 and
then to time level n + 1. The idea behind operator splitting is to split space two one-
dimensional problems. We then approximate each sub-problem by implicit or explicit
schemes. Thus, we are considering of two one-dimensional discrete equations.

u
n+ 1

2
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij , (11.14)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

BSu
n+1
ij . (11.15)

Note that the addition of two Eqs. (11.14) and (11.15) results in Eq. (11.11). We have
the linear boundary conditions

∂2

∂x2
u(0, y, t) =

∂2

∂x2
u(L, y, t) =

∂2

∂y2
u(x, 0, t) =

∂2

∂y2
u(x,M, t) = 0,

∀t ∈ [0, T ], for 0 ≤ x ≤ L, 0 ≤ y ≤M.

Given the solution un, we want to find un+1 which satisfies Eq. (11.11).
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Algorithm
Step 1. Equation (11.14) is rewritten as follows.

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij .

The first step of the OS method is then implemented in a loop over the y-direction:

for j = 1, ..., Ny

for i = 1, ..., Nx

fij = λ1ρσ1σ2xiyj

un
i+1j+1 − un

i+1j − un
ij+1 + un

ij

hihj
+
un

ij

∆τ

end

solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using a Thomas algorithm

end

Here the matrix Ax is a tridiagonal matrix,

Ax =




β1 γ1 0 . . . 0
α2 β2 γ2 0

0 α3
. . .

. . .
...

...
. . .

. . . γNx−1

0 0 αNx βNx




and the elements of the matrix are

β1 =
1

∆τ
+
σ2

1x
2
1

h0h1
+
rx1

h1
+ λ2r −

2σ2
1x

2
1

h0(h0 + h1)
,

γ1 = − σ2
1x

2
1

h1(h0 + h1)
− rx1

h1
+

σ2
1x

2
1

h0(h0 + h1)
,

αi = − σ2
1x

2
i

hi−1(hi−1 + hi)
, βi =

1

∆τ
+

σ2
1x

2
i

hi−1hi
+
rxi

hi
+ λ2r,

γi = − σ2
1x

2
i

hi(hi−1 + hi)
− rxi

hi
, for i = 2, ..., Nx − 1.

αNx = −
σ2

1x
2
Nx

hNx−1(hNx−1 + hNx)
+

σ2
1x

2
Nx

hNx(hNx−1 + hNx)
+
rxNx

hNx

,

βNx =
1

∆τ
+

σ2
1x

2
Nx

hNx−1hNx

− rxNx

hNx

+ λ2r −
2σ2

1x
2
Nx

hNx(hNx−1 + hNx)
.
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11.2.2. Space adaptivity. In this section we propose an adaptive grid technique
which is based on a far-field boundary position of the equation. In [91], authors used
an adaptive technique based on a local discretization error. Adaptive finite element
[89] and finite difference [90] methods were used for American options.

We will start with a one-dimensional problem. In the case of a European call, with
boundary condition at x = Smax set to the payoff, for x ∈ (0,K), u(x, τ) and w(x, τ)
satisfy the following inequality:

|u(x, τ) − w(x, τ)|

≤ (Smax +K) exp

(
− ln Smax

K

(
ln Smax

K + min{0, σ2 − 2r}τ
)

2σ2τ

)
≤ K

A

whereK/A is the maximum truncation error. By dividing both sides byK and replacing
Smax/K to α, we rewrite the above inequality as

(α+ 1) exp

(
− lnα

(
lnα+ (σ2 − 2r)τ

)

2σ2τ

)
≤ 1

A
, (11.16)

where we assumed σ2 − 2r < 0. By rearranging inequality (11.16), we obtain

(lnα)2 + (σ2 − 2r)τ lnα ≥ 2σ2τ ln(α+ 1) + 2σ2τ lnA (11.17)

Since lnx is increasing function, inequality (11.17) is rewritten as follow:

(lnα)2 + (σ2 − 2r)τ lnα ≥ 2σ2τ ln(α) + 2σ2τ lnA. (11.18)

(lnα)2 − (σ2 + 2r)τ lnα− 2σ2τ lnA ≥ 0. (11.19)

The graphs in Fig. 11.3 represent lnα of the above inequalities (11.17) and (11.18)
with σ = 0.3, r = log(1.1), T = 2, K = 50, A = 100. As you can see in Fig. 11.3,
inequalities (11.17) and (11.18) have almost similar solutions. So we can determine
Smax by using the solution of inequality (11.18) without significant difference. This
estimate tells us that if

Smax ≥ Ke(0.5σ2+r)τ+0.5
√

(σ2+2r)2τ2+8σ2τ ln A,

then we can be sure that w(x, τ), the solution of the truncated problem, gives us a
value for the call option today that is within K/A from the correct value, provided the
price of the underlying asset is not greater than the exercise price K [88].

For options with two underlying assets, we have

Smax ≥ Ke(0.5σ2+r)τ+0.5
√

(σ2+2r)2τ2+8σ2τ ln(2A),

The adaptive process aims at creating a grid with a uniform and fine grid around
the strike price and increasing grid sizes toward the far field boundary. To do this, we
define a grid function h(x) as

h(x) =

{
p(x−K − (m− 0.5)h̄)d + h̄ if x ≥ K + (m− 0.5)h̄,
p(x−K + (m− 0.5)h̄)d + h̄ if x ≤ K − (m− 0.5)h̄,

where p and d are real positive numbers.
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Figure 11.3. The graph of the inequalities. (11.17) and (11.18) with
σ = 0.3, r = log(1.1), T = 2, K = 50, A = 100.

First, we allocate 2m grid points around the strike price K with the grid size h̄. We
start at xi = K + (m− 0.5)h̄ and look at the discrete function value h(xi). And define
xi+1 = xi + h(xi). We proceed this process until we get Nx − 1 such that xNx−1 ≤
Smax < xNx . For the left side of grid generation, we start at xi = K − (m− 0.5)h̄ and
define xi−1 = xi + h(xi). We proceed this process until we get x0 ≤ 0 < x1. If x0 < 0,
then we redefine x0 = 0. This procedure is schematically described in Fig. 11.4.

11.3. Computational results

In this section, we perform numerical experiments. The main focus in the numerical
tests is on the performance of the proposed adaptive grid technique over the normal
uniform grid method.

For a European call option, we have the closed form solution for the Black-Scholes
equation as

u(x, τ) = xN(d1) −Ke−rτN(d2), ∀x ∈ [0, L], ∀τ ∈ [0, T ]

d1 =
log(x/K) + (r + 1

2σ
2)τ

σ
√
τ

, d2 = d1 − σ
√
τ ,

where N(d) = (1/
√

2π)
∫ d
−∞ exp

(
−x2/2

)
dx is the standard normal distribution

function [85].

11.3.1. Uniform gird. In this section, the effect and accuracy of the far-field
boundary condition using European call option is studied. The parameters used are:
σ = 0.35, r = 0.05, and space size h = 1. We considered a domain, Ω = (0, L). For
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Figure 11.4. Constructing the adaptive grid using the function h(x).

each case, we ran the calculation up to time T with a uniform time step ∆τ = 0.01.
The initial condition is u(x, 0) = max(x−K, 0) with strike price K = 100.

Fig. 11.5(a), (b), and (c) show the initial profile, numerical solutions at time T with
different boundary conditions, and exact solutions on each domain L = 150, 200, and 300,
respectively. When the domain size is L = 150, we can observe a large deviation of
numerical solutions from the exact solution. And when we increase the domain size by
L = 200, we have a good result from all four boundary conditions. However, when we
increase the time T = 5, we again have a large deviation. This result implies that we
need a large enough domain size which depends on T .

11.3.2. Adaptive grid. Fig. 11.6 represents the result of the relative root mean
square error (RMSE) on [0.9K, 1.1K] with different Nx and time T = 1. For the
adaptive grid generation, we use p = 0.1 and d = 1. Here, the relative RMSE is defined
as

Relative RMSE =

√√√√ 1

N

N∑

i=1

(
ui − u(xi)

ui

)2

,

where N is the number of points on [0.9K, 1.1K] and u is the exact solution. In
Fig. 11.6, ‘◦’,‘2’, and ‘3’ show the result using h̄ = 1, 0.5, and 0.25 on adaptive
mesh, respectively and ‘•’,‘�’, and ‘�’ represent h = 1, 0.5, and 0.25 on uniform mesh,
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Figure 11.5. Different boundary conditions with domain and time (a)
L = 150, T = 1 (b) L = 200, T = 1, and (c) L = 200, T = 5.

respectively. From the results, we see the convergence of the relative RMSE to the
uniform grid as the number of grid points around the strike price K. We note that if
we compare results from a uniform grid h and adaptive grid h̄ = 0.5h with smaller grid
points Nx, we can see the better performance of the adaptive grid technique.

Similarly, Fig. 11.7 shows the result with longer total time T = 3. From this result,
we confirm the effectiveness of the adaptive grid method.

Table 11.1 represents computational results such as relative CPU time, RMSE on
[0.9K, 1.1K] and grid points Nx at time T = 1 on adaptive and uniform grids. We
use a space step h in case of uniform grid and h̄ = 0.5h in case of adaptive grid.
For fair comparison test, we matched the relative RMSE of both methods. The CPU
time taken from uniform grids are greater than the adaptive grid method. Also, total
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Figure 11.6. Relative RMSE on [0.9K, 1.1K] with different Nx and
T = 1. Lines with symbols, ‘◦’,‘2’, and ‘3’ represent h̄ = 1, 0.5, and
0.25 on adaptive mesh, respectively. Also, symbols, ‘•’,‘�’, and ‘�’
represent h = 1, 0.5, and 0.25 on uniform mesh, respectively.

number of grid points Nx on adaptive grid is much smaller than uniform grid. Overall,
the performance of the adaptive grid outperforms the uniform grid.

Case h = 1 h = 0.5 h = 0.25

CPU time
Adaptive 1 1 1
Uniform 12.0021 32.3834 64.9243

RMSE
Adaptive 2.62E − 4 1.86E − 4 1.13E − 4
Uniform 2.63E − 4 1.86E − 4 1.13E − 4

Nx
Adaptive 17 32 79
Uniform 291 581 1159

Table 11.1. Comparison of relative CPU time, RMSE, and grid points
Nx on adaptive and uniform grids at time T = 1. Here, h̄ = 0.5h is used
on adaptive mesh.

Similarly, Table 11.2 shows computational results such as relative CPU time, RMSE
on [0.9K, 1.1K] and grid points, Nx at time T = 3 on adaptive and uniform mesh. With
this longer time, the adaptive method performs noticeably better.

To confirm the effectiveness of adaptive grid method in two-dimensional case, we
get the difference with the exact and numerical values at (x, y) = (100, 100) with cash-
or-nothing payoff on uniform and adaptive mesh, respectively. As a result, the resulting
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Figure 11.7. Relative RMSE on [0.9K, 1.1K] with different Nx and
T = 3. Lines with symbols, ‘◦’,‘2’, and ‘3’ represent h̄ = 1, 0.5, and
0.25 on adaptive mesh, respectively. Also, symbols, ‘•’,‘�’, and ‘�’
represent h = 1, 0.5, and 0.25 on uniform mesh, respectively.

Case h = 1 h = 0.5 h = 0.25

CPU time
Adaptive 1 1 1
Uniform 37.0139 102.5921 217.8538

RMSE
Adaptive 9.81E − 5 6.93E − 5 4.91E − 5
Uniform 9.82E − 5 6.95E − 5 4.91E − 5

Nx
Adaptive 42 75 139
Uniform 291 581 1159

Table 11.2. Comparison of relative CPU time, RMSE, and grid points,
Nx on adaptive and uniform mesh at time T = 3. Here, h̄ = 0.5h is
used on adaptive mesh.

error using h̄ = 1 and Nx = Ny = 79 on adaptive mesh is 1.068E-5, but the result on
uniform mesh with h = 1 and Nx = Ny = 249 is 1.837E-5

Therefore, results on the adaptive mesh are more efficient and faster than the
uniform mesh on same accuracy in two-dimensional case.

11.4. Conclusions

An accurate and efficient numerical method for the Black-Scholes equations is de-
rived in this Chapter. The method uses an adaptive technique which is based on a
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far-field boundary position of the equation. Numerical tests were presented to demon-
strate the accuracy and efficiency of the method. In particular, the computational time
was reduced substantially when compared to a uniform grid.
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Chapter 12

An efficient and accurate numerical scheme for Turing

instability on a predator-prey model

We present an efficient and accurate numerical method for solving a ratio dependent
predator-prey model with Turing instability. The system is discretized by a finite
difference method with a semi-implicit scheme which allows much larger time step sizes
than a standard explicit scheme. A proof is given for the positivity and boundedness
of the finite difference solutions depending only on time step sizes. Finally, we perform
numerical experiments demonstrating the robustness and accuracy of the numerical
solution the Turing instability. Also, we show the numerical non-constant stationary
solutions with amplitudes.

12.1. Introduction

For a pair of predator and prey model, experimental search observes that the preda-
tor’s growth rate is a function of the ratio of prey to predator abundance [114]. A model
considering this ratio is called the ratio-dependent model which seems more appropri-
ate in systems [97, 103, 113]. Therefore we consider a ratio-dependent model having
Turing instability. In Turing instability, the equilibrium solution is asymptotically sta-
ble in the kinetic system (without diffusion), but it is unstable with diffusion term.
Turing instability has been extensively investigated for biological and chemical process
[107, 109, 112]. Moreover, pattern formation from the Turing instability in nonlinear
complex systems is actively investigated in the fields such that social and molecular
computing [105, 98]. Here we focus on the numerical scheme for a reaction diffusion
dynamical systems, particulary ratio-dependent model with Turing instability.

A model having been widely used for a predator-prey model is a simple Holling
Type II [102] which has a constant mortality of the predator. However, [101] intro-
duced a more realistic model, in the model the predator mortality is an increasing
function (neither a constant nor an unbounded) of the predator’s abundance. We use
the modified Cavani and Farkas [99, 100] ratio-dependent model with diffusion and
without delay, proposed by [123].

Let N(x, t) and P (x, t) be the prey and predator population densities for time t
and space x on the one dimensional domain Ω = (0, l), respectively. The governing
equations are:

Nt = rN

(
1 − N

K

)
− aNP

mP +N
+D1Nxx, (12.1)

Pt = −P (γ + δP )

1 + P
+

bNP

mP +N
+D2Pxx, (12.2)
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where a, b, r, m, γ, δ, D1, D2, and K are positive constants. Subscripts denote
partial differentiation with respect to the variables.

The prey grows with the intrinsic growth rate r and the constant carrying capacity
K. The presence of the predator reduces the prey’s growth rate with a capturing rate
a and the time spend capturing saturation depending on the predator density mP .
And the predator’s mortality is (γ + δP )/(1 + P ) where γ and δ are the minimal and
limiting mortalities of the predator, respectively. Naturally, we assume that 0 < γ ≤ δ.
Also, the prey’s contribution to the predator’s growth rate is bNP/(mP + N) where
b is a conversion rate. Assume that the prey and predator diffuse by Fick’s law with
constant diffusions D1 and D2. The boundary conditions satisfy the homogeneous
Neumann boundary conditions:

Nx(0, t) = Nx(l, t) = Px(0, t) = Px(l, t) = 0

and initial conditions are given by

N(x, 0) > 0, P (x, 0) > 0, x ∈ (0, l).

The governing Eqs. (12.1) and (12.2) can be non-dimensionalized by introducing
dimensionless variables

t̃ = rt, Ñ =
N

K
, P̃ =

mP

K
, x̃ =

x

l

and

α =
a

mr
, γ̃ =

γ

b
, δ̃ =

δ

b
, ǫ =

b

r
, β =

K

r
, d1 =

D1

l2r
, d2 =

D2

l2r
.

After omitting tilde notation, we get the following non-dimensional system:

Nt = N(1 −N) − αNP

P +N
+ d1Nxx, (12.3)

Pt = −ǫP (γ + δβP )

1 + βP
+

ǫNP

P +N
+ d2Pxx, (12.4)

on the one dimensional space domain Ω = (0, 1), with the positive initial conditions
and the boundary conditions

Nx(0, t) = Nx(1, t) = Px(0, t) = Px(1, t) = 0. (12.5)

We demonstrate the numerical solutions of this system, particulary with semi-implicit
scheme. Using our scheme, we prove stability depending only on a time scales and the
numerical experience are efficiently and accurately performed.

This Chapter is organized as follows. In Section 2, we investigate the equilibrium
stationary solution in the kinetic systems, the Turing instability conditions, and the
non-constant stationary solution with small amplitudes in diffusion-reaction system
with a general method [123, 99, 100, 104, 106]. In Section 3, we propose the efficient
and accurate numerical scheme for the Turing instability. Moreover, we analyze and
prove the positivity and boundedness of numerical solutions. In Section 4, we illustrate
the numerical solutions with respect to the Turing instability region and we demonstrate
numerical experiments of the non-constant stationary solution with small amplitudes as
time goes. Finally, we calculate the stability constraint for an explicit scheme comparing
with our semi-implicit scheme.
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12.2. A model analysis

12.2.1. The model without diffusion. In the kinetic system, we get the equi-
librium points by setting the derivative term as zero. Then the equilibrium points are
(0, 0), (1, 0), and at least one point having positive values which is the point of inter-
section of the null-clines as shown in Fig. 12.1. The prey and predator’s null-clines
are

P = H1(N) =
(1 −N)N

α− 1 +N
,

P = H2(N) =
−γ − β(δ − 1)N +

√
[γ + β(δ − 1)N ]2 + 4δβ(−γ + 1)N

2βδ
,

respectively.
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(N̄ , P̄ )

P = H1(N )
P = H2(N )

Figure 12.1. Null-clines of N and P with ǫ = 1, α = 1.1, γ = 0.05, β =
1andδ = 0.5.

Let (N,P ) be the equilibrium point with positive values, then (N,P ) is in the Allée
effect zone [111] as shown in Fig. 12.1. Therefore there exist stable equilibrium points
with positive values for the given constants. To observe the local stability near (N,P ),
let u = N−N and v = P −P . Then with the Jacobian matrix A, the linearized kinetic
system forms

(
ut

vt

)
= A

(
u

v

)
, where A =

(
a11 −a12

a21 −a22

)
.

Therefore in the kinetic system, (N,P ) is locally asymptotically stable when traceA < 0
and detA > 0, that is, a11 < a22, and a12a21 > a11a22.
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12.2.2. The model with diffusion. Let the two-dimensional vector u = (N,P )T ,
the diagonal matrix D=diag(d1, d2), and F = (g1, g2)

T where

g1(N,P ) = N(1 −N) − αNP

P +N
, g2(N,P ) = P

(
−γ + δP

1 + P

)
+

bNP

mP +N
.

Then the Eqs. (12.3)-(12.5) can be written as

ut = F (u) +Duxx, (12.6)

ux(0, t) = ux(1, t) = 0. (12.7)

The equilibrium u = (N,P ) is called Turing unstable if it is an asymptotically
stable equilibrium of the kinetic system but it is unstable with diffusion term [99, 100].
The definition implies that the solution of the nonlinear system having initial values
u(x, 0) close to u, but does not approach to u as time t goes infinity.

With a linear analysis using a method of separation variables and eigenvalue prob-
lem,

the eigenvalues are ζn = (nπ)2, n = 0, 1, 2, · · · with corresponding eigenfunctions
ψn(x) = cos(nπx), n = 0, 1, 2, · · · of the linearlized system of Eqs. (12.6) and (12.7)
[123, 99, 100, 104].

Let Bn = A− ψnD. Then

traceBn = a11 − a22 − ζn(d1 + d2),

detBn = a12a21 − a11a22 + ζn(d1a22 − d2a11) + ζ2
nd1d2.

With the stable condition in the kinetic system, the equilibrium solution (N,P ) is
Turing unstable when

d1a22 < d2a11 and (d1a22 − d2a11)
2 − 4d1d2(a12a21 − a11a22) > 0 or there exists a

positive integer k such that detBk < 0.
Here we consider the singular perturbation analysis for d2 near the bifurcation

point. The singular perturbation analysis is that it is sufficient to consider only one
diffusion even though there exist two diffusions. So we fix d1 and take d2 as a bifurcation
parameter.

For u = (N,P )T , we have F (d2,u) = 0 for all d2 ∈ [0,∞). And we let dc be the
critical value for a Turing bifurcation.

We say that u undergoes a Turing bifurcation at dc ∈ [0,∞) if the solution u is
asymptotically stable for 0 < d2 < dc and it is unstable for dc < d2, and Eq. (12.6) has
non-constant stationary solution in some neighborhood of dc. The stationary solution
does not depend on time but depends on space [123, 99, 100, 104].

Therefore for all d2 > 0, consider the condition for detBn < 0. When we write
down detBn as

detBn = d2ζn(ζnd1 − a11) + a12a21 − a11a22 + ζnd1a22,

and since ζn is monotonic increasing, a11/ζ2 ≤ d1 < a11/ζ1. The eigenvalues λi for
i = 1, 2 of Bn satisfies λ2

i − traceBnλi + detBn = 0. Since Turing bifurcation occurs
when the real and imaginary part of λ is 0, the critical value for a Turing bifurcation
dc satisfies

dc =
a12a21 − a11a22 + ζ1d1a22

ζ1(a11 − ζ1d1)
. (12.8)
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When d2 = dc, the eigenvalues are zero and traceBn. Since traceBn < 0, we
consider the zero eigenvalue. Denote the unit eigenvector corresponding to the zero
eigenvalue by (η1, η2)

T . Then Turing unstable solution of the linearlized system of Eqs.
(12.6) and (12.7) forms

φ(x) =

(
η1

η2

)
cos (πx) .

For the non-linear Eqs. (12.6) and (12.7), by Thm. 13.4 [110], (dc, 0) is a bifurcation
point and there exists a δ > 0 satisfying a function d2(s) : (−δ, δ) → R,

u(x, s) = u + sφ(x) cos(πx) +O(s2) (12.9)

as the non-constant stationary solution of the nonlinear parabolic system. If we rewrite
the above equation in the component form, then

N(x) = N + sη1 cos(πx) +O(s2),

P (x) = P + sη2 cos(πx) +O(s2).

By Thm. 13.4 [110], Eqs. (12.6) and (12.7) have no other stationary solution except
(N,P ) and Eq. (12.9).

12.3. Numerical solution

12.3.1. Proposed numerical scheme. Let us first discrete the given computa-
tional space domain Ω = (0, 1) as a uniform grid with a space step h = 1/Nx and a
time step ∆t = T/Nt. The numerical approximation to the solution (N,P ) is denoted
by

Nn
i ≡ N(xi, t

n) = N((i− 0.5)h, n∆t),

Pn
i ≡ P (xi, t

n) = P ((i− 0.5)h, n∆t)

where i = 1, 2, · · · , Nx and n = 0, 1, · · · , Nt.
First, we solve Eqs. (12.3) and (12.4) using the semi-implicit scheme in time and a

centered difference scheme in space. Since fully explicit schemes may have restriction
of time step by diffusion term and fully implicit schemes may be expensive [108], it is
efficient to use the semi-implicit scheme. We write the schemes as follows:

Nn+1
i −Nn

i

∆t
= Nn

i

(
1 −Nn

i − αPn
i

Pn
i +Nn

i

)
+ d1∆hN

n+1
i , (12.10)

Pn+1
i − Pn

i

∆t
= ǫPn

i

(
−γ + δβPn

i

1 + βPn
i

+
Nn

i

Pn
i +Nn

i

)
+ d2∆hP

n+1
i (12.11)

for i = 1, · · · , Nx and n = 0, · · · , Nt − 1.

Assume that the initial condition of N satisfies 0 < N(x, 0) ≤ 1 and P satisfies
0 < P (x, 0) ≤ L for all x and for L = max(1/γ,Q) for some positive Q > 1/γ. And for
the boundary condition, Neumann condition holds as follows:

Nn
0 = Nn

1 , N
n
Nx+1 = Nn

Nx
, Pn

0 = Pn
1 , P

n
Nx+1 = Pn

Nx
.

Since we discretize the system for a linear term explicitly and a nonlinear term implic-
itly, it is convenient to split the scheme into following two steps.
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Step 1)

N∗
i −Nn

i

∆t
= Nn

i

(
1 −Nn

i − αPn
i

Pn
i +Nn

i

)
, (12.12)

P ∗
i − Pn

i

∆t
= ǫPn

i

(
−γ + δβPn

i

1 + βPn
i

+
Nn

i

Pn
i +Nn

i

)
. (12.13)

Step 2)

Nn+1
i −N∗

i

∆t
= d1

Nn+1
i−1 − 2Nn+1

i +Nn+1
i+1

h2
, (12.14)

Pn+1
i − P ∗

i

∆t
= d2

Pn+1
i+1 − 2Pn+1

i + Pn+1
i−1

h2
. (12.15)

12.3.2. The positiveness and boundedness of the solution under certain
condition of ∆t. Now we will show the positiveness and boundedness of the solution
under certain condition of ∆t. Suppose that 0 < Nn

i ≤ 1, 0 < Pn
i ≤ L for i = 1, · · · , Nx

and L = max(1/γ,Q) for some positive Q.
Firstly, for the nonlinear term of Step 1, we show the positiveness and boundedness

of N∗
i and P ∗

i for i = 1, · · · , Nx.

N∗
i = Nn

i + ∆tNn
i

(
1 −Nn

i − αPn
i

Pn
i +Nn

i

)

≥ Nn
i + ∆tNn

i (1 −Nn
i ) − ∆tαNn

i

≥ Nn
i − ∆tαNn

i = (1 − ∆tα)Nn
i > 0

when ∆t < 1/α. And

N∗
i = Nn

i + ∆tNn
i

(
1 −Nn

i − αPn
i

Pn
i +Nn

i

)

≤ Nn
i + ∆tNn

i (1 −Nn
i ) ≤ Nn

i + ∆t(1 −Nn
i )

= Nn
i (1 − ∆t) + ∆t ≤ 1 − ∆t+ ∆t = 1

when ∆t ≤ 1. Secondly, for P ∗, we have

P ∗
i = Pn

i + ∆tǫPn
i

(
−γ + δβPn

i

1 + βPn
i

+
Nn

i

Pn
i +Nn

i

)

≥ Pn
i + ∆tǫPn

i

(
−δ +

δ − γ

1 + βPn
i

)
≥ Pn

i

(
1 − ∆tǫ

γ + δβ

1 + β

)
> 0

when ∆t < (1 + β)/(ǫγ + ǫδβ). And using 0 < γ ≤ δ , we get

P ∗
i = Pn

i + ∆tǫPn
i

(
−γ + δβPn

i

1 + βPn
i

+
Nn

i

Pn
i +Nn

i

)

≤ Pn
i + ∆tǫPn

i

(
−γ + γβPn

i

1 + βPn
i

+
1

Pn
i

)

= Pn
i − ∆tǫPn

i γ + ∆tǫ = Pn
i (1 − ∆tǫγ) + ∆tǫ

≤ L(1 − ∆tǫγ) + ∆tǫ = L+ ∆tǫγ(1/γ − L) ≤ L
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for all ∆t. By these results, for Eqs. (12.12) and (12.13), if

0 < Nn
i ≤ 1, 0 < Pn

i ≤ L for i = 0, · · · , Nx

and ∆t < min (1, 1/α, (1 + β)/(ǫγ + ǫδβ)), then

0 < N∗
i ≤ 1, 0 < P ∗

i ≤ L for i = 1, · · · , Nx.

Next, for the linear term of Step 2, we need to show the boundedness and positive-
ness of Nn+1

i and Pn+1
i for i = 1, · · · , Nx. So we need to show for i = 1, · · · , Nx,





Nn+1
i ≥ m∗ > 0 where m∗ = min1≤k≤Nx

N∗
k

Nn+1
i ≤M∗ ≤ 1 where M∗ = max1≤k≤Nx

N∗
k

Pn+1
i ≥ m′∗ > 0 where m′∗ = min1≤k≤Nx

P ∗
k

Pn+1
i ≤M ′∗ ≤ L where M ′∗ = max1≤k≤Nx

P ∗
k .

(12.16)

To show the first inequality of Eq. (12.16), assume contrary that Nn+1
i < m∗, then

there exists some i, 2 ≤ i ≤ Nx − 1 which satisfies Nn+1
i ≤ min(Nn+1

i−1 , N
n+1
i+1 ). Let

ω = d1∆t/h
2. Then Eq. (12.14) can be written as

(1 + 2ω)Nn+1
i = N∗

i + ω(Nn+1
i−1 +Nn+1

i+1 ).

Since Nn+1
i < N∗

i by the assumption, we rewrite above equation as Nn+1
i > (Nn+1

i−1 +

Nn+1
i+1 )/2, and which implies that either Nn+1

i > Nn+1
i−1 or Nn+1

i > Nn+1
i+1 . But since it

contradicts to the assumption, we have Nn+1
i ≥ m∗.

For the case of i = 1, assume Nn+1
1 < m∗ such that Nn+1

1 ≤ Nn+1
2 , then using the

homogeneous Neumann boundary condition Nn+1
0 = Nn+1

1 , we have (1 + ω)Nn+1
1 =

N∗
1 + ωNn+1

2 . Therefore, we have Nn+1
1 > Nn+1

2 , which contradicts our assumption.

In the case of Nn+1
Nx

< m∗ and Nn+1
Nx

≤ Nn+1
Nx−1, the same result holds with the same

reasoning.
And we show the second inequality of Eq. (12.16). Assume contrary as Nn+1

i > M∗

such that Nn+1
i ≥ max(Nn+1

i−1 , N
n+1
i+1 ) for some i, 2 ≤ i ≤ Nx − 1. Then Eq. (12.14) is,

(1 + 2ω)Nn+1
i = N∗

i + ω(Nn+1
i−1 +Nn+1

i+1 ).

Therefore we have Nn+1
i < (Nn+1

i−1 +Nn+1
i+1 )/2 by the assumption, which implies that

either Nn+1
i < Nn+1

i−1 or Nn+1
i < Nn+1

i+1 , which contradicts to the assumption. So, we

have Nn+1
i ≤ M∗. For the case of i = 1 and Nx, we can show the inequality applying

the same argument as before.
Also, using same argument the third and the fourth inequality of Eq. (12.14) can

be proved, if 0 < P ∗
i ≤ L for i = 1, · · · , Nx, then 0 < Pn+1

i ≤ L for i = 1, · · · , Nx.
Collecting all the above results, we get the following theorem:

Theorem. Let 0 < N0
i ≤ 1, 0 < P 0

i ≤ L for i = 1, · · · , Nx where L = max{1, Q}
for some positive Q. Suppose that

∆t ≤ min

(
1,

1

α
,

1 + β

ǫ(γ + δβ)

)
.
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Then the numerical solutions Nn+1
i and Pn+1

i obtained iteratively by Eqs. (12.10) and
(12.11) satisfy

0 < Nn+1
i ≤ 1, 0 < Pn+1

i ≤ L for i = 1, · · · , Nx and n = 0, 1, · · · .

12.4. Numerical results

12.4.1. Predator and prey solutions. In numerical tests, we use the same pa-
rameters ǫ = 1, α = 1.1, γ = 0.05, β = 1, and δ = 0.5 on the computational
domain Ω = (0, 1) [123]. Then there exist four equilibrium points, among them
(N̄ , P̄ ) = (0.113585, 0.471397) is the unique stable equilibrium point with positive
values.

In Fig. 12.2, Turing instability region is shown in the phase plane of diffusion
coefficients d1 and d2 using Eq. (12.8).

0.002 0.003 0.004 0.005
0

0.5

1.0
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2.0

d1

d2

Stable
Unstable

Turing Instability Region

Figure 12.2. The relation between the prey diffusion d1 and the preda-
tor diffusion d2.

For diffusion coefficients, we can consider d1 as an activator and d2 as an inhibitor
in the activator-inhibitor system. In terms of the activator-inhibitor mechanism by
[106], the inhibitor must diffuse faster than the activator, that is d1 < d2 (A predator
moves much quickly to catch a prey). Therefore we take small value for d1. Let us fix
d1 = 0.005.

Next, with initial conditions

N(x, 0) = N̄ + 0.0214 cos(πx), (12.17)

P (x, 0) = P̄ + 0.0066 cos(πx), (12.18)

we compare the numerical solutions with d2 in the stable and unstable regions as
shown in Fig. 12.3. We use the spatial mesh size h = 0.005 on computational domain
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Ω = (0, 1), the time step ∆t = 0.9 and the total time T = 1000. In case of d2 < dc

(d2 = 0.2 and dc = 0.271), the time evolution of N(x, t) and P (x, t) are shown in
Fig. 12.3(a) and (b), respectively. The numerical solutions converge to the equilibrium
solution N̄ and P̄ as time iterations increase. However, in case of d2 > dc (d2 = 0.32),
the time evolution of N(x, t) and P (x, t) are shown in Fig. 12.3(c) and (d), respectively.
The numerical solutions show the deviation from the equilibrium solution N̄ and P̄ since
d2 is in the Turing instability region.
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Figure 12.3. In case of d1 = 0.005 and d2 = 0.2 where d2 is in stable
region, (a) the prey solution N(x, t) and (b) the predator solution P (x, t)
with respect to time and space. And in case of d1 = 0.005 and d2 = 0.32
where d2 is in unstable region, (c) the prey solution N(x, t) and (d) the
predator solution P (x, t) with respect to time and space.

12.4.2. Non-constant stationary solution. In this section, we investigate the
prey and predator non-constant stationary solutions which have small amplitudes using
the same semi-implicit scheme. Let (η1, η2)

T be the unit eigenvector corresponding to
the eigenvalue 0 of B1. Figs. 12.4 and 12.5 show the prey and predator’s non-constant
stationary numerical solutions with different s’s in two cases of d2 < dc and d2 > dc,
respectively. In this test, we let s1 = 0.002, s2 = 0.004, s3 = 0.008, and s4 = 0.016.
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We use the spatial mesh size h = 0.01 on the computational domain Ω = (0, 1), with
the time step ∆t = 0.01 and the final time T = 100. Initial conditions are taken close
to the non-constant stationary solutions,

N(x, 0) = N̄ + sjη1 cos(πx), (12.19)

P (x, 0) = P̄ + sjη2 cos(πx), for j = 1, · · · , 4. (12.20)

Symbols (s1 : circle, s2 : diamond, s3 : square, and s4 : triangle) represent the initial
conditions.
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Figure 12.4. When d2 < dc with varing s: (a) Prey N(x, t) and (b)
predator P (x, t) solution pattern (d1 = 0.005, d2 = 0.27, dc = 0.271).
Here, each markers represent the initial condition depending on s.

The following test in Fig. 12.6 demonstrates the existence of the non-constant
equilibrium solution after long time evolution. Fig. 12.6 (a) and (c) shows the time
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Figure 12.5. When d2 > dc with varing s: (a) Prey N(x, t) and (b)
predator P (x, t) solution pattern (d1 = 0.005, d2 = 0.272, dc = 0.271).
Here, each markers represent the initial condition depending on s.

evolution of prey and predator solutions with d1 = 0.005, d2 = 0.27, dc = 0.271, and
s4 = 0.016. We use the spatial mesh size h = 0.0025 on the computational domain
Ω = (0, 1), the time step ∆t = 0.01, and the final time T = 100. And Fig. 12.6 (b)
and (d) show prey and predator solutions at five points (x= 0.00125, 0.24875, 0.49875,
0.74875, 0.99875) depending on the time. At each point x, Fig. 12.6 shows that with
small amplitude s, the pattern of solution goes to the stationary solution.

12.4.3. Effect of the amplitudes. Figs. 12.4 and 12.5 show similar results when
d2 ∈ (−δ, δ), that is the value around the Turing bifurcation point dc. Therefore in
this section, we let d2 = dc to consider the solution patterns on the bifurcation point.
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Figure 12.6. (a) and (c): the time evolution of prey and predator
solution pattern N(x, t), P (x, t) with d1 = 0.005, d2 = 0.27, dc = 0.271
and s = 0.016. (b) and (d): prey and predator solution at five points
(x = 0.00125 , 0.24875, 0.49875, 0.74875, 0.99875) depending on the
time.

Now, to observe the effect of amplitudes on the stationary state, the following tests are
presented. The procedure is repeated until the relative change with respect to a time
step ∆t is smaller than a tolerance ǫ, namely

max

(‖Nn+1 −Nn‖∞
∆t

,
‖Pn+1 − Pn‖∞

∆t

)
< ǫ.

In this test, we use time step ∆t = 0.9, space step h = 0.01, tolerance ǫ = 1.0E−6, and
the other parameters are the same values as the previous tests, with initial conditions
as Eqs. (12.17) and (12.18).

Figs. 12.7 and Fig. 12.8 show the solution patterns of N(x, t) and P (x, t) with
varying amplitudes s, respectively. These results suggest that the existence of the
non-constant stationary solutions even when the s is large enough.



12.4. NUMERICAL RESULTS 135

(a)

0 0.2 0.4 0.6 0.8 1

0.104

0.106

0.108

0.110

x

N

 

 

Initial with s=0.002
Initial with s=0.004
Initial with s=0.008
Equillibrium with s=0.002
Equillibrium with s=0.004
Equillibrium with s=0.008

(a)

0 0.2 0.4 0.6 0.8 1
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

x

N

 

 

Initial with s=0.016
Initial with s=0.032
Initial with s=0.064
Equillibrium with s=0.016
Equillibrium with s=0.032
Equillibrium with s=0.064

Figure 12.7. When d2 = dc with different s : (a) s =
0.002, 0.004, 0.008 (b) s = 0.016, 0.032, 0.064, N(x, t) solution pat-
terns (d1 = 0.005, dc = 0.271). Here, each markers represents the initial
condition depending on s.

Finally, we investigate the stability constraint for an explicit and the proposed
scheme. We calculate the maximum ∆t corresponding to different spatial grid sizes h
so that stable solutions can be computed up to the total iteration 10000. We use the
following parameters d1 = 0.005, d2 = dc = 0.271, and s = 0.032 on the computational
domain Ω = (0, 1) with initial conditions as Eqs. (12.19) and (12.20). As shown in
Table 12.1, we obtain stable solutions for all five mesh sizes. The results indicate that
the explicit scheme has a stability restriction of the time step, ∆t ≈ O(h2). Whereas
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Figure 12.8. When d2 < dc with different s: (a) s =
0.002, 0.004, 0.008 (b) s = 0.016, 0.032, 0.064, P (x, t) solution patterns
(d1 = 0.005, d2 = 0.27, dc = 0.271). Here, each markers represents the
initial condition depending on s.

the proposed scheme has only restriction of the time step, ∆t given by

∆t ≤ min

(
1,

1

α
,

1 + β

ǫ(γ + δβ)

)
≈ 0.9091,

which is independent of spatial step sizes h. Therefore, the proposed semi-implicit
scheme is practically more stable than the explicit scheme.
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Mesh size Explicit scheme Proposed scheme
h = 0.01 ∆t ≤ 1.853E-4 ∆t ≤ 1.545E+1
h = 0.005 ∆t ≤ 4.630E-5 ∆t ≤ 1.545E+1
h = 0.0025 ∆t ≤ 1.150E-5 ∆t ≤ 1.545E+1
h = 0.00125 ∆t ≤ 2.800E-6 ∆t ≤ 1.545E+1
h = 0.000625 ∆t ≤ 7.000E-7 ∆t ≤ 1.545E+1

Table 12.1. Comparison of stability constraint of ∆t for explicit and
proposed schemes. In this test, we use the following parameters d1 =
0.005, d2 = dc = 0.271, and s = 0.032 on the computational domain
Ω = (0, 1) up to the number of total iteration 10000.

12.5. Conclusions

We investigate the efficient and accurate finite difference scheme to find numerical
solutions of the ratio-dependent Michaelis-Menten type predator-prey model. To do
this, we have considered constant stable equilibrium solutions and the conditions for
Turing instability of the solutions. With Turing instability occurring conditions, we
have presented the semi-implicit scheme to get numerical results of the prey and the
predator solutions. Since we use the semi-implicit scheme, the total time iteration is
much smaller and the scheme is stable. Also, we have proved the positivity and bound-
edness of the prey and predator solutions only depending on time scale ∆t. To show
the superiority of our proposed scheme, we compare an explicit scheme’s dependency
of time and space with our scheme. Moreover, we have shown numerical evidence for
the non-constant stationary solutions not only with small amplitudes but also large
enough amplitudes. Since our proposed scheme assures the stability, we expect that
the proposed scheme is useful to demonstrating the biological system numerically.
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Chapter 13

Mathematical model and numerical simulation of the cell

growth in scaffolds

A mathematical model to predict the growth of cells is a powerful tool in scaffold
designs, depending on its own materials. The improved understanding derived from
this mathematical model and its numerical analysis benefits in the fabrication of three-
dimensional scaffolds that can support more confirmation of the growth of cells. Our
observation focuses on further cells’ migration and growth phase beyond experiment
data.

13.1. Introduction

The tissue engineering covers broad fields from rehabilitating wounded patients
to enhancing patient care. In particular, clinical application of bone-scaffolds can be
achieved by comprehensive multidisciplinary studies. But numerous experimental and
numerical studies of scaffolds have attempted to design the optimal properties, usu-
ally, structurally based models are applied to describe and analyze the mechanics of
tissue-engineered human body. These techniques mainly focus on stability of scaffolds’
strength and stiffness properties, while human body is not like mechanic, the analysis
of body systems require much more accurate calculations to avoid fatal drawbacks.
Our research explores the design of bio-scaffolds including extracellular matrix within
variety of parameters affecting our bodies to suggest how best to combine variables. We
expect that the parameters which simulated and analyzed will indicate better and opti-
mal appearance of the structure and also reveal oblique space causing serious problems
such as necrosis in musculoskeletal tissue.

The Chapter is organized as follows. In Section 2 some biological states are assumed
for model development. In Section 3, the governing model in axisymmetric system are
stated for better investigation of the movement and growth of cells in three-dimension.
And we show the discretization of the model and propose hybrid numerical method in
Section 4. In Section 5, we present several numerical results in order to investigate the
effect of parameters the better understanding of bio-scaffolding design. We summarize
our results and present future research directions in Section 6.

13.2. Model development

It is hypothesized that a limiting molecule (critical molecule denoted by C), likely
oxygen, diffuses across the fluid-scaffold interfaces and is consumed by cells located
near each interface. The scaffold is assumed to be stable over the time course of the
experiment. The total rate of consumption of this limiting molecule is proportional



13.2. MODEL DEVELOPMENT 139

to the local cell density, and the specific rate of uptake by the cells is assumed to be
proportional to the local concentration of the molecules.

∂C(x, t)

∂t
= D△C(x, t) − V C(x, t)U(x, t), (13.1)

where x = (x, y) ∈ Ω = (0, Lx) × (0, Ly) scaffolds’ domain. Here, parameters are
represented as follows:

• C(x, t): concentration of the critical molecule, like oxygen, glucose, etc.[mole/mL],
• D: diffusivity of critical molecule [cm2/s],
• U(x, t): cell density in the tissue [cell/mL],
• V : kinetic constant for the specific consumption rate of the critical molecule

[mL/s/cell].

The growth of cells in tissue culture can be modeled using the logistic law. During
the growth phase, the rate of cell growth is proportional to the cell density modified
by the logistic law until the maximal cell density is reached. The specific rate of cell
growth is assumed proportional to the concentration of the limiting molecule:

∂U(x, t)

∂t
= λC(x, t)U(x, t)

(
1 − U(x, t)

Um

)
+M△U(x, t) (13.2)

where

• λ: kinetic constant for the specific rate of cell growth [ml/mole/s],
• Um: maximal cell density [cell/ml],
• M : Cell mobility [cm2/s],

Now, we introduce dimensionless variables C ′ = C/C0, U
′ = U/Umax, M ′ = M/M0,

x′ = x/Lx, y′ = y/Ly and t′ = t/T , where

T =
1

λC0
, M0 =

L2

T
.

Then the Eq. (13.1) is replaced by non-dimensional variables.

C0∂C
′

T∂t′
=
DC0

L2
△′C ′ − C0UmaxV C

′U ′

resulting from canceling out and changing variables

∂C ′

∂t′
= K△′C ′ −RC ′U ′ (13.3)

where two non-dimensional values are defined as

K =
TD

L2
, and R = TV Umax

Also we derive the dimensionless equation with regard to U ′.

Umax

T

∂U ′

∂t′
= λC ′C0UUmax

(
1 − UmaxU

′

Umax

)
+M0M

′Umax∆U ′

L2
,

then

∂U ′

∂t′
= C ′U ′(1 − U ′) +M ′∆U ′ (13.4)
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After dropping the prime, Eqs. (13.3) and (13.4) become

∂C

∂t
= K△C −RCU, (13.5)

∂U

∂t
= CU(1 − U) +M△U (13.6)

Since assuming to distribute cells in a scaffold uniformly and frequently replace the
resource medium related C, we set the initial conditions of C

C(x, y, 0) = 1, U(x, y, 0) = U0/Um (13.7)

where U0 is the initial cell density. In typical cells, the growth rate λC0 is 1/1day.
Thus, the characteristic time for cell growth, T = 1/(λC0) ∼ 1day, is much longer than
the characteristic time for diffusion, TD = L2/D ∼ 10s.

The system of partial differential equations (13.5) and (13.6) in the axisymmetric
(r− z) geometry are solved using the implicit finite difference scheme for concentration
coupled with the operator splitting method for cell density. So we consider only two
variables; r, the radial direction and z, the axial direction.

The singularity at the origin r = 0 in the discrete axisymmetric concentration
equation is avoided by using a staggered mesh where the nutrient concentrations and
cell densities are determined at cell center grids. The corresponding discrete linear
system is solved efficiently using a multigrid method [122].

The governing equations in the axisymmetric geometry are

Ct = K

[
1

r
(rCr)r + Czz

]
−RCU, (13.8)

Ut = M

[
1

r
(rUr)r + Uzz

]
+ CU(1 − U). (13.9)

In Fig. 13.1, the shaded region shows the computational domain with axisymmetric
system.

Figure 13.1. Computational domain.

We next specify the boundary conditions. Due to the symmetry at the column
axis r = 0, the Neumann boundary conditions are applied, i.e., Cr(0, z) = 0 and
Ur(0, z) = 0. At the rigid wall, r = R, C(R, z) = 1, Ur(R, z) = 0, where R is the radius
of the domain. For the radial axis we also assume the following boundary conditions,
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i.e., C(r, 0) = C(r,H) = 1, Uz(r, 0) = Uz(r,H) = 0, where H is the height of the
domain.

13.3. Numerical procedure

13.3.1. Discretization. Let us first discretize the given computational domain
Ω = (0, R) × (0,H) as a uniform grid with a space step h = R/Nx = H/Nz and a time
step ∆t = T/Nt. Let us denote the numerical approximations of the solution by

Cn
ik ≡ C(xi, zk, t

n) = C ((i− 0.5)h, (k − 0.5)h, n∆t) ,

Un
ik ≡ U(xi, zk, t

n) = U ((i− 0.5)h, (k − 0.5)h, n∆t) ,

where i = 0, . . . , Nx, k = 0, . . . , Nz , and n = 0, . . . , Nt. And Nx, Nz, and Nt are the
number of cells in r, z, and t directions, respectively.

13.3.2. Proposed numerical method. This Chapter considers an operator split-
ting method for governing equations (13.8) and (13.9). The basic idea of this method
is to split a time step to two fractional time steps. These operator splitting method is
easier to implement and efficient than several numerical solvers.

First, we solve Eq. (13.5) by applying the following operator splitting method as
follows:

Step 1)

C∗
ik − Cn

ik

∆t
= K△hC

∗
ik (13.10)

=
K

h2

[ri+ 1
2
,k

rik
(c∗i+1,k − c∗ik) −

ri− 1
2
,k

rik
(c∗ik − c∗i−1,k) + c∗i,k−1 − 2c∗ik + c∗i,k+1

]

We solve Eq. (13.10) as the implicit time scheme for C , centered difference for the
second space derivatives by multigrid method [116, 122].

Then, the remaining term in Eq. (13.5) is

Cn+1
ik − C∗

ik

∆t
= −RC∗

ikU
n
ik. (13.11)

The above Eq. (13.11) is an approximation of the equation

∂C

∂t
= −RCU (13.12)

by an implicit Euler’s method with an initial condition C∗. We can solve Eq. (13.12)
analytically by the method of separation of variables [123] and the solution is given as

Step 2)

Cn+1
ik = e−∆tRC∗

ik
Un

ik . (13.13)

Second, to solve Eq. (13.6), we propose the following operator splitting scheme.

Step 3)

U∗
ik − Un

ik

∆t
= M△hU

∗
ik, (13.14)

Un+1
ik − U∗

ik

∆t
= Cn+1

ik Un+1
ik (1 − Un+1

ik ). (13.15)
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We solve the implicit discrete Eq. (13.14) by multigrid method [116, 122]. We can
consider Eq. (13.15) is an approximation of the equation

∂U

∂t
= CU(1 − U) (13.16)

by an implicit Euler’s method with an initial condition U∗. We can solve Eq. (13.16)
analytically by the method of separation of variables [123] and the solution is given as

Step 4)

Un+1
ik =

U∗
ik

U∗
ik + (1 − U∗

ik)e
−∆tCn+1

ik

.

As the conclusion, our proposed numerical scheme to Eqs. (13.5) and (13.6) consists
of Steps 1), 2), 3), and 4) with the following boundary conditions : Cr = Ur = 0 at
r = 0, C = 1, Ur = 0 at r = R, and C = 1, Uz = 0 at z = 0 and H. Figure 13.2 shows
our proposed numerical algorithm schematically.

(Cn, Un)

Ct = K△C (multigrid method)
��

(C∗, Un)

Ct = −RCU (analytic solution)
��

(Cn+1, Un)

Ut = M△U (multigrid method)
��

(Cn+1, U∗)

Ut = CU(1 − U) (analytic solution)
��

(Cn+1, Un+1)

Figure 13.2. A hybrid numerical method

13.4. Computational results

In this section, we perform several numerical experiments.

13.4.1. Initial cell seeding. Scaffolds were stacked in two patterns shown in
Figure 13.6. Construct A contained five, stacked scaffolds, alternating between cell-
seeded and unseeded. Construct B contained five scaffolds all seeded with cells.

The initial conditions are

C(x, z, 0) = 1,

U(x, z, 0) = U0/Umax = 0.016,

where U0 is the initial cell density.
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(a) Contstruct A (b) Contstruct B

Figure 13.3. Stacking patterns for constructs A (alternating seeding)
and B (uniform seeding).
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Figure 13.4. Numerical simulation of the cell density for the stacked
scaffolds in construct A (a) and construct B (b) on day 10 with L =

167µm. Contours increase by 6.5 × 105cells/cm3 at the fluid-scaffold
boundary. The third scaffold is represented in the region between 2mm
and 3mm in height.

13.4.2. Numerical simulation. In Fig. 13.6, error bar represents the experi-
mental data of the standard deviation of measured cell density. From the experimental
data, the cell density in the top and bottom portions of the third scaffold is slightly
higher than that in the middle portion of the third scaffold.

13.4.2.1. Convergence test. Fig. 13.9 represents the numerical results at T = 30
according to the time step ∆t and space step h. As shown in Fig. 13.9, the numerical
results, which have larger space and time step size than h and ∆t, have different results
in top portion for the third scaffold. Therefore, for efficient numerical tests, we use the
large time step ∆t = 0.01 and space step h = 1/128.

with L = 167µm
13.4.2.2. Effect of K. In this model, K represents the diffusivity of the critical

molecule. To investigate the effect of K, we tested several simulations.
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Figure 13.5. Numerical simulation of the oxygen concentration for
the stacked scaffolds in construct A (a) and construct B (b) on day 10
with L = 167µm. Contours increase by 5 nmole/mL from 5 nmole/mL
to 100 nmole/mL at the fluid-scaffold boundary. The third scaffold is
represented in the region between 2mm and 3mm in height.

13.4.2.3. Effect of R. In this model, R represents the consumption rate of the
critical molecule. To investigate the effect of R, we tested several simulations.

13.4.2.4. Effect of M . In this model, M represents the mobility rate of cell density.
To investigate the effect of M , we tested several simulations.

13.4.2.5. Effect of T . In this model, T represents the value of the time scale. To
investigate the effect of T , we tested several simulations.

13.5. Conclusions

In this Chapter, we proposed mathematical and numerical models for the cell
growths of three-dimensional scaffolds. We included cell migrations in our model. For
the numerical solution we utilize a multigrid method to achieve improved results. Like
below figures we could approximate more accurate simulated results compared with
experiment results.
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Figure 13.6. Measured and simulated cell density for the third scaffold
in construct A on day 10. (A) Middle portions. (B) Top and bottom
portions. Error bar represents the standard deviation of measured cell
density. Solid line represents numerical simulation with L = 167µm,
K = 1.7, R = 13.2, ∆t = 0.01, T = 30.0 and M = 0.001.
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Figure 13.7. Numerical simulation of the cell density
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(b) our result

Figure 13.8. Numerical simulation of the concentration
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Figure 13.9. Numerical results of cell density on (a) middle and (b)
top portion for the third scaffold at T = 30 according to the time step
∆t and space step h. The following parameters used: L = 167µm,
K = 1.7, R = 13.2, ∆t = 0.1, h = 1/128, T = 30.0 and M = 0.001.
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Figure 13.10. Effect of varying the diffusivity of the concentration
of the critical molecule on simulated cell density for the third scaffold
in alternating seeding with L = 167µm. The simulated cell density
for the middle portion (a) and the top and bottom portions (b) with
K = 1.7, 5.1, 8.5, 11.9,and 17.0.
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Figure 13.11. Effect of varying the consumption rate of the crit-
ical molecule on simulated cell density for the third scaffold in al-
ternating seeding with L = 167µm. The simulated cell density for
the middle portion (a) and the top and bottom portions (b) with
R = 4.4, 6.6, 13.2, 26.4, and 105.6.
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Figure 13.12. Effect of varying the mobility rate of cell density for the
third scaffold in alternating seeding with L = 167µm. The simulated
cell density for the middle portion (a) and the top and bottom portions
(b) with M = 0.001, 0.003, 0.005, 0.007, and 0.01.
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Figure 13.13. Effect of varying the value of the time scale for the
third scaffold in alternating seeding with L = 167µm. The simulated
cell density for the middle portion (a) and the top and bottom portions
(b) with T = 30, 90, 150, 210, and 300.
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Chapter 14

On the Keller-Segel equations arising in Mathematical

Biology

We consider the Neumann initial boundary problem for a chemotaxis-systems with
a logarithmic chemotactic sensitivity funtion and a non-diffusing chemical in a smooth
bounded domain Ω ⊂ R

n, n ≥ 1.

14.1. Introduction

In this Chapter, we consider a chemotaxis system with a logarithmic chemo-
tactic sensitivity and a non-diffusing chemical,





ut = ∆u−∇ · (u∇ logw), x ∈ Ω, t > 0,

wt = uwλ, x ∈ Ω, t > 0,
∂u
∂ν = ∂w

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x) x ∈ Ω

(14.1)

in a smooth bounded domain Ω ⊂ R
n for arbitrary space dimensions n ≥ 1 and some

0 < λ < 1. The PDE system in (14.1) is used in mathematical biology of lattice models
for slime-trail following of myxobacteria. Here, u(x, t) is the chemotatic species and
w(x, t) is the non-diffusive memory [117]. For the solutions of (14.1), in case λ = 0,
u(x, t) is uniformly bounded and w(x, t) → ∞ as t → ∞ for any dimension n ≥ 1
is proved analytically in [118] and for u∞(x)(:= limt→∞ u(x, t)) is asymptotically a
steady state for one dimension is proved analytically in [119] and in case λ = 1, finite
time blow-up solutions and global solutions are shown analytically and numerically in
[118, 120, 121]. And also known results, qualitative behavior of this model for one
dimension proved in [119].

Similar proceeding as in [119], by setting v = 1
1−λw

1−λ we obtain





ut = ∆u− 1
1−λ∇ · (u∇ log v), x ∈ Ω, t > 0,

vt = u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω

(14.2)

For this transformed PDE systems, we can simplify second equation of (14.1) more
easier to calculate. For example, integrating the equations of (14.2) on spatial domain
Ω shows that u(x, t) has mass conservation and v(x, t) has increasing of mass as t
becomes larger which implies similar conclusion to u(x, t) and w(x, t) in (14.1).

The plan of the present Chapter is as follows. In Section 2, we prove the existence of
local-in-time smooth solution of (14.2) satisfying u(x, t) is nonnegative and v(x, t) has
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positive lower bound. In Section 3, we study the uniqueness and regularity of solutions
of (14.2) until time goes to maxmal time Tmax which is whether ∞ or not isn’t proved
yet. We suggests that blow-up in finite time or globally exist of solutions depends on
dimension and initial data conditions.

14.2. Numerical Procedure

In this section, we describe the numerical procedure. Especially, we introduce a
numerical algorithm for proposed operator splitting scheme. (We consider only the
system in the two-dimensional case. But, in one- and three- dimensional case, we can
easily apply by the two-dimensional case.)

14.2.1. Discretization. Let us first discretize the given computational domain
Ω = (0, 1) × (0, 1) as a uniform grid with a space step h = 1/Nx = 1/Ny and a time
step ∆t = T/Nt. Let us denote the numerical approximations of the solution by

un
ij ≡ u(xi, yj, t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

wn
ij ≡ w(xi, yj, t

n) = w ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 0, . . . , Nx, j = 0, . . . , Ny, and n = 0, . . . , Nt. And Nx, Ny, and Nt are the
number of cells in x, y, and t directions, respectively.

14.2.2. Proposed numerical method. Our strategy for solving the system (14.1)
is a fractional time step scheme having two parts:

(Step 1)

un+1
ij − un

ij

∆t
=
un+1

i+1,j + un+1
i−1,j − 4un+1

ij + un+1
i,j+1 + un+1

i,j−1

h2

−
[(

un+1
ij + un+1

i+1,j

2

)
log

(
wn

i+1,j

wn
ij

)
−
(
un+1

i−1,j + un+1
ij

2

)
log

(
wn

ij

wn
i−1,j

)]
/h2

−
[(

un+1
ij + un+1

i,j+1

2

)
log

(
wn

i,j+1

wn
ij

)
−
(
un+1

i,j−1 + un+1
ij

2

)
log

(
wn

ij

wn
i,j−1

)]
/h2. (14.3)

First, we solve ut = ∆u−∇·(u∇(logw)) as the implicit time scheme for u , centered
difference for the space derivatives by multigrid method [116, 122].

(Step 2)

Then the remaining equation in system (14.1) is

wn+1
ij − wn

ij

∆t
= un+1

ij

(
wn+1

ij

)λ
(14.4)

The above Eq. (14.4) is an approximation of the equation

∂w

∂t
= uwλ (14.5)
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by an implicit Euler’s method with an initial condition w∗. We can solve Eq. (14.5)
analytically by the method of separation of variables [123] and the solution is given as

wn+1
ij =

[
un

ij(1 − α)∆t+ (wn
ij)

1−α
] 1

1−α (14.6)

As the conclusion, our proposed numerical scheme to system (14.1) consists of Steps 1)
and 2).
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14.3. Numerical results

In this section, we perform several numerical experiments.

14.3.1. One-dimension. Initial condition :{
u(x, 0) = 0.75 + 0.5 tanh((0.25 −

√
(x− 0.5)2)),

w(x, 0) = 0.0001.
(14.7)
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Figure 14.1. (a) Bacteria density u(x, t) and (b) substrate concentra-
tion w(x, t) with λ = 0.5, Nx = 128 and L = 1.0.
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Figure 14.2. Bacteria density u(x, y, t) with λ = 0.5, Nx = Ny = 128
and L = 1.0.

14.3.2. Two-dimension.
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Figure 14.3. Substrate concentration w(x, y, t) with λ = 0.5, Nx =
Ny = 128 and L = 1.0.
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Chapter 15

Conclusion

(1) Phase-field model
First, we reviewed a derivation of the AC equation as a gradient flow and showed that
a numerical scheme for the AC equation is unconditionally gradient stable by using
eigenvalues of the Hessian matrix of the energy functional. We also showed that the
decrease of the discrete total energy functional implies the pointwise boundedness of
the numerical solution for the AC equation. We investigated a variety of phenomena
associated with the AC equation. We have uncovered a traveling wave solution to the
AC equation and found that its speed depends linearly on the interfacial energy pa-
rameter.
Secondly, we reviewed various numerical methods for solving the CH equation. We
described the discrete scheme and its properties, and presented the multigrid method
for the fully discrete system. Also, we provided a C program code for the CH equation.
We hope that the code will play an useful role in the modeling and simulation for the
phase-field models. And we present details of the efficient computational scheme of the
phase-field model, CH equation, for the block copolymer.
Lastly, we have shown that our automatic switching algorithm achieves faster inpainting
of binary images than the previous trial and error algorithm. Therefore, inpainting re-
gion is reconstructed more efficiently and faster than previous method. The developed
automatic algorithm can be applied to calculating option pricing such as the Black-
Scholes equations accurately and efficiently.

(2) Landau-Lifshitz model
We have proposed a Crank-Nicolson time-stepping procedure for LL equation which
has a second-order convergence in time and space. We overcame the difficulties with
CN scheme associated with LL equation by a cancelation. We used a nonlinear multi-
grid method for handling the nonlinearities of the discrete system at each time step.
We validated our numerical algorithm by various numerical experiments. We tested
the second-order convergence and an energy conservation of the proposed scheme. We
also showed that the time step restriction for the stability is less restrictive than the
accuracy. As future research, the full version of Landau-Liftshitz equation will be in-
vestigated.

(3) Computational finance
We focused on the performance of a multigrid method for option pricing problems.
The numerical results showed that the total computational cost was proportional to
the number of grid points. The convergence test showed that the scheme was first-
order accurate since we used an implicit Euler method. In a forthcoming paper, we
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will investigate a switching grid method, which uses a fine mesh when the solution is
not smooth and otherwise uses a coarse mesh.
Also, The resulting linear system of BS model is solved by biconjugate gradient sta-
bilized, operator splitting, and multigrid methods. The performance of these methods
is compared for two asset option problems based on two-dimensional Black-Scholes
equations. Bi-CGSTAB and multigrid solver have a good accuracy but need a lot of
computing times. On the other hand, operator splitting is faster than other two meth-
ods under the same accuracy.
And we performed a comparison study of alternating direction implicit (ADI) and oper-
ator splitting (OS) methods on multi-dimensional Black-Scholes option pricing models.
ADI method has been used extensively in mathematical finance for numerically solv-
ing multi-asset option pricing problems. However, most option pricing problems have
nonsmooth payoffs or discontinuous derivatives at the exercise price. ADI scheme uses
source terms which include y derivatives when we solve x derivative involving equations.
Then, due to the nonsmooth payoffs, source term contains abrupt changes which are
not in the range of implicit discrete operator and this leads to difficulty in solving the
problem. On the other hand, OS method does not contain the other variable’s deriva-
tives in the source term. We provided computational results showing the performance
of the methods for two underlying asset option pricing problems. The results showed
that OS method is very efficient and gives better accuracy and robustness than ADI
method in computational finance problems.
We presented a numerical algorithm for the two-asset step-down ELS option by us-
ing the OSM.We modeled the value of ELS option by using a modified Black-Scholes
partial differential equation. A finite difference method was used to discretize the gov-
erning equation, and the OSM was applied to solve the resulting discrete equations.
We provided a detailed numerical algorithm and computational results demonstrating
the performance of the method for two underlying asset option pricing problems such
as cash-or-nothing and step-down ELS. In addition, we applied a weighted average
value with a probability obtained using the MC simulation to obtain the option value
of two-asset step-down ELS.
Finally, an accurate and efficient numerical method for the Black-Scholes equations is
derived in this Chapter. The method uses an adaptive technique which is based on a
far-field boundary position of the equation. Numerical tests were presented to demon-
strate the accuracy and efficiency of the method. In particular, the computational time
was reduced substantially when compared to a uniform grid.

(4) Biomathematics
We investigate the efficient and accurate finite difference scheme to find numerical so-
lutions of the ratio-dependent Michaelis-Menten type predator-prey model. To do this,
we have considered constant stable equilibrium solutions and the conditions for Tur-
ing instability of the solutions. With Turing instability occurring conditions, we have
presented the semi-implicit scheme to get numerical results of the prey and the preda-
tor solutions. Since we use the semi-implicit scheme, the total time iteration is much
smaller and the scheme is stable. Also, we have proved the positivity and bounded-
ness of the prey and predator solutions only depending on time scale ∆t. To show
the superiority of our proposed scheme, we compare an explicit schemes dependency
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of time and space with our scheme. Moreover, we have shown numerical evidence for
the non-constant stationary solutions not only with small amplitudes but also large
enough amplitudes. Since our proposed scheme assures the stability, we expect that
the proposed scheme is useful to demonstrating the biological system numerically.
And we proposed mathematical and numerical models for the cell growths of three-
dimensional scaffolds. We included cell migrations in our model. For the numerical
solution we utilize a multigrid method to achieve improved results. Like below fig-
ures we could approximate more accurate simulated results compared with experiment
results.
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