

저작자표시 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

Contents

Abstract iv

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Black–Scholes model 1

1.2. Outline of the thesis 3

Chapter 2. Multigrid method for Black–Scholes equations 7

2.1. Introduction 7

2.2. Discretization with finite differences 8

2.3. A multigrid method 9

2.4. Computational results 13

2.5. Conclusions 17

Chapter 3. A comparison study of ADI and operator splitting methods on

option pricing models 18

3.1. Introduction 19

3.2. Numerical solutions for the ADI and OS methods 19

3.3. Numerical experiments 26

3.4. Conclusion 33

-i-

Chapter 4. Comparison of Bi-CGSTAB, OS, and MG for 2D Black–Scholes

equation 34

4.1. Introduction 34

4.2. Numerical methods 35

4.3. Computational results 43

4.4. Conclusion 48

Chapter 5. An adaptive grid generation technique depending on a far-field

boundary position for the Black–Scholes equation 49

5.1. Introduction 49

5.2. Discretization with finite differences 50

5.3. Adaptive grid generation technique 52

5.4. Computational results 57

5.5. Conclusions 64

Chapter 6. An operator splitting method for pricing the ELS option 66

6.1. Introduction 66

6.2. Two-asset step-down ELS 67

6.3. Numerical solution 69

6.4. Computational results 75

6.5. Conclusions 79

Chapter 7. An adaptive multigrid technique for option pricing under the

Black–Scholes model 81

7.1. Introduction 81

7.2. Discretization with finite differences 83

7.3. Numerical method 83

-ii-

7.4. Computational results 88

7.5. Conclusions 90

Chapter 8. Conclusion 93

Appendix: MATLAB code 96

1. MATLAB code for closed form of cash or nothing option 96

2. MATLAB code for closed form of max option 96

3. Operator Splitting method for BS model 96

Bibliography 100

-iii-

Abstract

The primary purpose of this thesis is to explore the numerical methods for

computational finance.

We present an efficient and accurate finite-difference method for computing

Black-Scholes partial differential equations with multi-underlying assets. We di-

rectly solve Black-Scholes equations without transformations of variables. We

provide computational results showing the performance of the method for two

underlying asset option pricing problems. And the finite difference methods are

applied and the resulting linear system is solved by biconjugate gradient stabi-

lized, alternating direction implicit, operator splitting, and multigrid methods.

The performance of these methods is compared for two asset option problems

based on two-dimensional Black-Scholes equations. Numerical results show that

the operator splitting method is the most efficient among these solvers to get the

same level of accuracy.

Also, we present the numerical valuation of the two-asset step-down equity-

linked securities (ELS) option by using the operator-splitting method (OSM).

We provide a detailed numerical algorithm and computational results showing

the performance of the method for two underlying asset option pricing problems

-iv-

such as cash-or-nothing and step-down ELS. Final option value of two-asset step-

down ELS is obtained by a weighted average value using probability which is

estimated by performing a MC simulation.

Finally, we propose two adaptive techniques for solving Black–Scholes model.

By using an adaptive grid technique which is based on a far-field boundary posi-

tion of the equation, we present an accurate and efficient numerical method for

the Black-Scholes equations. The results show that the computational time of

the new adaptive grid method is reduced substantially when compared to that

of a uniform grid method. And we present an adaptive mesh refinement method

which is considered grid resolutions and time steps. We computationally rep-

resent that the proposed adaptive schemes give mesh better efficiency than the

standard FDM.

-v-

Acknowledgments

I would like to express my sincere gratitude to Prof. Junseok Kim for their

support and for giving me the opportunity to work at the Laboratory of Scientific

Computation, where I have enjoyed a friendly atmosphere and access to excellent

research facilities. My appreciation also goes to Prof. Woonjae Hwang, Prof.

Inkyung Ahn, Prof. Chunjae Park, and Prof. Kiwoon Kwon for serving on my

committee.

Also, I offer my regards and blessings to all of those who supported me in any

respect during the completion of this thesis. And I consider myself very lucky to

work in my research group.

Finally, I would like to express my deepest appreciation to my parents for

their support throughout my life.

-vi-

1

Chapter 1

Introduction

1.1. Black–Scholes model

Financial options pricing model developed by Black and Scholes [6] in 1973

and extended by Merton [53]. Black, Scholes, and Merton derived a parabolic

second order PDE for the valuation of an European option under the no-arbitrage

assumption as well as the assumption that the price of its underlyings have log-

normal distributions.

Let si(t), i = 1, 2, ..., d denote the value of the underlying i-th asset and u(s, t)

denote the price of the option. Here, s = (s1, s2, ..., sd). In the Black–Scholes

model [6], each underlying asset si satisfies the following stochastic differential

equation:

dsi(t) = µisi(t)dt + σisi(t)dWi, i = 1, 2, ..., d,

where µi, σi, and Wi(t) are the expected instantaneous rate of return, constant

volatility, and standard Brownian motion on the underlying asset si, respectively.

And the term dW contains the randomness which is certainly a feature of asset

prices and is assumed to be a Wiener process. The Wiener processes are correlated

by 〈dWidWj〉 = ρijdt.

1.1. BLACK–SCHOLES MODEL 2

Then by using the Ito’s lemma and non-arbitrage principle, the generalized

Black–Scholes (BS) PDE can be obtained

∂u(s, t)

∂t
+

d∑
i=1

rsi
∂u(s, t)

∂si

+
1

2

d∑
i,j=1

ρijσiσjsisj
∂2u(s, t)

∂si∂sj

− ru(s, t) = 0, (1.1)

u(s, T) = Λ(s), (1.2)

where r > 0 is a constant riskless interest rate.

In this thesis, we use the original Black–Scholes model with two underlying

assets to keep this presentation simple. However, we can easily extend the current

Eq. (1.3) for more than two underlying assets [4]. Let us consider two assets case

as x = s1 and y = s2. Let us first convert the given backward equation (1.1) to

the following forward equation by a change of variable τ = T − t, u(x, y, τ) =

u(s1, s2, T − τ)

∂u

∂τ
=

1

2
σ2

1x
2∂2u

∂x2
+ σ1σ2ρxy

∂2u

∂xy
+

1

2
σ2

2y
2∂2u

∂y2
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru (1.3)

for (x, y, τ) ∈ Ω× (0, T],

u(x, y, 0) = Λ(x, y).

For example, for the option on the maximum of two assets, the payoff function is

Λ(x, y) = max(max(x, y)−K, 0)

with a given strike price K > 0; see [34].

As the financial market gets complex and diverse, there have been various

types of exotic options in the market. Because it is not always possible to find

the analytic solution of the Black–Scholes equation with the exotic terminal and

the boundary conditions, it is necessary to apply numerical methods to obtain

the values of exotic options.

1.2. OUTLINE OF THE THESIS 3

Therefore methods for option pricing have been discovered and improved by

many scholars. Details can be found in reference [14] which is a good review of

valuation models and applications to the option pricing from its origins to the

present.

Despite the real progress, however, because a closed-form solution cannot

be obtained or formulas for the exact solutions are too difficult to be practically

usable, numerical solution has been a natural way to solve the problem in financial

engineering [33].

To obtain an approximation of the option value, option pricing problems have

been solved by the simulation-based methods [21, 22, 48], the lattice methods

[21, 23, 30] and by the finite difference method [13, 18, 24, 30, 42, 66, 68, 69, 75,

77], delaying the study and the application of other numerical methods like the

finite elements method [2, 26, 70, 84, 85, 87] and finite volume method [29, 88],

which are widely documented and used in other fields of science and engineering

for decades.

In this thesis, we propose several efficient and accurate numerical methods for

evaluating option problems.

1.2. Outline of the thesis

The outline of this thesis is as following.

In this chapter 2, we present an efficient and accurate finite difference method

for computing Black–Scholes partial differential equations with multi-underlying

assets using a multigrid solver. We provide computational results showing the

performance of the method for option pricing problems with two underlying as-

sets.

1.2. OUTLINE OF THE THESIS 4

In this chapter 3, we perform a comparison study of alternating direction

implicit (ADI) and operator splitting (OS) methods on multi-dimensional Black–

Scholes option pricing models. The ADI method is used extensively in mathemat-

ical finance for numerically solving multi-asset option pricing problems. However,

numerical results from the ADI scheme show oscillatory solution behaviors with

nonsmooth payoffs or discontinuous derivatives at the exercise price with large

time steps. Most option pricing problems have nonsmooth payoffs or discontinu-

ous derivatives at the exercise price. In the ADI scheme, there are source terms

which include y-derivatives when we solve x-derivative involving equations. Then,

due to the nonsmooth payoffs, source term contains abrupt changes which are not

in the range of implicit discrete operator and this leads to difficulty in solving

the problem. On the other hand, the OS method does not contain the other vari-

able’s derivatives in the source term. We provide computational results showing

the performance of the methods for two underlying asset option pricing problems.

The results show that the OS method is very efficient and gives better accuracy

and robustness than the ADI method with large time steps.

In this chapter 4, we perform a comparison of finite difference schemes for solv-

ing the two dimensional Black–Scholes equation. We discretise the equation in

space and time, and then solve a system of linear equations using the biconjugate

gradient stabilized, operator splitting, and multigrid methods. The performance

is presented, and results from different schemes are compared in two asset option

problems based on the two dimensional Black–Scholes equation. Numerical re-

sults indicate that the operator splitting method results in a better performance

among these solvers with the same level of accuracy.

1.2. OUTLINE OF THE THESIS 5

In this chapter 5, we present an accurate and efficient numerical method for

solving the Black–Scholes equation. The method uses an adaptive grid tech-

nique which is based on a far-field boundary position of the equation and also

the Peclet condition. The algorithm for the automatic adaptive grid generation

is: First, for a given error tolerance, we determine a priori a suitable far-field

boundary location using the mathematical model parameters. Second, put a uni-

form fine grid around the non-smooth points of the payoff such as a strike price

and a non-uniform grid in the remaining regions. Numerical tests are presented

to demonstrate the accuracy and efficiency of the proposed method. The results

show that the computational times using the new adaptive grid method are re-

duced substantially when compared to those of a uniform grid method with a

similar magnitude of error.

In this chapter 6, this work presents the numerical valuation of the two-asset

step-down equity-linked securities (ELS) option by using the operator splitting

method (OSM). The ELS is one of the most popular financial options. The value

of ELS option can be modeled by a modified Black–Scholes partial differential

equation. However, regardless of whether there is a closed-form solution, it is

difficult and not efficient to evaluate the solution because such a solution would

be represented by multiple integrations. Thus, a fast and accurate numerical

algorithm is needed to value the price of the ELS option. This chapter uses a

finite difference method to discretize the governing equation and applies the OSM

to solve the resulting discrete equations. The OSM is very robust and accurate

in evaluating finite difference discretizations. We provide a detailed numerical

algorithm and computational results showing the performance of the method

for two underlying asset option pricing problems such as cash-or-nothing and

1.2. OUTLINE OF THE THESIS 6

step-down ELS. Final option value of two-asset step-down ELS is obtained by a

weighted average value using probability which is estimated by performing a MC

simulation.

In this chapter 7, we consider the adaptive multigrid method for solving the

Black–Scholes equation as the numerical technique to improve the efficiency of the

option pricing. Adaptive meshing is generally regarded as an indispensable tool

because of reduction of the computational costs which are needed to obtain finite

difference solutions. Therefore, in this chapter, the Black–Scholes equation is

discretized using a Crank–Nicolson scheme on block-structured adaptively refined

rectangular meshes. And the resulting discrete of equations is solved by a fast

solver such as an multigrid method. Numerical simulations are implemented to

confirm the efficiency of the adaptive multigrid technique. In particular, through

the comparison of computational results on adaptively refined mesh and uniform

mesh, we show that adaptively refined mesh solver is superior to a standard

method.

Finally, Chapter 8 summarizes the results and gives some recommendations

for future work.

7

Chapter 2

Multigrid method for Black–Scholes equations

In this chapter, we present an efficient and accurate finite difference method

for computing Black–Scholes partial differential equations with multi-underlying

assets using a multigrid solver. We provide computational results showing the

performance of the method for option pricing problems with two underlying as-

sets.

2.1. Introduction

The analytic solutions of Eqs. (1.1) and (1.2) for exotic options are very

limited. Therefore, we need to rely on a numerical approximation. To obtain an

approximation of the option value, we can compute a solution of Black–Scholes

PDEs (1.1) and (1.2) using a finite difference method (FDM) [24, 66, 68, 69, 77].

We apply the FDM to the equation over a truncated finite domain. The

original asymptotic infinite boundary conditions are shifted to the ends of the

truncated finite domain. To avoid generating large errors in the solution due to

this approximation of the boundary conditions, the truncated domain must be

large enough resulting in large computational costs. In this chapter, we propose

an efficient and accurate FDM to directly solve the Black–Scholes PDEs (1.1)

and (1.2) without transformations of variables.

2.2. DISCRETIZATION WITH FINITE DIFFERENCES 8

2.2. Discretization with finite differences

A finite difference method is a common numerical method that has been

used by many researchers in computational finance. For an introduction to these

methods we recommend the books [24, 66, 69, 68, 77]. They all introduce the

concept of finite differences for option pricing and provide basic knowledge needed

for a simple implementation of the method. An approach for the Black–Scholes

option problem is to use an efficient solver such as the Bi-CGSTAB (Biconjugate

gradient stabilized) method [60, 64, 74], GMRES (Generalized minimal residual

algorithm) method [56, 63], ADI (Alternating direction implicit) method [19, 24],

and the OS (Operator splitting) method [24, 38].

Let us first discretize the given computational domain Ω = (0, L)× (0,M) as

a uniform grid with a space step h = L/Nx = M/Ny and a time step ∆t = T/Nt.

Let us denote the numerical approximation of the solution by

un
ij ≡ u(xi, yj, t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

And among several possible boundary conditions such as Neumann [24, 33],

Dirichlet, linear, and PDE [24, 68] that can be used for these kinds of problems,

we use a linear boundary condition on all boundaries, i.e.,

∂2u

∂x2
(0, y, τ) =

∂2u

∂x2
(L, y, τ) =

∂2u

∂y2
(x, 0, τ) =

∂2u

∂y2
(x,M, τ) = 0,

∀τ ∈ [0, T], for 0 ≤ x ≤ L, 0 ≤ y ≤ M.

We use a cell centered discretization since we use a linear boundary condition.

By applying the implicit time scheme and centered difference for space derivatives

2.3. A MULTIGRID METHOD 9

to Eq. (1.3), we have

un+1
ij − un

ij

∆t
= LBSun+1

ij , (2.1)

where the discrete difference operator LBS is defined by

LBSun+1
ij =

(σ1xi)
2

2

un+1
i−1,j − 2un+1

ij + un+1
i+1,j

h2
+

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2

+σ1σ2ρxiyj

un+1
i+1,j+1 + un+1

i−1,j−1 − un+1
i−1,j+1 − un+1

i+1,j−1

4h2

+rxi

un+1
i+1,j − un+1

i−1,j

2h
+ ryj

un+1
i,j+1 − un+1

i,j−1

2h
− run+1

ij .

2.3. A multigrid method

Multigrid methods belong to the class of fastest iterations, because their con-

vergence rate is independent of the space step size [32]. In order to explain clearly

the steps taken during a single V-cycle, we focus on a numerical solution on a

16× 16 mesh. We define discrete domains, Ω3, Ω2, Ω1, and Ω0, where

Ωk = {(xk,i = (i− 0.5)hk, yk,j = (j − 0.5)hk)|1 ≤ i, j ≤ 2k+1 and hk = 23−kh}.

Ωk−1 is coarser than Ωk by a factor of 2. The multigrid solution of the discrete

BS Eq. (2.1) makes use of a hierarchy of meshes (Ω3, Ω2, Ω1, and Ω0) created

by successively coarsening the original mesh, Ω3 as shown in Fig. 2.1.

A pointwise Gauss–Seidel relaxation scheme is used as the smoother in the

multigrid method. We use a notation un
k as a numerical solution on the discrete

domain Ωk at time t = n∆t. The algorithm of the multigrid method for solving

the discrete BS Eq. (2.1) is as follows. We rewrite the above Eq. (2.1) by

L3(u
n+1
3,ij) = φn

3,ij on Ω3, (2.2)

where

L3(u
n+1
3,ij) = un+1

3,ij −∆tLBS3u
n+1
3,ij and φn

3,ij = un
3,ij.

2.3. A MULTIGRID METHOD 10

(a) Ω3 (16× 16) h

(c) Ω1 (4× 4) 4h

(b) Ω2 (8× 8) 2h

(d) Ω0 (2× 2) 8h (e)

Figure 2.1. (a), (b), (c), and (d) are a sequence of coarse grids
starting with h = L/Nx. (e) is a composition of grids, Ω3, Ω2, Ω1,
and Ω0.

Given the numbers, ν1 and ν2, of pre- and post- smoothing relaxation sweeps,

an iteration step for the multigrid method using the V-cycle is formally written

as follows [72]. That is, starting an initial condition u0
3, we want to find un

3 for

n = 1, 2, · · · . Given un
3 , we want to find the un+1

3 solution that satisfies Eq. (2.1).

At the very beginning of the multigrid cycle the solution from the previous time

step is used to provide an initial guess for the multigrid procedure. First, let

un+1,0
3 = un

3 .

Multigrid cycle

un+1,m+1
k = MGcycle(k, un+1,m

k , Lk, φ
n
k , ν1, ν2).

That is, un+1,m
k and un+1,m+1

k are the approximations of un+1
k before and after an

MGcycle. Now, define the MGcycle.

2.3. A MULTIGRID METHOD 11

Step 1) Presmoothing

ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, φ
n
k),

means performing ν1 smoothing steps with the initial approximation un+1,m
k ,

source terms φn
k , and a SMOOTH relaxation operator to get the approxima-

tion ūn+1,m
k . Here, we derive the smoothing operator in two dimensions.

Now, we derive a Gauss–Seidel relaxation operator. First, we rewrite Eq.

(2.2) as

un+1
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)

2

2

un+1
k,i−1,j + un+1

k,i+1,j

h2
k

+
(σ2yk,j)

2

2

un+1
k,i,j−1 + un+1

k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1
k,i+1,j+1 + un+1

k,i−1,j−1 − un+1
k,i−1,j+1 − un+1

k,i+1,j−1

4h2
k

+ rxk,i

un+1
k,i+1,j − un+1

k,i−1,j

2hk

+ ryk,j

un+1
k,i,j+1 − un+1

k,i,j−1

2hk

)]/

[
1 + ∆t

(
(σ1xk,i)

2 + (σ2yk,j)
2

h2
k

+ r

)]
. (2.3)

Next, we replace un+1
k,αβ in Eq. (2.3) with ūn+1,m

k,αβ if (α < i) or (α = i and

β ≤ j), otherwise with un+1,m
k,αβ , i.e.,

ūn+1,m
k,ij =

[
φn

k,ij + ∆t

(
(σ1xk,i)

2

2

ūn+1,m
k,i−1,j + un+1,m

k,i+1,j

h2
k

+
(σ2yk,j)

2

2

ūn+1,m
k,i,j−1 + un+1,m

k,i,j+1

h2
k

+σ1σ2ρxk,iyk,j

un+1,m
k,i+1,j+1 + ūn+1,m

k,i−1,j−1 − ūn+1,m
k,i−1,j+1 − un+1,m

k,i+1,j−1

4h2
k

+ rxk,i

un+1,m
k,i+1,j − ūn+1,m

k,i−1,j

2hk

+ ryk,j

un+1,m
i,j+1 − ūn+1,m

k,i,j−1

2hk

)]
/

[
1 + ∆t

(
(σ1xk,i)

2 + (σ2yk,j)
2

h2
k

+ r

)]
. (2.4)

Therefore, in a multigrid cycle, one smooth relaxation operator step consists

of solving Eq. (2.4) given above for 1 ≤ i ≤ 2k−3Nx and 1 ≤ j ≤ 2k−3Ny.

Step 2) Coarse grid correction

2.3. A MULTIGRID METHOD 12

• Compute the defect: d̄m
k = φn

k − Lk(ū
n+1,m
k).

• Restrict the defect and ūm
k : d̄m

k−1 = Ik−1
k d̄m

k

The restriction operator Ik−1
k maps k-level functions to (k− 1)-level functions

as shown in Fig. 2.2(a).

dk−1(xi, yj) = Ik−1
k dk(xi, yj)

=
1

4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
) + dk(xi+ 1

2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

(a) (b)

Figure 2.2. Transfer operators: (a) restriction and (b) interpolation.

• Compute an approximate solution ûn+1,m
k−1 of the coarse grid equation on

Ωk−1, i.e.

Lk−1(u
n+1,m
k−1) = d̄m

k−1. (2.5)

If k = 1, we use a direct or fast iteration solver for (2.5). If k > 1, we solve

(2.5) approximately by performing k-grid cycles using the zero grid function as

an initial approximation:

v̂n+1,m
k−1 = MGcycle(k − 1, 0, Lk−1, d̄

m
k−1, ν1, ν2).

• Interpolate the correction: v̂n+1,m
k = Ik

k−1v̂
n+1,m
k−1 . Here, the coarse values are

simply transferred to the four nearby fine grid points as shown in Fig. 2.2(b),

2.4. COMPUTATIONAL RESULTS 13

i.e. vk(xi, yj) = Ik
k−1vk−1(xi, yj) = vk−1(xi+ 1

2
, yj+ 1

2
) for the i and j odd-numbered

integers.

• Compute the corrected approximation on Ωk

um, after CGC
k = ūn+1,m

k + v̂n+1,m
k .

Step 3) Postsmoothing: un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, φ
n
k).

This completes the description of a MGcycle.

An illustration of the corresponding two-grid cycle is given in Fig. 2.3. For

the multi-grid V-cycle, it is given in Fig. 2.4.

smooth
ν1

u
n+1,m
k ū

n+1,m
k

d̄m
k = φn

k −Lk(ūn+1,m
k)

Restrict(Ik−1

k)

d̄m
k−1 = Ik−1

k d̄m
k

Solve

Lk−1(v̂
n+1,m
k−1

) ≈ d̄m
k−1

Interpolate(Ik
k−1)

v̂
n+1,m
k = Ik

k−1v̂
n+1,m
k−1

u
n+1,m+1

k

smooth
ν2

u
m,afterCGC
k

= ū
n+1,m
k + v̂

n+1,m
k

Figure 2.3. MG (k, k − 1) two-grid method.

2.4. Computational results

In this section, we perform a convergence test of the scheme and present

several numerical experiments. Two-asset cash or nothing options can be useful

2.4. COMPUTATIONAL RESULTS 14

Ω3, h

Ω2, 2h

Ω1, 4h

Ω0, 8h

Figure 2.4. Schedule of grids for V-cycle.

building blocks for constructing more complex exotic option products. Let us

consider a two-asset cash or nothing call option. This option pays out a fixed

cash amount K if asset one, x, is above the strike X1 and asset two, y, is above

strike X2 at expiration. The payoff is given by

u(x, y, 0) =

{
K if x ≥ X1 and y ≥ X2,
0 otherwise .

(2.6)

The formula for the exact value is known in [34] by

u(x, y, T) = Ke−rT M(α, β; ρ), (2.7)

where

α =
ln(x/K1) + (r − σ2

1/2)T

σ1

√
T

, β =
ln(y/K2) + (r − σ2

2/2)T

σ2

√
T

.

Here, M(α, β; ρ) denotes a standardized cumulative normal function where one

random variable is less than α and a second random variable is less than β. The

2.4. COMPUTATIONAL RESULTS 15

correlation between the two variables is ρ:

M(α, β; ρ) =
1

2π
√

1− ρ2

∫ α

−∞

∫ β

−∞
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
dxdy.

The MATLAB code for the closed form solution of a two-asset cash or nothing

call option is given in Appendix.

2.4.1. Convergence test. To obtain an estimate of the rate of convergence,

we performed a number of simulations for a sample initial problem on a set

of increasingly finer grids. We considered a domain, Ω = [0, 300] × [0, 300].

We computed the numerical solutions on uniform grids, h = 300/2n for n =

5, 6, 7, and 8. For each case, we ran the calculation to time T = 0.1 with a

uniform time step depending on a mesh size, ∆t = 0.032/2n. The initial condition

is Eq. (2.6) with K = 1 and X1 = X2 = 100. The volatilities are σ1 = 0.5

and σ2 = 0.5. The correlation is ρ = 0.5, and the riskless interest rate is r =

0.03. Figures 2.5(a) and (b) show the initial configuration and final profile at T ,

respectively.

0
100

200
300

0
100

200
300

0

0.5

1

yx

u

(a)

0
100

200
300

0
100

200
300

0

0.5

1

yx

u

(b)

Figure 2.5. (a) Initial condition and (b) numerical result at T = 0.1.

2.4. COMPUTATIONAL RESULTS 16

We let e be the error matrix with components eij = u(xi, yj)−uij. u(xi, yj) is

the analytic solution of Eq. (2.7) and uij is the numerical solution. We compute

its discrete L2 norm ‖e‖2 is defined

‖e‖2 =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

e2
ij.

The errors and rates of convergence are given in Table 2.1. The results show that

the scheme is first-order accurate.

Case 32× 32 rate 64× 64 rate 128× 128 rate 256× 256

‖e‖2 0.028161 0.95 0.014562 1.07 0.006928 0.96 0.003572

Table 2.1. L2 norms of errors and convergence rates for u at time
T = 0.1.

2.4.2. Multigrid performance. We investigated the convergence behavior

of our multigrid(MG) method, especially mesh independence. The test problem

was that of a two-asset cash or nothing call option with the convergence test

parameter set. The average number of iterations per time step (see Fig. 2.6)

and the CPU-time in seconds required for a solution to an identical convergence

tolerance are displayed in Table 2.2. Although the number of multigrid iterations

for convergence at each time step slowly increased as the mesh was refined, from

a practical viewpoint, it was essentially grid independent.

Mesh Average iterations per time step CPU(s)
32 × 32 1.00 0.141
64 × 64 1.00 0.579

128 × 128 2.00 2.594
256 × 256 2.24 13.093

Table 2.2. Grid independence with an iteration convergence tol-
erance of 10−5, T = 0.1, and ∆t = 0.001.

2.5. CONCLUSIONS 17

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

iteration number

vc
yc

le
 n

um
be

r

32 × 32
64 × 64
128 × 128
256 × 256

Figure 2.6. Number of V-cycles.

2.5. Conclusions

In this chapter, we focused on the performance of a multigrid method for

option pricing problems. The numerical results showed that the total computa-

tional cost was proportional to the number of grid points. The convergence test

showed that the scheme was first-order accurate since we used an implicit Euler

method. In a forthcoming work, we will apply this method for multi-dimensional

option problem.

18

Chapter 3

A comparison study of ADI and operator splitting
methods on option pricing models

In this chapter, we perform a comparison study of alternating direction im-

plicit (ADI) and operator splitting (OS) methods on multi-dimensional Black–

Scholes option pricing models. The ADI method is used extensively in mathemat-

ical finance for numerically solving multi-asset option pricing problems. However,

numerical results from the ADI scheme show oscillatory solution behaviors with

nonsmooth payoffs or discontinuous derivatives at the exercise price with large

time steps. Most option pricing problems have nonsmooth payoffs or discontinu-

ous derivatives at the exercise price. In the ADI scheme, there are source terms

which include y-derivatives when we solve x-derivative involving equations. Then,

due to the nonsmooth payoffs, source term contains abrupt changes which are not

in the range of implicit discrete operator and this leads to difficulty in solving

the problem. On the other hand, the OS method does not contain the other vari-

able’s derivatives in the source term. We provide computational results showing

the performance of the methods for two underlying asset option pricing problems.

The results show that the OS method is very efficient and gives better accuracy

and robustness than the ADI method with large time steps.

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 19

3.1. Introduction

In today’s financial markets, options are the most common securities that are

frequently bought and sold. Under the Black–Scholes partial differential equation

(BS PDE) framework, various numerical methods [17, 25, 42, 54, 71] have been

presented by using the finite difference method (FDM) to solve the option pricing

problems [1, 16, 24, 66, 68, 69, 77]. But most option pricing problems have non-

smooth payoffs or discontinuous derivatives at the exercise price. Standard finite

difference schemes used to solve problems with nonsmooth payoff and large time

steps do not work well because of discontinuities introduced in the source term.

Moreover, these unwanted oscillations become problematic when estimating the

hedging parameters, e.g., Delta and Gamma.

3.2. Numerical solutions for the ADI and OS methods

In this chapter, we focus on the two-dimensional Black–Scholes equation. Let

LBS be the operator

LBS =
1

2
σ2

1x
2∂2u

∂x2
+

1

2
σ2

2y
2∂2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru.

Then the Black–Scholes equation can then be written as

∂u

∂τ
= LBS for (x, y, τ) ∈ Ω× (0, T], (3.1)

where τ = T − t. Originally, the option pricing problems are defined in the

unbounded domain

Ω× (0, T] = {(x, y, t) | x > 0, y > 0, τ ∈ (0, T]}.

However, we need to truncate this unbounded domain into a finite computational

domain in order to solve Eq. (3.1) numerically by a finite difference method.

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 20

Therefore, we consider Eq. (3.1) on a finite domain:

(0, L)× (0, M)× (0, T] = Ω× (0, T],

where L and M are large enough so that the error in the price u is negligible. We

can obtain approximate boundary conditions on the artificial boundaries {L} ×
[0, T] and [0, T] × {M} by assuming the asymptotic behavior of u. Let us first

discretize the given computational domain Ω = (0, L) × (0,M) as a uniform

grid with a space step h = L/Nx = M/Ny and a time step ∆τ = T/Nt. Here,

the number of grid points is denoted by Nx, Ny, and Nt in the x, y, and t-

direction, respectively. Furthermore, let us denote the numerical approximation

of the solution by un
ij ≡ u(xi, yj, t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆τ) , where i =

1, ..., Nx, j = 1, ..., Ny, and n = 0, ..., Nt. We use a linear boundary condition,

similarly to [55, 56, 68, 89], as follows:

∂2u

∂x2
(0, y, t) =

∂2u

∂x2
(L, y, t) =

∂2u

∂y2
(x, 0, t) =

∂2u

∂y2
(x,M, t) = 0,

for 0 ≤ x ≤ L, 0 ≤ y ≤ M, and 0 ≤ t ≤ T .

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 21

3.2.1. Alternating Directions Implicit method. The main idea of the

ADI method [19, 36] is to proceed in two stages, treating only one operator

implicitly at each stage. First, a half-step is taken implicitly in x and explicitly

in y. Then, the other half-step is taken implicitly in y and explicitly in x. The

full scheme is:

u
n+ 1

2
ij − un

ij

∆τ
= Lx

ADIu
n+ 1

2
ij , (3.2)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

ADIu
n+1
ij , (3.3)

where the discrete difference operators Lx
ADI and Ly

ADI are defined by

Lx
ADIu

n+ 1
2

ij =
(σ1xi)

2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2
+

(σ2yj)
2

4

un
i,j+1 − 2un

ij + un
i,j−1

h2

+
1

2
ρσ1σ2xiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2

+
1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

i,j

h
+

1

2
ryj

un
ij+1 − un

ij

h
− 1

2
ru

n+ 1
2

ij , (3.4)

Ly
ADIu

n+1
ij =

(σ1xi)
2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2
+

(σ2yj)
2

4

un+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2

+
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

i−1,j−1 − u
n+ 1

2
i−1,j+1 − u

n+ 1
2

i+1,j−1

4h2

+
1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

i,j

h
+

1

2
ryj

un+1
ij+1 − un+1

ij

h
− 1

2
run+1

ij . (3.5)

Note that the addition of two Eqs. (3.2) and (3.3) results in Eq. (3.6).

un+1
ij − un

ij

∆τ
= Lx

ADIu
n+ 1

2
ij + Ly

ADIu
n+1
ij . (3.6)

Algorithm ADI

• Step 1: The first stage of the ADI method, Eq. (3.4) can be rewritten as

αiu
n+ 1

2
i−1,j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1,j = fij, (3.7)

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 22

where

αi = −(σ1xi)
2

4h2
, (3.8)

βi =
1

∆τ
+

(σ1xi)
2

2h2
+

rxi

2h
+

r

2
, (3.9)

γi = −(σ1xi)
2

4h2
− rxi

2h
, (3.10)

fij =
un

ij

∆τ
+

1

4
(σ2yj)

2
un

i,j+1 − 2un
ij + un

i,j−1

h2
+

1

2
ryj

un
i,j+1 − un

i,j

h

+
1

2
ρσ1σ2xiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
. (3.11)

For a fixed index j, the vector u
n+ 1

2
1:Nx,j can be found by solving the

tridiagonal system

Axu
n+ 1

2
1:Nx,j = f1:Nx,j,

where Ax is a tridiagonal matrix constructed from Eq. (3.7) with a linear

boundary condition, i.e.,

Ax =

2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx

.

Step 1 of the ADI method is then implemented in a loop over the y-

direction:

for j = 1 : Ny

for i = 1 : Nx

Set αi, βi, γi, and fij by Eqs. (3.8)–(3.11)

end

Solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using the Thomas algorithm

end

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 23

• Step 2: The second stage of the ADI method, given by Eq. (3.5) is rewritten

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij, (3.12)

where

αj = −(σ2yj)
2

4h2
, (3.13)

βj =
1

∆τ
+

(σ2yj)
2

2h2
+

ryj

2h
+

r

2
, (3.14)

γj = −(σ2yj)
2

4h2
− ryj

2h
, (3.15)

gij =
u

n+ 1
2

ij

∆τ
+

(σ1xi)
2

4

u
n+ 1

2
i+1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i−1,j

h2
+

1

2
rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

i,j

h

+
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

i−1,j−1 − u
n+ 1

2
i−1,j+1 − u

n+ 1
2

i+1,j−1

4h2
. (3.16)

For a fixed index i, the vector un+1
i,1:Ny

can be found by solving the tridi-

agonal system

Ayu
n+1
i,1:Ny

= gi,1:Ny ,

where the matrix Ay is a tridiagonal matrix,

Ay =

2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy

.

Similarly to Step 1, Step 2 is then implemented in a loop over the x-

direction:

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 24

for i = 1 : Nx

for j = 1 : Ny

Set αj, βj, γj, and gij by Eqs. (3.13)–(3.16)

end

Solve Ayu
n+1
i,1:Ny

= gi,1:Ny by using the Thomas algorithm

end

Execution of Step 1 followed by Step 2 advances the solution with a ∆τ -step

in time.

3.2. NUMERICAL SOLUTIONS FOR THE ADI AND OS METHODS 25

3.2.2. Operator splitting method. The idea of the OS method is to divide

each time step into fractional time steps with simpler operators [24, 38]). We shall

introduce the basic OS scheme for the two-dimensional BS equation. The first

leg is implicit in x while the second leg is implicit in y. The full scheme is:

u
n+ 1

2
ij − un

ij

∆τ
= Lx

OSu
n+ 1

2
ij , (3.17)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

OSun+1
ij , (3.18)

where the discrete difference operators Lx
OS and Ly

OS are defined by

Lx
OSu

n+ 1
2

ij =
(σ1xi)

2

2

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

h2
+ rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− r

2
u

n+ 1
2

ij

+
1

2
σ1σ2ρxiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
, (3.19)

Ly
OSun+1

ij =
(σ2yj)

2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
+ ryj

un+1
i,j+1 − un+1

ij

h
− r

2
un+1

ij

+
1

2
σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

i−1,j−1 − u
n+ 1

2
i−1,j+1 − u

n+ 1
2

i+1,j−1

4h2
. (3.20)

The OS scheme moves from the time level n to a intermediate time level n+ 1
2

and then to time level n + 1. The addition of two Eqs. (3.17) and (3.18) results

in Eq. (3.21).

un+1
ij − un

ij

∆τ
= Lx

OSu
n+ 1

2
ij + Ly

OSun+1
ij , (3.21)

Algorithm OS

• Step 1: Equation (3.19) is rewritten as follows:

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij,

3.3. NUMERICAL EXPERIMENTS 26

where

αi = −σ2
1x

2
i

2h2
,

βi =
1

∆τ
+

σ2
1x

2
i

h2
+

rxi

h
+

r

2
,

γi = −σ2
1x

2
i

2h2
− rxi

h
,

fij =
1

2
ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j−1 − un
i−1,j+1 + un

i−1,j−1

4h2
+

un
i,j

∆τ
.

We note that in the OS method we do not have ∂2u/∂y2 and ∂u/∂y terms

in the source fij. Then the solution procedure is same to the ADI method.

• Step 2: Equation (3.20) is rewritten as follows:

αju
n+1
ij−1 + βju

n+1
ij + γju

n+1
ij+1 = gij,

where

αj = −σ2
2y

2
j

2h2
,

βj =
1

∆τ
+

σ2
2y

2
j

h2
+

ryj

h
+

r

2
,

γj = −σ2
2y

2
j

2h2
− ryj

h
,

gij =
1

2
ρσ1σ2xiyj

u
n+ 1

2
i+1j+1 − u

n+ 1
2

i+1j − u
n+ 1

2
ij+1 + u

n+ 1
2

ij

4h2
+

u
n+ 1

2
ij

∆τ
.

We also note that in the OS method we do not have ∂2u/∂x2 and ∂u/∂x

terms in the source gij and the solution procedure is same to the ADI

method.

3.3. Numerical experiments

In this section, various examples are presented to compare the performance

of the two different numerical schemes, the ADI and OS methods, for the BS

equation. All computations were run in MATLAB version 7.6 [73]. The error

3.3. NUMERICAL EXPERIMENTS 27

of the numerical solution was defined as eij = ue
ij − uij for i = 1, · · · , Nx and

j = 1, · · · , Ny, where ue
ij is the exact solution and uij is the numerical solution.

To compare the errors of the ADI and OS methods, we computed discrete l2 norm

‖e‖2 and maximum norm ‖e‖∞ of the error. We also used the root mean square

error (RMSE) on a specific region. The RMSE is defined as

RMSE =

√√√√ 1

N

N∑
i,j

(
ue

ij − uij

)2
,

where N is the number of points on the gray region as shown in Fig. 3.1 and the

region indicates the neighborhood of the exercise prices X1 and X2.

y

xX10.9X1 1.1X1

X2

0.9X2

1.1X2

Figure 3.1. RMSE is calculated on the gray region.

3.3.1. Two-asset cash or nothing option. First, let us consider the two-

asset cash or nothing call option [34]. Given two assets x and y, the payoff of the

call option is given as

Λ(x, y) =

{
Cash if x ≥ K1 and y ≥ K2,
0 otherwise,

where K1 and K2 are the strike prices of x and y, respectively (see Fig. 3.2).

3.3. NUMERICAL EXPERIMENTS 28

0
100

200
300

0
100

200
300

0

0.5

1

xy

u
0

Figure 3.2. Payoff of a two-asset cash or nothing call option.

The exact solution is obtained from a closed form solution, which is provided

in the Appendix.

The parameters used are: σ1 = σ2 = 0.3, r = 0.03, ρ = 0.5, T = 0.5, and

K1 = K2 = 100. The computational domain is Ω = [0, 300]× [0, 300].

As shown in Table 3.1, the ADI shows better convergence results than the OS

method with relatively large space step sizes. However, with smaller space step

size (equivalently with larger temporal step size) the ADI shows blowup solutions

while the OS method produces convergent results.

Time Space ADI OSM
∆τ h ‖e‖2 ‖e‖∞ RMSE ‖e‖2 ‖e‖∞ RMSE

0.05 5.0 0.000506 0.001952 0.000023 0.002411 0.010449 0.000147
0.025 2.5 0.000346 0.001266 0.000006 0.001043 0.004569 0.000028
0.0125 1.25 0.000207 0.000944 0.000003 0.000483 0.002136 0.000006
0.00625 0.625 N/A N/A N/A 0.000232 0.001030 0.000001

Table 3.1. Numerical results of a two-asset cash or nothing call
option with different time step ∆τ and space step h. Here, ‖e‖2

and ‖e‖∞ are measured in a quarter of the domain, [0, 150]×[0, 150].

3.3. NUMERICAL EXPERIMENTS 29

To investigate what made blowup solutions for the ADI scheme, we compare

solutions, u
1
2 and u1 and source terms, f and g generated from two methods, the

ADI and OS. We used time step size, ∆τ = 0.5, and space step size, h = 5.

In Fig. 3.3, the first and the second columns show the numerical results at

each step of the ADI and OSM for a two-asset cash or nothing option, respectively.

As we can see from the figure, the numerical result of the ADI with a relatively

large time step shows oscillatory solution along the lines x = K1 and y = K2. In

Fig. 3.3(a), source terms in the first steps are shown. The source term in the

ADI method exhibits oscillation around y = K2 which is from the y-derivatives

in the source term. On the other hand, for the OS method, we do not have

the y-derivatives in the source term and solution u
1
2 is monotone around y =

K2. However, for the ADI we have oscillatory solution at the first step. After

one complete time step, the result with the ADI shows a non-smooth numerical

solution. However, the OS method results in a smooth numerical solution.

3.3.2. Call option on the maximum of two assets. Next, we consider

a vanilla call option whose payoff is given as

Λ(x, y) = max{x−K1, y −K2, 0}. (3.22)

Figure 3.4 shows the payoff function (3.22).

In this case, we use the Dirichlet boundary condition at x = L and y = M

and the linear boundary condition at x = 0 and y = 0. The parameters used

are: σ1 = σ2 = 0.3, r = 0.03, ρ = 0.5, T = 0.5, and K1 = K2 = 100. The

computational domain is Ω = [0, 300]× [0, 300].

Table 3.2 shows the comparison of errors for the ADI and OS methods at time

T = 0.5. The exact solutions are obtained from a closed for solution, which is

3.3. NUMERICAL EXPERIMENTS 30

(a)

0
100

200
300

0
100

200
300

−5

0

5

xy

f

0
100

200
300

0
100

200
300

−5

0

5

xy

f

(b)

0
100

200
300

0
100

200
300

−2

0

2

4

xy

u
1

2

0
100

200
300

0
100

200
300

−2

0

2

4

xy

u
1

2

(c)

0
100

200
300

0
100

200
300

−5

0

5

xy

g

0
100

200
300

0
100

200
300

−5

0

5

xy

g

(d)

0
100

200
300

0
100

200
300

0

0.5

1

xy

u
1

ADI

0
100

200
300

0
100

200
300

0

0.5

1

xy

u
1

OSM

Figure 3.3. Numerical results of cash or nothing option using the
ADI and OSM. (a) Source term f at Step 1, (b) solution u

1
2 at Step

1, (c) source term g at Step 2, and (d) solution u1 at Step 2.

3.3. NUMERICAL EXPERIMENTS 31

0
100

0

100

0

20

40

xy

u
0

Figure 3.4. European call option payoff on the maximum of two assets.

Time Space ADI OSM
∆τ h ‖e‖2 ‖e‖∞ RMSE ‖e‖2 ‖e‖∞ RMSE

0.05 5.0 0.057677 0.120848 0.006319 0.059967 0.175874 0.002286
0.025 2.5 0.027863 0.059866 0.001581 0.029001 0.085344 0.000610
0.0125 1.25 0.013713 0.029731 0.000395 0.014248 0.041703 0.000158
0.00625 0.625 N/A N/A N/A 0.007060 0.020569 0.000040

Table 3.2. Numerical results in case of European option on the
maximum of two-asset with respect to the time step ∆τ and space
step h. Here, ‖e‖2 and ‖e‖∞ are measured in a quarter of the
domain, [0, 150] × [0, 150] and the RMSEs are evaluated in gray
region which represented in Fig. 3.1.

provided in the Appendix. In the Table, the errors are similar in magnitude for

the two methods until space step h = 1.25. However, after that, results from the

ADI with smaller space steps show the blowup phenomenon of solution. On the

other hand, the errors with the OS method do decrease with respect to time and

space step refinements.

Figure 3.5 shows numerical results using the ADI and OS methods with ∆τ =

0.5 and h = 3. The first and second columns are results with the ADI and OS

methods, respectively. In Fig. 3.5(a), source terms in the first steps are shown.

The source term in the ADI method exhibits oscillation around y = K2 which is

3.3. NUMERICAL EXPERIMENTS 32

(a)

0
100

0

100

0

50

100

150

xy

f

0
100

0

100

0

50

100

150

xy

f

(b)

0
100

0

100

0

20

40

60

xy

u
1

2

0
100

0

100

0

20

40

60

xy

u
1

2

(c)

0
100

0

100

0

50

100

150

xy

g

0
100

0

100

0

50

100

150

xy

g

(d)

0
100

0

100

0

20

40

60

xy

u
1

ADI

0
100

0

100

0

20

40

60

xy

u
1

OSM

Figure 3.5. Numerical results using the ADI and OS methods
with European call option on the maximum of two assets. (a)

Source term f at Step 1, (b) solution u
1
2 at Step 1, (c) source term

g at Step 2, and (d) solution u1 at Step 2

3.4. CONCLUSION 33

from the y-derivatives in the source term. On the other hand, for the OS method,

we do not have the y-derivatives in the source term and solution u
1
2 is smooth

around y = K2. After one complete time step, the result with the ADI shows

a non-smooth numerical solution. However, the OS method results in a smooth

numerical solution.

3.4. Conclusion

In this chapter, we performed a comparison study of alternating direction

implicit and operator splitting methods on two-dimensional Black–Scholes option

pricing models. However, numerical results from this scheme show oscillatory

solution behaviors with nonsmooth payoffs with large time steps. Most option

pricing problems have discontinuous derivatives at the exercise price. In the

ADI scheme, there are source terms which include y-derivatives when we solve x-

derivative involving equations. Then, due to the nonsmooth payoffs, source term

contains abrupt changes which are not in the range of implicit discrete operator

and this leads to difficulty in solving the problem. On the other hand, the OS

method does not contain the other variable’s derivatives in the source term. We

provided computational results showing the performance of the methods for two

underlying asset option pricing problems. The results showed that the OS method

is very efficient and robust than the ADI method with large time steps.

And we provided the MATLAB code for evaluating option value with OS

mehtod in Appendix.

34

Chapter 4

Comparison of Bi-CGSTAB, OS, and MG for 2D
Black–Scholes equation

In this chapter, we perform a comparison of finite difference schemes for solv-

ing the two-dimensional Black–Scholes equation. We discretise the equation in

space and time, and then solve a system of linear equations using the biconjugate

gradient stabilized, operator splitting, and multigrid methods. The performance

is presented, and results from different schemes are compared in two asset option

problems based on the two dimensional Black–Scholes equation. Numerical re-

sults indicate that the operator splitting method results in a better performance

among these solvers with the same level of accuracy.

4.1. Introduction

The finite difference methods (FDM) are very popular to approximate the

solution of Black–Scholes equations (BS), see the general settings in option pricing

[1, 24, 46, 51, 52, 66, 68, 77]. The FDM converts the differential equations into a

system of difference equations. There have been introduced different approaches

for efficient computations of the resulting linear systems, such as biconjugate

gradient stabilized (Bi-CGSTAB) [40, 64, 74], operator splitting (OS) [38], and

multigrid (MG) [28, 32, 59, 67, 81] methods. These solvers have been successively

used in many applications such as physics, fluid dynamics, electromagnetics, and

biomedical engineering. For different types of problems, different system solvers

4.2. NUMERICAL METHODS 35

gain advantages over the other methods, see [64]. To show the performance of

the finite difference schemes for two dimensional problems, we compare the well

known solvers, Bi-CGSTAB, OSM, and MG methods, for two dimensional Black–

Scholes equations.

Bi-CGSTAB usually reduces the errors much faster than stationary methods

and OSM can be calculated by a simple tridiagonal system of equations. Also, MG

methods have been demonstrated its robustness and good convergence. There

also have been other system solvers, such as ADI (Alternating Direction Method)

[19], GMRES [63], however we omit the comparison in this work since GMRES

and ADI methods are similar to Bi-CGSTAB and OS methods, respectively.

4.2. Numerical methods

In this chapter, we use the original Black–Scholes model (1.3) with two un-

derlying assets by a change of variable τ = T − t. And in this work, we use the

following linear boundary conditions on all boundaries:

∂2u

∂x2
(0, y, τ) =

∂2u

∂x2
(L, y, τ) =

∂2u

∂y2
(x, 0, τ) =

∂2u

∂y2
(x,M, τ) = 0,

for ∀τ ∈ [0, T], 0 ≤ x ≤ L, 0 ≤ y ≤ M.

4.2.1. Finite difference methods. A finite difference method approximates

derivatives by difference operators. FDM is a common numerical method that

has been used in many application areas including finance, see [24, 66, 68, 69, 77]

for a general framework of FDM for option pricing.

Let us first discretize the given computational domain Ω = (0, L)× (0,M) as

a uniform grid with a space step h = L/Nx = M/Ny and a time step ∆t = T/Nt.

Here, Nx and Ny are the numerber of grid points, and Nt is the total number of

4.2. NUMERICAL METHODS 36

time steps. Let us denote the numerical approximation of the solution by

un
ij = u(xi, yj, tn) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and n = 0, 1, . . . , Nt. The discrete difference

operator LBS is defined by

LBSun+1
ij =

(σ1xi)
2

2

un+1
i−1,j − 2un+1

ij + un+1
i+1,j

h2
+

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
(4.1)

+σ1σ2ρxiyj

un+1
i+1,j+1 + un+1

ij − un+1
i,j+1 − un+1

i+1,j

h2

+rxi

un+1
i+1,j − un+1

ij

h
+ ryj

un+1
i,j+1 − un+1

ij

h
− run+1

ij .

Consequently, we need to solve the following system

Au = b, (4.2)

where u is the approximate solution of (1.3). The above system (4.2) can be

solved using Bi-CGSTAB, OS, and multigrid methods. Let us first introduce

each method in the following sections.

4.2.2. Bi-conjugate gradient stabilized (Bi-CGSTAB) method. The

bi-conjugate gradient stabilized method (Bi-CGSTAB) was developed to solve

nonsymmetric linear systems [74]. Bi-CGSTAB solves the system iteratively (4.2).

First, we renumber the initial approximation uij, i.e.,

Ul = UNx(j−1)+i = uij,

where l = 1, . . . , Nx × Ny, i = 1, . . . , Nx, and j = 1, . . . , Ny. For example, when

Nx = Ny = 3, Fig. 4.1 shows the renumbering.

4.2. NUMERICAL METHODS 37

(a) (b)

Figure 4.1. Renumbering of Uij on 3× 3 grid.

Therefore, we have to solve AU = b, where U is the renumbered matrix, and

A =

a11 a1 + a8 0 a2 + a9 −a3 0 0 0 0
−a1 −2a2 + a7 a8 0 a2 + a9 −a3 0 0 0
0 −a1 − a8 a33 0 a3 a36 0 0 0
−a2 0 0 −2a1 + a7 a1 + a8 0 a9 −a3 0
0 −a2 0 −a1 a7 a8 0 a9 −a3

0 0 −a2 0 −a1 − a8 a7 + 2a8 0 a3 −2a3 + a9

0 0 0 −a2 − a9 a3 0 a77 a78 0
0 0 0 0 −a2 − a9 a3 −a1 2a9 + a7 −2a3 + a8

0 0 0 0 −a3 a96 0 a98 a99

Here,

a1 =
(σ1x)2

2h2
, a2 =

(σ2y)2

2h2
, a3 =

σ1σ2ρxy

h2
, a4 =

rx

h
, a5 =

ry

h
, a6 = −r,

a7 =
1

∆t
+ 2(a1 + a2)− a3 + a4 + a5 − a6, a8 = −a1 + a3 − a4,

a9 = −a2 + a3 − a5, a11 = a7 − 2(a1 + a2), a33 = a7 − 2(a2 + a8),

a36 = a9 + a2 − 2a3, a77 = a7 − 2(a1 − a9), a78 = a8 + a1 − 2a3,

a96 = −a2 + 2a3 − a9, a98 = −a1 + 2a3 − a8, a99 = a7 − 2(2a3 − a8 − a9).

4.2. NUMERICAL METHODS 38

The Bi-CGSTAB algorithm is as follows.

Bi-CGSTAB cycle

Define the maximum number of iteration ITER and the error tolerance TOL

Set r0 = b− AU0, r̂0 = r0, ρ0 = α = ω0 = 1,v0 = p0 = 0

Set k = 1

While (k ≤ ITER & ‖rk‖2 > TOL)

ρk =
N∑

i=1

r̂0
i r

k−1
i , β = (ρk/ρk−1)(α/ωk−1)

pk = rk−1 + β(pk−1 − ωk−1vk−1)

vk = Apk

α = ρk/

N∑
i=1

r̂0
jv

k
i

s = rk−1 − αvk

t = As

ωk =
N∑

i=1

tisi/

N∑
i=1

t2i

Uk = Uk−1 + αpk + ωks

rk = s− ωkt

k = k + 1

End While

4.2.3. Operator splitting method. The operator splitting method (OS)

computes the solutions in two time steps at tn+ 1
2
, tn+1 with time step size ∆t as

follows:

un+1
ij − un

ij

∆t
= Lx

BSu
n+ 1

2
ij + Ly

BSun+1
ij , (4.3)

4.2. NUMERICAL METHODS 39

where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSu

n+ 1
2

ij = σ2
1x

2
i

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

2h2
+ rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− λ2ru

n+ 1
2

ij

+λ1σ1σ2ρxiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
, (4.4)

Ly
BSun+1

ij = σ2
2y

2
j

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

2h2
+ ryj

un+1
i,j+1 − un+1

ij

h
− (1− λ2)ru

n+1
ij

+(1− λ1)σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2
, (4.5)

where λ1, λ2 ∈ [0, 1]. The first leg is implicit in x-direction while the second

leg is implicit in y-direction. The OS scheme moves from the time level n to a

intermediate time level n + 1/2 and then to time level n + 1. The idea behind

operator splitting is to split Eq. (1.3) into two one dimensional problems. We

then solve each sub-problem by a fast direct numerical solver such as the Thomas

algorithm. Thus, we consider two one-dimensional discrete equations.

u
n+ 1

2
ij − un

ij

∆t
= Lx

BSu
n+ 1

2
ij ,

un+1
ij − u

n+ 1
2

ij

∆t
= Ly

BSun+1
ij .

The OSM algorithm is as follows.

Algorithm OSM

Construct a tridiagonal matrix of the form

Ax =

β1 γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx βNx

.

4.2. NUMERICAL METHODS 40

Here, the elements of the matrix are

β1 =
1

∆t
+

rx1

h
+ λ2r, γ1 = −rx1

h
,

αi = −σ2
1x

2
i

2h2
, βi =

1

∆t
+

σ2
1x

2
i

h2
+

rxi

h
+ λ2r, γi = −σ2

1x
2
i

2h2
− rxi

h
,

for i = 2, · · · , Nx − 1,

αNx =
rxNx

h
, βNx =

1

∆t
− rxNx

h
+ λ2r.

Similarly, construct a tridiagonal matrix Ay,

Ay =

β1 γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy βNy

.

Here, the elements of the matrix are

β1 =
1

∆t
+

ry1

h
+ (1− λ2)r, γ1 = −ry2

h
,

αj = −σ2
2y

2
j

2h2
, βj =

1

∆t
+

σ2
2y

2
j

h2
+

ryj

h
+ (1− λ2)r, γj = −σ2

2y
2
j

2h2
− ryj

h

for j = 2, · · · , Ny − 1,

αNy =
ryNy

h
, βNy =

1

∆t
− ryNy

h
+ (1− λ2)r.

We note that matrices Ax and Ay do not depend on solution un.

4.2. NUMERICAL METHODS 41

Step 1: Loop over the y-direction:

For j = 1, ..., Ny

For i = 1, ..., Nx

by(i) = λ1ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j − un
i,j+1 + un

ij

h2
+

un
ij

∆t
.

end

Solve Axu
n+ 1

2 (:, j) = by.

Apply boundary conditions.

end

Step 2: Loop over the x-direction:

For i = 1, ..., Nx

For j = 1, ..., Ny

bx(j) = (1− λ1)ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 − u

n+ 1
2

i+1,j − u
n+ 1

2
i,j+1 + u

n+ 1
2

ij

h2
+

u
n+ 1

2
ij

∆t
.

end

Solve Ayu
n+1(i, :) = bx.

Apply boundary conditions.

end

4.2.4. Multigrid method. Multigrid methods belong to the class of fastest

iterations, because their convergence rate is independent of the step size h, see

[32]. We define a discrete domain by

Ωk = {(h(i− 0.5), h(j − 0.5)) |1 ≤ i, j ≤ 2k+1}.

4.2. NUMERICAL METHODS 42

Ωk−1 is coarser than Ωk by factor 2. The multigrid solution of the discrete BS

equation (4.6)

un+1
ij − un

ij

∆t
= LBSun+1

ij (4.6)

makes use of a hierarchy of meshes created by successively coarsening the original

mesh, see Fig. 4.2.

Ω3 (16× 16) Ω2 (8× 8) Ω1 (4× 4) Ω0 (2× 2)

Figure 4.2. A sequence of coarse grids starting with h.

We use a multigrid cycle to solve the discrete system at the implicit time

level. A pointwise Gauss–Seidel relaxation scheme is used as the smoother in the

multigrid method. We first rewrite the above equation (4.6) by

L(un+1
ij) = un

ij for each (i, j) ∈ Ωk, (4.7)

where

L(un+1
ij) = un+1

ij −∆tLBSun+1
ij .

Given the number ν1 and ν2 of pre- and post- smoothing relaxation sweeps, an

iteration step for the multigrid method using the V-cycle is formally written as

follows [72]. We use a notation un
k as a numerical solution on the discrete domain

Ωk at time t = n∆t. Given un
k , we want to find un+1

k solution which satisfies

equation (4.6). At the very beginning of the multigrid cycle the solution from the

previous time step is used to provide an initial guess for the multigrid procedure.

4.3. COMPUTATIONAL RESULTS 43

First, let un+1,0
k = un

k . The algorithm of the multigrid method for solving the

discrete BS equation (4.6) is following:

Multigrid cycle

un+1,m+1
k = MGcycle(k, un+1,m

k , Lk, u
n
k , ν1, ν2).

Step 1) Presmoothing: perform ν1 Gauss–Seidel relaxation steps.

ūn+1,m
k = SMOOTHν1(un+1,m

k , Lk, u
n
k), (4.8)

Step 2) Coarse grid correction

• Compute the residual on Ωk: d̄m
k = un

k − Lk(ū
n+1,m
k).

• Restriction to Ωk−1: d̄m
k−1 = Ik−1

k d̄m
k , ūn+1,m

k−1 = Ik−1
k ūn+1,m

k .

• Compute an approximation soultion on Ωk−1:

Lk−1(u
n+1,m
k−1) = d̄m

k−1. (4.9)

• Solve the equation (4.9):

ûn+1,m
k−1 =

{
MGcycle(k − 1, ūn+1,m

k−1 , Lk−1, d̄
n
k−1, ν1, ν2) for k > 1

apply the smoothing procedure in (4.8) for k = 1.

• Interpolate the correction: ûm
k = Ik

k−1û
m
k−1.

• Compute the corrected approximation on Ωk:

um, after CGC
k = ūn+1,m

k + ûm
k .

Step 3) Postsmoothing: un+1,m+1
k = SMOOTHν2(um, after CGC

k , Lk, u
n
k).

4.3. Computational results

In this section, we compare the performance of the numerical methods (Bi-

CGSTAB, OS, and MG) using CPU times. Each method is implemented using

MATLAB [73] in a desktop computer.

4.3. COMPUTATIONAL RESULTS 44

We consider three types of two-asset cash-or-nothing options. The cash-or-

nothing options are useful building blocks for constructing more complex exotic

option products and they are widely traded in the real world financial market.

Case 1: A two asset cash-or-nothing call pays out a fixed cash amount K if

asset one, x, is above the strike X1 and asset two, y, is above strike X2 at

expiration. The payoff is given by

Λ(x, y) =

{
K if x ≥ X1 and y ≥ X2,
0 otherwise .

(4.10)

Case 2: A two asset cash-or-nothing put pays out a fixed cash amount K if

asset one, x, is below the strike X1 and asset two, y, is below strike X2 at

expiration. The payoff is given by

Λ(x, y) =

{
K if x ≤ X1 and y ≤ X2,
0 otherwise .

(4.11)

Case 3: A two asset cash-or-nothing up-down pays out a fixed cash amount

K if asset one, x, is above the strike X1 and asset two, y, is below strike

X2 at expiration. The payoff is given by

Λ(x, y) =

{
K if x ≥ X1 and y ≤ X2,
0 otherwise .

(4.12)

Fig. 4.3(a), (b), and (c) show the payoff function Λ(x, y) for Case 1, Case

2, and Case 3, respectively.

The formulas published by Heynen and Kat [35] can be used to price these

binary options:

Case 1 : u(x, y, T) = Ke−rT M(α, β; ρ),

Case 2 : u(x, y, T) = Ke−rT M(−α,−β; ρ),

Case 3 : u(x, y, T) = Ke−rT M(−α, β;−ρ),

4.3. COMPUTATIONAL RESULTS 45

0
100

200
300

0

100

200

300
0

0.5

1

xy

(a)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(b)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(c)

Figure 4.3. (a), (b), and (c) are payoff functions of Case 1, Case
2, and Case 3, respectively.

where α = [ln(x/X1)+(r−σ2
1/2)T]/(σ1

√
T), β = [ln(y/X2)+(r−σ2

2/2)T]/(σ2

√
T)

[34]. Here M(α, β; ρ) denotes a standardized cumulative normal function where

one random variable is less than α and a second random variable is less than β.

The correlation between the two variables is ρ:

M(α, β; ρ) =
1

2π
√

1− ρ2

∫ α

−∞

∫ β

−∞
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
dxdy.

We considered a domain, Ω = [0, 300]× [0, 300]. We computed the numerical

solution on uniform grids, h = 300/2n for n = 5, 6, 7, and 8. For each case, we ran

the calculation to time T = 1 with a uniform time step ∆t = 0.01 with a given

strike price of X1 = 100, X2 = 100, and cash amount K = 1. The volatilities

are σ1 = 0.5, σ2 = 0.5 with a correlation ρ = 0.5, and the riskless interest rate

r = 0.03. Fig. 4.4 shows the numerical solution at T = 1 case by case. We let

e be the matrix with components eij = u(xi, yj) − Uij and compute its discrete

l2-norm of the error, ‖e‖2.

We test the numerical experiments of different case with three solvers, Bi-

CGSTAB, OSM and MG. To make a fair comparison of these solvers, we match

the accuracy of these solvers by changing iteration parameters. Table 4.3 shows

4.3. COMPUTATIONAL RESULTS 46

0
100

200
300

0

100

200

300
0

0.5

1

xy

(a)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(b)

0
100

200
300

0

100

200

300
0

0.5

1

xy

(c)

Figure 4.4. (a), (b), and (c) are numerical solutions at time T = 1
of Case 1, Case 2, and Case 3, respectively.

the result of Case 1. Figure 4.5 shows the CPU time with Case 1 and we can

see l2 errors are more or less same order to each other on each mesh size.

32 x 32 64 x 64 128 x 128 256 x 256
0

20

40

60

80

100

120

140

160

mesh

C
P

U
 ti

m
e

MG
Bi−CGSTAB
OSM

Figure 4.5. CPU times of Case 1.

In this Figs., the solid line with triangles, the dash-dot line with squares, and

the dashed line with stars express OSM, BI-CGSTAB, and MG, respectively.

Next, let us check the CPU times to compare efficiency of these solvers. Table

4.3 also shows the CPU times with each method. We can confirm that OS method

has a linear CPU time cost as the spatial domain is doubled in each direction.

Table 4.1, Table 4.2, and Fig. 4.6 show the CPU times with Case 2 and Case

4.3. COMPUTATIONAL RESULTS 47

32 x 32 64 x 64 128 x 128 256 x 256
0

10

20

30

40

50

60

70

80

mesh

C
P

U
 ti

m
e

MG
Bi−CGSTAB
OSM

(a)

32 x 32 64 x 64 128 x 128 256 x 256
0

50

100

150

mesh

C
P

U
 ti

m
e

MG
Bi−CGSTAB
OSM

(b)

Figure 4.6. (a) and (b) are CPU times of Case 2 and Case 3, respectively.

3. From all these results, we can confirm that OS method is faster than other

methods under the same accuracy.

Mesh Bi-CGStab OSM Multigrid
32× 32 0.0161 (0.33) 0.0160 (0.31) 0.0150 (2.11)
64× 64 0.0126 (1.67) 0.0126 (1.17) 0.0131 (6.13)

128× 128 0.0078 (6.42) 0.0076 (4.67) 0.0066 (27.22)
256× 256 0.0089 (90.50) 0.0087 (19.34) 0.0086 (160.90)

Table 4.1. Case 1: Comparison of l2 error and (CPU time).

Mesh Bi-CGStab OSM Multigrid
32× 32 0.0130 (0.39) 0.0131 (0.30) 0.0137 (2.11)
64× 64 0.0100 (1.80) 0.0099 (1.17) 0.0097 (5.81)

128× 128 0.0063 (6.73) 0.0063 (4.64) 0.0060 (19.97)
256× 256 0.0066 (82.78) 0.0064 (19.22) 0.0059 (80.44)

Table 4.2. Case 2: Comparison of l2 error and (CPU time).

Mesh Bi-CGStab OSM Multigrid
32× 32 0.0127 (0.41) 0.0128 (0.30) 0.0124 (2.11)
64× 64 0.0065 (1.94) 0.0064 (1.16) 0.0069 (6.25)

128× 128 0.0070 (7.80) 0.0069 (4.63) 0.0064 (24.19)
256× 256 0.0059 (108.88) 0.0058 (19.22) 0.0056 (154.38)

Table 4.3. Case 3: Comparison of l2 error and (CPU time).

4.4. CONCLUSION 48

4.4. Conclusion

The main purpose of this chpater is to present the results of comparison of

finite difference schemes and indicate a better performing scheme. The finite dif-

ference methods are applied to the Black–Scholes formula for stock option pricing.

The large linear system, derived from the Black–Scholes equation, is solved by

biconjugate gradient stabilized, operator splitting, and multigrid methods. The

performance of these methods is compared for two asset option problems based

on two dimensional Black–Scholes equations. For the standard finite difference

schemes, we can see that the OSM leads to better performance. Moreover, the

efficiency of the OSM can be increased with mesh size. Even if Bi-CGSTAB and

multigrid solvers have a good accuracy but the ones still need a lot of compu-

tational times. On the other hand, operator splitting is faster than other two

methods under the same accuracy.

49

Chapter 5

An adaptive grid generation technique depending on a
far-field boundary position for the Black–Scholes equation

In this chapter, we present an accurate and efficient numerical method for

solving the Black–Scholes equation. The method uses an adaptive grid tech-

nique which is based on a far-field boundary position of the equation and also

the Peclet condition. The algorithm for the automatic adaptive grid generation

is: First, for a given error tolerance, we determine a priori a suitable far-field

boundary location using the mathematical model parameters. Second, put a uni-

form fine grid around the non-smooth points of the payoff such as a strike price

and a non-uniform grid in the remaining regions. Numerical tests are presented

to demonstrate the accuracy and efficiency of the proposed method. The results

show that the computational times using the new adaptive grid method are re-

duced substantially when compared to those of a uniform grid method with a

similar magnitude of error.

5.1. Introduction

In this chapter, we develop an accurate and efficient numerical method to

solve the Black–Scholes (BS) equation with one underlying asset:

∂u

∂t
= −1

2
(σx)2∂2u

∂x2
− rx

∂u

∂x
+ ru, ∀(x, t) ∈ (0,∞)× [0, T), (5.1)

where u(x, t) represents the value of the derivative security, x is the value of the

underlying security, t is the time, r is the risk-free interest rate, and σ is the

5.2. DISCRETIZATION WITH FINITE DIFFERENCES 50

volatility of the underlying asset [6, 53]. By changing variable t to τ = T − t, we

can rewrite Eq. (5.1) as a parabolic partial differential equation:

∂u

∂τ
=

1

2
(σx)2∂2u

∂x2
+ rx

∂u

∂x
− ru, ∀(x, τ) ∈ (0,∞)× (0, T]. (5.2)

The initial condition is given by

u(x, 0) = p(x). (5.3)

Taking a European call option as an example, we have the payoff function

as p(x) = max(x − K, 0) with a given strike price K; see [34]. The original

problem (5.1) is posed on an infinite domain (0,∞) for the space variable x.

However, when we approximate the solution numerically, we need to use a finite

size domain, i.e., [0, Smax]. In [41], detailed estimates can be obtained for the

error in the solution due to the truncated finite domain size.

The purpose of this work is to present an adaptive grid distribution depend-

ing on a far-field boundary position and the Peclet condition to solve the Black–

Scholes equation accurately and efficiently. Our proposed algorithm is as follows:

First, to generate the adaptive grid we determine a priori a suitable far-field

location using estimates with a given error tolerance. Then, we put a uniform

fine grid around the non-smooth points and a non-uniform grid in the remain-

ing regions. When we choose the non-uniform grid function, we use the Peclet

condition which will be defined later.

5.2. Discretization with finite differences

A finite difference method approximates continuous derivatives by difference

operators. The finite difference method has been applied to pricing financial

contracts for many years [68]. For more details about finite difference methods

5.2. DISCRETIZATION WITH FINITE DIFFERENCES 51

in computational finance, we refer the reader to the books [24, 68, 69, 77] and

papers [12, 13, 65].

The BS equation is discretized on a non-uniform grid defined by x0 = 0 and

xi+1 = xi +hi for i = 0, · · · , Nx−1, where Nx is the total number of grid intervals

and hi is the grid spacing, see Fig. 5.1. And we assume hNx = hNx−1.

0

x0 x1 · · · xi−1 xi xi+1 · · ·

Smax

xNx

x

hi−1 hi

Figure 5.1. A non-uniform grid with space step sizes hi.

Let us denote the numerical approximation of the solution by un
i ≡ u(xi, τ

n),

where τn = n∆τ , ∆τ = T/Nτ , and Nτ is the total number of time steps. By

applying an implicit scheme to Eq. (5.2), we have

un+1
i − un

i

∆τ
=

σ2x2
i

2

(
∂2u

∂x2

)n+1

i

+ rxi

(
∂u

∂x

)n+1

i

− run+1
i , (5.4)

where first and second derivatives are defined as

(
∂u

∂x

)n+1

i

= − hi

hi−1(hi−1 + hi)
un+1

i−1 +
hi − hi−1

hi−1hi

un+1
i +

hi−1

hi(hi−1 + hi)
un+1

i+1 ,

(
∂2u

∂x2

)n+1

i

=
2

hi−1(hi−1 + hi)
un+1

i−1 −
2

hi−1hi

un+1
i +

2

hi(hi−1 + hi)
un+1

i+1 .

We used the same discretization in [56]. We can rewrite Eq. (5.4) as

αiu
n+1
i−1 + βiu

n+1
i + γiu

n+1
i+1 =

un
i

∆τ
, (5.5)

5.3. ADAPTIVE GRID GENERATION TECHNIQUE 52

where

αi =
−σ2x2

i + rxihi

hi−1(hi−1 + hi)
,

βi =
σ2x2

i − rxi(hi − hi−1)

hi−1hi

+ r +
1

∆τ
,

γi =
−σ2x2

i − rxihi−1

hi(hi−1 + hi)

The linear boundary condition is defined by ∂2u
∂x2 (Smax, τ) = 0, ∀τ ∈ [0, T] [56, 68,

78] and we discretize it as (un+1
Nx−1 − 2un+1

Nx
+ un+1

Nx+1)/h
2
Nx−1 = 0. By substituting

this into Eq. (5.5) we get

rxNx

hNx−1

un+1
Nx−1 +

(
1

∆τ
− rxNx

hNx−1

+ r

)
un+1

Nx
=

un
Nx

∆τ
. (5.6)

And we can rewrite Eqs. (5.5) and (5.6) in a matrix form as

β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

.
...

0 . . . αNx−1 βNx−1 γNx−1

0 . . . 0 αNx βNx

un+1
1

un+1
2
...

un+1
Nx−1

un+1
Nx

=

un
1/∆τ

un
2/∆τ

...
un

Nx−1/∆τ
un

Nx
/∆τ

,

where αNx = rxNx/hNx−1 and βNx = 1
∆τ
− rxNx/hNx−1 + r. We solve this tri-

diagonal matrix directly by using the Thomas algorithm.

5.3. Adaptive grid generation technique

An adaptive grid generation technique is used to reduce the number of grid-

points maintaining the discretization error at a prescribed level. Examples of

algorithms for adaptivity in space and time can be found in [1, 20, 47, 49, 50,

56, 57, 58, 80, 83]. In [56, 57], the authors used an adaptive technique proposed

in [47] based on local discretization error. Non-uniform mesh is generated by

obtaining more grid-points around the discontinuity. And the grid points move

in every time step for optimal distribution of them with moving grid method,

5.3. ADAPTIVE GRID GENERATION TECHNIQUE 53

see e.g. [80]. Moreover, the computational grid is refined in blocks and the

grid and time step change at every discrete time point in [50]. The authors in

paper [20] developed space-time adaptive and high-order methods for valuing

American options using PDE approach. In [49], the grid and time step sizes were

chosen dynamically to satisfy a bound on the global error at the expiry date.

In addition to this, an adaptive finite element discretization was developed in

[1, 58] for American options. Also, the authors in [83] applied a discrete singular

convolution algorithm with an adaptive mesh.

Now, as an extended work of adaptive grid generation techniques, we propose

an improved adaptive grid technique which is based on a far-field boundary posi-

tion of the BS equation and the Peclet condition for stability of solutions. For a

given total number of grid points, we want to optimize the computation in terms

of accuracy and efficiency by using adaptive grid techniques. First of all, we need

to decide the computational domain size so that we can use a numerical method

such as a finite difference method. If we want to get an accurate solution, then

the domain size should be large enough. However, a large domain requires more

computational resources. Therefore, we want the domain size to be as small as

possible while keeping the resulting solution within a given error tolerance. Once

the domain size is chosen, we adaptively distribute grid points so that we get an

accurate numerical solution using a given grid function.

5.3.1. Far field boundary condition. Let u be classical solution of Eqs.

(5.2) and (5.3) on an infinite domain (0,∞)× (0, T]. Assume

−ν0 + ν1x ≤ p(x) ≤ κ0 + κ1x ∀x ∈ (0, ∞) (5.7)

5.3. ADAPTIVE GRID GENERATION TECHNIQUE 54

for some ν0, ν1, κ0, κ1 ≥ 0. Then

−ν0e
−rτ + ν1x ≤ u(x, τ) ≤ κ0e

−rτ + κ1x ∀(x, τ) ∈ (0, ∞)× (0, T).

Also let w be the classical solution of Eqs. (5.2) and (5.3) on a finite domain

(0, Smax)× (0, T]. Then at every point (x, τ) ∈ (0, Smax)× (0, T] satisfying

ln
Smax

x
≥ −(σ2 − 2r)τ, (5.8)

we have

|u(x, τ)− w(x, τ)| ≤ ‖u− w‖L∞(Smax×(0,τ))e
− ln Smax

K (ln Smax
K

+min{0,σ2−2r}τ)
2σ2τ . (5.9)

Please refer to [41] for more details about the far-field boundary conditions

for the Black–Scholes equations.

5.3.2. Choice of far-field boundary position. First, we consider a Eu-

ropean call option, whose payoff function is given as p(x) = max(x −K, 0). Let

u(x, τ) and w(x, τ) be solutions of Eq. (5.2) on an infinite domain (0,∞)× (0, T]

and a finite domain (0, Smax)×(0, T], respectively. For the boundary condition at

x = Smax, we set w(Smax, τ) = p(Smax) for all τ ∈ (0, T). Since−K+x ≤ p(x) ≤ x

by Eqs. (5.7) and (5.8), we can say that −Ke−rτ + x ≤ u(x, τ) ≤ x. Therefore

we have supτ∈(0,T) |u(Smax, τ) − w(Smax, τ)| ≤ K. Then by Eq. (5.9), for all

x ∈ [0, K], u(x, τ) and w(x, τ) satisfy the following inequality:

|u(x, τ)− w(x, τ)| ≤ K exp

(
− ln Smax

K

(
ln Smax

K
+ min{0, σ2 − 2r}τ)

2σ2τ

)
.

Therefore, if we want the error on the finite domain to be less than K/A, then

Smax should satisfy the following inequality:

K exp

(
− ln Smax

K

(
ln Smax

K
+ min{0, σ2 − 2r}τ)

2σ2τ

)
≤ K/A.

5.3. ADAPTIVE GRID GENERATION TECHNIQUE 55

This estimation tells us that if

Smax ≥ Ke−0.5min{0,(σ2−2r)τ}+0.5
√

(min{0,(σ2−2r)τ})2+8σ2τ ln A, (5.10)

then we can be sure that w(x, τ), the solution of the truncated domain problem,

gives us a call option value that is within K/A from the correct value [41]. This

estimation is essential when performing numerical approximations of infinite do-

main problems since we must use a finite domain in finite difference schemes.

Therefore, for the accuracy and efficiency of our proposed method, we utilize this

error estimation to choose the far-field boundary position.

Next, let us consider the other type of European call options. For example, a

cash-or-nothing option has the payoff function p(x) = Cash if x > K and p(x) = 0

otherwise. Similar to the first case, since supτ∈(0,T) |u(Smax, τ) − w(Smax, τ)| ≤
Cash, for all x ∈ (0, Smax), u(x, τ) and w(x, τ) satisfy the following inequality:

|u(x, τ)− w(x, τ)| ≤ Cash e−
ln Smax

K (ln Smax
K

+min{0,σ2−2r}τ)
2σ2τ .

Therefore, if we want the error on the finite domain to be less than K/A, then

we need

Smax ≥ Ke−0.5min{0,(σ2−2r)τ}+0.5
√

min{0,(σ2−2r)τ}2+8σ2τ ln(A Cash/K). (5.11)

5.3.3. Stability condition. In this section, we will derive the conditions

under which the implicit scheme for Eq. (5.2) will not make spurious oscillations

by using the idea in reference [86]. Let ki = 1
2
σ2x2

i , ai = rxi and we rewrite Eq.

(5.5) as:

(aihi − ki)∆τ

hi−1(hi−1 + hi)
un+1

i−1 +
(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi

un+1
i

−(ki + aihi−1)∆τ

hi(hi−1 + hi)
un+1

i+1 = un
i . (5.12)

5.3. ADAPTIVE GRID GENERATION TECHNIQUE 56

Next, we substitute un+1
i = βn+1

i /(1 + r∆τ)n into Eq. (5.12), where the super-

script n for (1 + r∆τ) represents an exponent. Then, we obtain

(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi

βn+1
i (5.13)

= (1 + r∆τ) βn
i +

(ki − aihi)∆τ

hi−1(hi−1 + hi)
βn+1

i−1 +
(ki + aihi−1)∆τ

hi(hi−1 + hi)
βn+1

i+1 .

In order for all coefficients of β in Eq. (5.13) to be positive, ki − hiai > 0 should

be satisfied. That is, we have the Peclet condition [86]:

1

hi

>
r

σ2xi

.

Now, if the Peclet condition is satisfied, then all the coefficients of β in Eq. (5.13)

are positive. Let βmax
i = max(βn

i , βn+1
i−1 , βn+1

i+1), then Eq. (5.13) can be written as

(ki − ai(hi − hi−1))∆τ + (1 + r∆τ)hi−1hi

hi−1hi

βn+1
i

≤ (1 + r∆τ) βmax
i +

(ki − aihi)∆τ

hi−1(hi−1 + hi)
βmax

i +
(ki + aihi−1)∆τ

hi(hi−1 + hi)
βmax

i .

Therefore,

βn+1
i ≤ βmax

i . (5.14)

And by a similar argument we obtain

βn+1
i ≥ βmin

i , (5.15)

where βmin
i = min(βn

i , βn+1
i−1 , βn+1

i+1). By Eqs. (5.14) and (5.15), new local max-

ima or minima of the numerical solution for βn+1
i can not occur. Since un+1

i =

βn+1
i /(1 + r∆τ)n, the numerical solution un+1

i does not contain oscillations if

conditions (5.14) and (5.15) are satisfied.

5.3.4. Non-uniform grid generation process with the Peclet condi-

tion. The adaptive grid generation process aims to creat a grid with a uniform

5.4. COMPUTATIONAL RESULTS 57

fine grid around the strike price K and an increasingly large grid size as we move

toward the far-field boundary. To do this, we propose a grid generating function

h(x) based on the Peclet condition

h(x) =

{
p(x−K − (m− 0.5)h̄)d + h̄ if x ≥ K + (m− 0.5)h̄,
p(x−K + (m− 0.5)h̄)d + h̄ if x ≤ K − (m− 0.5)h̄,

where p, d, and h̄ are real positive numbers and m is a natural number. First,

we allocate 2m grid points around the strike price K with a grid size of h̄, see

Fig. 5.2. Then, we start at xi = K +(m−0.5)h̄ and define xi+1 = xi +h(xi). We

continue this procedure until we reach the point where xNx−1 ≤ Smax < xNx , at

this stage we reset hNx−1 = hNx−2. Similarly, for the grid generation of left side,

we start at xi = K − (m− 0.5)h̄ and define xi−1 = xi − h(xi). We continue this

process until we reach the point where x0 ≤ 0 < x1. If x0 < 0, then we redefine

x0 = 0. This procedure is described schematically in Fig. 5.2. In this figure, we

also show an illustration of initial and later solutions on the adaptive grid.

Now, for numerical solutions which are free of spurious oscillations, the space

step size must satisfy the following Peclet condition (5.16) [86]:

hi <
σ2

r
xi. (5.16)

In this work, we will choose a piecewise linear grid function h(x) whose slope

is less than σ2/r to obtain non-oscillatory solutions. We will use the parameter

p = 0.05σ2/r and d = 1 for numerical examples.

5.4. Computational results

In this section, we perform numerical experiments to test the proposed method.

The main focus of these tests is on the performance of the proposed adaptive grid

technique compared to the standard uniform grid method. As the benchmark

5.4. COMPUTATIONAL RESULTS 58

K Smax0

m mx0x1 x2 x3· · · x
Nx

x
Nx−1

x
Nx−2· · ·

x

h

Initial

T = 1.5

Figure 5.2. Construction of the adaptive grid using the function h(x).

problems, we consider the European option problems for numerical examples.

These problems are of great interest to academicians in the finance literature and

often used to show the accuracy of a given numerical scheme [15, 27, 30].

5.4.1. Uniform grid. The effect of the computational domain size and the

total time for a European vanilla call option using a uniform grid is studied.

The parameters σ = 0.35, r = 0.05, and space step size h = 1 are used. The

computational domain is Ω = (0, L). For each case, we ran the calculation up

5.4. COMPUTATIONAL RESULTS 59

to time T with a uniform time step of ∆τ = 0.01. The initial condition is

u(x, 0) = max(x−K, 0) with the strike price K = 100.

0 50 100 150 200
0

20

40

60

Exact
Numerical
Payoff

(a)

0 50 100 150 200
0

20

40

60

80

100

Exact
Numerical
Payoff

(b)

0 50 100 150 200
0

20

40

60

80

100

120

Exact
Numerical
Payoff

(c)

Figure 5.3. Initial profiles and numerical, exact results with re-
spect to different domain sizes and times: (a) L = 150, T = 1, (b)
L = 200, T = 1, and (c) L = 200, T = 5.

5.4. COMPUTATIONAL RESULTS 60

For this European call option, the closed form solution of the Black–Scholes

equation is

u(x, τ) = xN(d1)−Ke−rτN(d2), ∀x ∈ [0, L], ∀τ ∈ [0, T]

d1 =
log(x/K) + (r + 1

2
σ2)τ

σ
√

τ
, d2 = d1 − σ

√
τ ,

where N(d) = (1/
√

2π)
∫ d

−∞ exp (−x2/2) dx is the cumulative distribution func-

tion for the standard normal distribution [6].

Figures 5.3(a), (b), and (c) show the initial profile, numerical, and exact

solutions at time T . When L = 150 and T = 1, we can observe a large deviation

of numerical solution from the exact solution (see Fig. 5.3(a)). With increased

domain size L = 200, we get a good result in Fig. 5.3(b). However, when we

increase the time to T = 5, we again have a large deviation between the numerical

and exact solutions (see Fig. 5.3(c)). This result implies that we need a large

enough domain size in relation to the size of T .

5.4.2. Adaptive grid. To demonstrate the performance of the proposed

adaptive grid technique with a far-field boundary condition and the Peclet condi-

tion, we compare the numerical results of both the uniform grid method and our

proposed adaptive grid method. For the comparison study, we set σ = 0.35, r =

0.05, ∆τ = 0.001, p = 0.05σ2/r, and d = 1. Also, the far-field boundary position

Smax is set to achieve an accuracy of K/A = 0.1 according to the conditions (5.10)

and (5.11) for each case. To compare numerical results on uniform and adaptive

grids, we use the relative root mean square error (RMSE) on [0.95K, 1.05K].

Here, the relative RMSE is defined as

Relative RMSE =

√√√√ 1

N

N∑
i=1

(
ui − u(xi)

u(xi)

)2

,

5.4. COMPUTATIONAL RESULTS 61

where N is the total number of points on [0.95K, 1.05K], ui and u(xi) are nu-

merical and exact solutions, respectively.

5.4.2.1. Call option on a maximum of one asset. The initial state is given by

u(x, 0) = max(x− 100, 0). Table 5.1 shows computational results such as RMSE

on [0.95K, 1.05K], relative CPU time, and grid points Nx at time T = 1 with

adaptive and uniform grids. In this numerical test, we use ten different space

steps: h̄ = 2/2m, where m = 0, 1, 2, · · · , 9. As shown in Table 5.1, the CPU times

taken from the uniform grids are larger than those of the adaptive grid method.

Also, the total number of grid points Nx on the adaptive grid is much smaller

than on the uniform grid. Overall, the adaptive grid outperforms the uniform

grid.

Case RMSE
CPU time Nx

Adaptive Uniform Adaptive Uniform

h̄ = 2 1.399E-6 1 1 88 185
h̄ = 1 1.399E-6 1 1.5 149 368

h̄ = 1/2 1.399E-6 1 4.5 259 736
h̄ = 1/22 1.399E-6 1 5.75 461 1470
h̄ = 1/23 1.399E-6 1 14.50 851 2939
h̄ = 1/24 1.399E-6 1 24.73 1619 5877
h̄ = 1/25 1.399E-6 1 34.61 3137 11754
h̄ = 1/26 1.399E-6 1 44.45 6165 23506
h̄ = 1/27 1.399E-6 1 58.99 12207 47011
h̄ = 1/28 1.399E-6 1 78.99 24301 94022

Table 5.1. Comparison of relative CPU time and grid points Nx

on adaptive and uniform grids at time T = 1 with call option on
the maximum of one asset.

Figure 5.4 shows the result of the RMSE on [0.95K, 1.05K] with different

Nx at time T = 1. In Fig. 5.4, ‘◦’ and ‘3’ show the results using h̄ = 1 and

0.25, respectively and ‘•’ and ‘¨’ represent h̄ = 1 and 0.25 on the uniform mesh,

5.4. COMPUTATIONAL RESULTS 62

respectively. From these results, we see the convergence of the relative RMSE of

the adaptive grid as the number of grid points around the strike price K increases.

0 100 200 300
0

0.5

1

x 10
−6

R
el

at
iv

e
R

M
S

E

Nx

Adaptive mesh
Uniform mesh

(a) h̄ = 1

0 500 1000 1500
0

2

4

6

8
x 10

−7

R
el

at
iv

e
R

M
S

E
Nx

Adaptive mesh
Uniform mesh

(b) h̄ = 0.25

Figure 5.4. Relative RMSE on [0.95K, 1.05K] with different Nx

at T = 1. Lines with symbols ‘◦’ and ‘3’ represent h̄ = 1 and
0.25 on the adaptive mesh, respectively. Also, symbols ‘•’ and ‘¨’
represent h̄ = 1 and 0.25 on the uniform mesh, respectively.

5.4.2.2. Cash-or-nothing option. Next, we perform the same comparison study

using a cash-or-nothing option. The initial state is given by

u(x, 0) =

{
Cash if x ≤ K

0 otherwise.

For this test, we use Cash = 100. Table 5.2 shows computational results such

as relative CPU time, RMSE on [0.95K, 1.05K] and grid points, Nx at time T = 1

on adaptive and uniform grids with ten different space step size h = 2/2m, where

m = 0, 1, 2, · · · , 9. We can see that the adaptive grid technique is more efficient

than uniform grid.

Figure 5.5 shows the result of the RMSE on [0.95K, 1.05K] with different Nx

at time T = 1. In Fig. 5.5, ‘◦’ and ‘3’ show the results of h̄ = 1 and 0.25 on the

adaptive mesh, respectively. And symbols ‘•’ and ‘¨’ represent h̄ = 1 and 0.25

5.4. COMPUTATIONAL RESULTS 63

Case RMSE
CPU time Nx

Adaptive Uniform Adaptive Uniform

h̄ = 2 1.352E-7 1 1.36 88 185
h̄ = 1 7.994E-7 1 1.5 155 368

h̄ = 1/2 7.994E-7 1 4.0 232 736
h̄ = 1/22 7.994E-7 1 6.0 394 1470
h̄ = 1/23 7.994E-7 1 18.88 710 2939
h̄ = 1/24 7.994E-7 1 45.15 1332 5877
h̄ = 1/25 7.994E-7 1 47.59 2564 11754
h̄ = 1/26 7.994E-7 1 54.10 5014 23506
h̄ = 1/27 7.994E-7 1 71.31 9904 47011
h̄ = 1/28 7.994E-7 1 108.02 19672 94022

Table 5.2. Comparison of relative CPU time and grid points, Nx

on adaptive and uniform grids at time T = 1 for a given relative
RMSE tolerance with a cash-or-nothing option payoff.

on the uniform mesh, respectively. From these results, we see the convergence of

the relative RMSE of the adaptive grid as the number of grid points around the

strike price K increases.

0 100 200 300
0

2

4

6

x 10
−7

R
el

at
iv

e
R

M
S

E

Nx

Adaptive mesh
Uniform mesh

(a) h̄ = 1

0 500 1000 1500
0

1

2

3

4
x 10

−7

R
el

at
iv

e
R

M
S

E

Nx

Adaptive mesh
Uniform mesh

(b) h̄ = 0.25

Figure 5.5. Relative RMSE on [0.95K, 1.05K] with different Nx

at T = 1. Lines with symbols ‘◦’ and ‘3’ represent h̄ = 1 and
0.25 on the adaptive mesh, respectively. Also, symbols ‘•’ and ‘¨’
represent h̄ = 1 and 0.25 on the uniform mesh, respectively.

5.5. CONCLUSIONS 64

5.5. Conclusions

An accurate and efficient numerical method for solving the Black–Scholes

equation was derived in this chapter. The method uses an adaptive technique

which is based on a far-field boundary position of the BS equation and the Peclet

condition for non-oscillatory solutions. In this chapter, we stated only the one-

dimensional problems. However, this adaptive grid generation on multi-dimension

is also simply extended. For example, we briefly present two-dimensional problem

with a European vanilla call option using adaptive grid generating technique.

The two-dimensional Black–Scholes equation is discretized on a non-uniform grid

defined by x0 = y0 = 0, xi+1 = xi + hi, yj+1 = yj + hj for i = 0, 1, · · · , Nx − 1

and j = 0, 1, · · · , Ny − 1 where Nx, Ny are the total number of grid points on

each x- and y-axis. Here, Smax is decided by the far-field boundary condition.

For details, one may refer to [41]. The following Fig. 5.6 represents adaptive grid

generated by such assumptions.

0 x

y

xi−1 xi xi+1

yj+1

yj

yj−1

hi−1 hi

hj−1

hj

(a) (b)

Figure 5.6. (a) Space step sizes hi and hj which are defined on
two-dimensional non-uniform grid and (b) two-dimensional adap-
tive mesh.

5.5. CONCLUSIONS 65

And on these two-dimensional adaptive grids, we can solve the Black–Scholes

equation by using the fast and accurate numerical method such as operator split-

ting methods [19, 24, 36, 82]. As dimension increases, the adaptive technique

will decrease computational costs than on uniform grids while maintaining the

accuracy. Furthermore, since the proposed adaptive grid method is based on a

far-field boundary position and the Peclet condition for non-oscillatory solutions,

we get efficient and accurate numerical solutions.

In this chapter, to demonstrate the accuracy and efficiency of our proposed

method, numerical tests were performed. Test results show that the computa-

tional time on the adaptive grid was reduced substantially when compared to the

uniform grid. From these numerical results, we confirmed the effectiveness of the

proposed adaptive grid method.

66

Chapter 6

An operator splitting method for pricing the ELS option

This work presents the numerical valuation of the two-asset step-down equity-

linked securities (ELS) option by using the operator splitting method (OSM). The

ELS is one of the most popular financial options. The value of ELS option can

be modeled by a modified Black–Scholes partial differential equation. However,

regardless of whether there is a closed-form solution, it is difficult and not effi-

cient to evaluate the solution because such a solution would be represented by

multiple integrations. Thus, a fast and accurate numerical algorithm is needed

to value the price of the ELS option. This chapter uses a finite difference method

to discretize the governing equation and applies the OSM to solve the resulting

discrete equations. The OSM is very robust and accurate in evaluating finite

difference discretizations. We provide a detailed numerical algorithm and com-

putational results showing the performance of the method for two underlying

asset option pricing problems such as cash-or-nothing and step-down ELS. Final

option value of two-asset step-down ELS is obtained by a weighted average value

using probability which is estimated by performing a MC simulation.

6.1. Introduction

Equity-linked securities (ELS) are securities whose return on investment is

dependent on the performance of the underlying equities linked to the securities.

Since ELS were introduced to Korea in 2003, the booming world economy and

6.2. TWO-ASSET STEP-DOWN ELS 67

expanding financial markets have shifted funds previously focused on real estate

to new investment vehicles. The ELS option represents one of the new investment

vehicles in that they can be used to structure various products according to the

needs of investors. We can model the value of the ELS option by a modified Black–

Scholes partial differential equation (BSPDE) [1, 24, 66, 68, 69, 77]. Typically,

there is no closed-form solution, and even if there were such a solution, evaluating

it would be difficult because it would be represented by multiple integrations.

Therefore, a fast and accurate numerical algorithm is needed to price the ELS

option. We use a finite difference method to discretize the BSPDE and apply the

operator splitting method (OSM) [24] to solve the resulting discrete equations.

The basic idea behind the OSM is to reduce multi-dimensional equations into

multiple one-dimensional problems. The OSM is very robust and accurate in

evaluating finite difference discretizations.

6.2. Two-asset step-down ELS

The payoff of two-asset step-down ELS is as follows:

• Early obligatory redemption occurs and a given rate of return is paid if

the value of the worst performer is greater than or equal to the prescribed

exercise price on the given observation date. Here, Here the worst performer

is defined as one of the two underlying assets whose value is lower than that

of the other.

• If early obligatory redemptions did not occur until the maturity time, then

the return is determined by the Knock-In criterion.

6.2. TWO-ASSET STEP-DOWN ELS 68

The basic parameters of two-asset step-down ELS are as follows:

- Maturity : T

- Face value : F

- Underlying assets at time t : x(t) and y(t)

- Worst performer : St = min [x(t), y(t)]

- Conditions for early redemption : Let N be the number of observation

dates.

Observation date t1 t2 · · · tN = T
Exercise price K1 K2 · · · KN

Rate of return c1 c2 · · · cN

Case 1) Early obligatory redemptions happened

If the value of the worst performer Sti is greater than or equal to the

exercise price Ki at time t = ti, then (1 + ci)F is paid, and the contract

expires.

Case 2) Early obligatory redemptions did not happen

Let D denote the Knock-In barrier level and d denote a dummy.

(i) If a Knock-in event does not occur, that is,

mT = min {St| 0 ≤ t ≤ T} > D, then (1 + d)F is paid.

(ii) If a Knock-in event occurs, (1 + ST /S0) F is paid.

We now summarize the payoff function. Let χ
i
= χAi

, where χ
i

denotes the

characteristic function of Ai = {x ≥ Ki and y ≥ Ki}. Here Ki is the exercise

price at time ti. Let u(x, y, t) denote the value of the option. Generally, the

6.3. NUMERICAL SOLUTION 69

payoff function of two-asset step-down ELS is constructed as follows:

u (x, y, ti) =

χ1 = 1 Payoff = (1 + c1)F

χ1 = 0

χ2 = 1 Payoff = (1 + c2)F

χ2 = 0

χ3 = 1 Payoff = (1 + c3)F

χ3 = 0

χ4 = 1 Payoff = (1 + c4)F

χ4 = 0

mT > D, then

Payoff = (1 + d)F

mT ≤ D, then

Payoff = (1 + ST /S0)F

In this chapter, we chose the following parameters: the reference price K0 =

100, the interest rate r = 5%, the volatilities of the underlying assets σ1 =

25%, σ2 = 30%, the total time T = 1 year, the face price F = 100, the Knock-In

barrier level D = 0.6K0, and the dummy rate d = 16%. The other parameters

are listed in Table 6.1.

Observation date t1 t2 t3 t4 = T
Exercise price K1 = 0.90K0 K2 = 0.85K0 K3 = 0.80K0 K4 = 0.75K0

Return rate c1 = 5.5% c2 = 11% c3 = 16.5% c4 = 22%

Table 6.1. Parameters of two-asset step-down ELS.

Figure 6.1 shows the profit-and-loss diagram of two-asset step-down ELS.

6.3. Numerical solution

In this section, we describe the numerical discretization of Eq. (1.3). We also

present the operator splitting algorithm in detail.

6.3.1. Discretization. Let LBS be the operator

LBS =
1

2
σ2

1x
2∂2u

∂x2
+

1

2
σ2

2y
2∂2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru.

6.3. NUMERICAL SOLUTION 70

Worst
performer

60% 75% 80% 85% 90%

Profit & Loss

−100%

−40%
−25%

0%

5.5%

11%

16%
16.5%

22%

Starting
index level

(1) After 3 months

(2) After 6 months

(3) After 9 months

(4) At maturity

(6) Knock-In event occurs

(5) Knock-In event does not occur

Figure 6.1. Profit-and-loss diagram at early redemption and ma-
turity for two-asset step-down ELS.

Then the two-dimensional Black–Scholes equation can be rewritten as

∂u

∂τ
= LBS, for (x, y, τ) ∈ Ω× (0, T],

where τ = T−t and T is the expiration time. The original option pricing problems

are defined in the unbounded domain {(x, y, τ) | x ≥ 0, y ≥ 0, τ ∈ [0, T]}. We

truncate this domain into a finite computational domain {(x, y, τ) | 0 ≤ x ≤
L, 0 ≤ y ≤ M, τ ∈ [0, T]}, where L and M are large enough so that the error

of the price u arisen by the truncation is negligible. For example, L and M can

be two or three times greater than the exercise price [41]. We have the linear

boundary conditions [55, 56, 68, 89] for the artificial boundaries

∂2

∂x2
u(0, y, τ) =

∂2

∂x2
u(L, y, τ) =

∂2

∂y2
u(x, 0, τ) =

∂2

∂y2
u(x,M, τ) = 0,

for 0 ≤ x ≤ L, 0 ≤ y ≤ M and 0 ≤ τ ≤ T.

6.3. NUMERICAL SOLUTION 71

The numbers of grid steps are denoted by Nx, Ny, and Nτ in the x-, y- and

τ -directions, respectively. We first discretize the given computational domain

Ω = (0, L)× (0,M) as a uniform grid with a space step h = L/Nx = M/Ny and

a time step ∆τ = T/Nτ . Denote the numerical approximation of the solution by

un
ij ≡ u(xi, yj, τ

n) = u ((i− 0.5)h, (j − 0.5)h, n∆τ) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny and n = 0, . . . , Nτ . We use a cell-centered

discretization because we use the following linear boundary condition:

u0j = 2u1j − u2j, uNx+1,j = 2uNx,j − uNx−1,j for j = 1, · · · , Ny,

ui0 = 2ui1 − ui2, ui,Ny+1 = 2ui,Ny − ui,Ny−1 for i = 1, · · · , Nx.

6.3.2. Operator splitting method. The basic idea behind the operator

splitting method is to reduce multi-dimensional equations into multiple one-

dimensional problems [24]. We introduce the basic OS scheme for the two-

dimensional Black–Scholes equation as follows:

un+1
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij + Ly

BSun+1
ij , (6.1)

where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSu

n+ 1
2

ij =
(σ1xi)

2

2

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

h2
+ rxi

u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− λ2ru

n+ 1
2

ij

+λ1σ1σ2ρxiyj

un
i+1,j+1 + un

ij − un
i,j+1 − un

i+1,j

h2
,

Ly
BSun+1

ij =
(σ2yj)

2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
+ ryj

un+1
i,j+1 − un+1

ij

h
− (1− λ2)ru

n+1
ij

+(1− λ1)σ1σ2ρxiyj

u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2
.

The first step is implicit in the x-direction, whereas the second step is implicit in

the y-direction. The OS scheme moves from the time level n to an intermediate

6.3. NUMERICAL SOLUTION 72

time level n + 1
2

and then to the time level n + 1. Through this process, the OS

method is to split two problems. We then approximate each subproblem by an

implicit scheme:

u
n+ 1

2
ij − un

ij

∆τ
= Lx

BSu
n+ 1

2
ij , (6.2)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

BSun+1
ij . (6.3)

Note that combining two Eqs. (6.2) and (6.3) results in Eq. (6.1). The following

describes an algorithm of the OS method.

Algorithm OS

• Step 1

Eq. (6.2) is rewritten as follows. For each j, we have

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij, (6.4)

where

αi = −1

2

σ2
1x

2
i

h2
, βi =

1

∆τ
+

σ2
1x

2
i

h2
+

rxi

h
+ λ2r,

γi = −1

2

σ2
1x

2
i

h2
− rxi

h
, for i = 1, ..., Nx

and

fij = λ1ρσ1σ2xiyj

un
i+1,j+1 − un

i+1,j − un
i,j+1 + un

ij

h2
+

un
ij

∆τ
. (6.5)

The first step of the OS method is then implemented in a loop over the

y-direction:

6.3. NUMERICAL SOLUTION 73

for j = 1 : Ny

for i = 1 : Nx

Set fij by Eq. (6.5)

end

Solve Axu
n+ 1

2
1:Nx,j = f1:Nx,j by using Thomas algorithm (see Fig. 6.2(a))

end

Here the matrix Ax is a tridiagonal matrix constructed from Eq. (6.4) with

a linear boundary condition

Ax =

2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx

.

· · ·

· · ·

· · ·

· · ·

· · ·

u
1j

u
2j

u
Nxj

(a) Step 1

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

u
i1

u
i2

u
iNy

(b) Step 2

Figure 6.2. Two steps of the OSM.

• Step 2

6.3. NUMERICAL SOLUTION 74

As in Step 1, Eq. (6.3) is rewritten as follows:

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij, (6.6)

where

αj = −1

2

σ2
2y

2
j

h2
, βj =

1

∆τ
+

σ2
2y

2
j

h2
+

ryj

h
+ (1− λ2)r,

γj = −1

2

σ2
2y

2
j

h2
− ryj

h
, for j = 1, ..., Ny

and

gij = (1− λ1)ρσ1σ2xiyj

u
n+ 1

2
i+1,j+1 − u

n+ 1
2

i+1,j − u
n+ 1

2
i,j+1 + u

n+ 1
2

ij

h2
+

u
n+ 1

2
ij

∆τ
. (6.7)

As with Step 1, Step 2 is then implemented in a loop over the x-direction:

for i = 1 : Nx

for j = 1 : Ny

Set gij by Eq. (6.7)

end

Solve Ayu
n+1
i,1:Ny

= gi,1:Ny by using Thomas algorithm (see Fig. 6.2(b))

end

Here Ay is tridiagonal matrix constructed from Eq. (6.6) with a linear bound-

ary condition

Ay =

2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
.

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy

.

6.4. COMPUTATIONAL RESULTS 75

6.4. Computational results

This section presents the convergence test (which determined the accuracy of

the OS method) and the numerical experiments for two-asset step-down ELS.

6.4.1. Convergence test. Since the two-asset cash-or-nothing option can

be useful building block for constructing more complex and exotic option prod-

ucts, consider the European two-asset cash-or-nothing call option [34]. Given two

stock prices x and y, the payoff of the call option is

u(x, y, 0) =

{
Cash if x ≥ K1 and y ≥ K2,
0 otherwise,

(6.8)

where K1 and K2 are the strike prices of x and y, respectively. The formula

for the exact value of the cash-or-nothing option is known [34]. To estimate the

convergence rate, we performed numerical simulations with a set of increasingly

finer grids up to T = 1. We considered a computational domain, Ω = [0, 300] ×
[0, 300]. The initial condition was Eq. (6.8) with the strike prices K1 = K2 = 100

and Cash = 1. The volatilities were σ1 = 0.25, σ2 = 0.3, the correlation was ρ =

0.5, and the risk-free interest rate was r = 0.05. Also, the weighting factors were

λ1 = λ2 = 0.5. The error of the numerical solution was defined as eij = ue
ij − uij

for i = 1, · · · , Nx and j = 1, · · · , Ny, where ue
ij is the exact solution and uij is the

numerical solution. We computed discrete l2 norm of the error, ‖e‖2. We also

used the root mean square error (RMSE). The RMSE was defined as

RMSE =

√√√√ 1

N

N∑
i,j

(
ue

ij − uij

)2
,

where N is the number of points on the gray region in Fig. 6.3.

Table 6.2 shows the discrete l2 norms of the errors in a quarter of the domain,

[0, 150]× [0, 150], the RMSE which is estimated in the gray region shown in Fig.

6.4. COMPUTATIONAL RESULTS 76

y

xX10.9X1 1.1X1

X2

0.9X2

1.1X2

Figure 6.3. The gray region is part where the RMSE is estimated.

6.3 and the rates of convergence for ‖e‖2 and RMSE. The results suggest that

the scheme has first-order accuracy and the RMSE has second-order accuracy in

space and time.

Mesh h ∆t ‖e‖2 order RMSE order
128× 128 2.3437 0.1000 0.005344 0.000177
256× 256 1.1719 0.0500 0.002716 0.9764 0.000053 1.7397
512× 512 0.5859 0.0250 0.001335 1.0246 0.000011 2.2685

1024× 1024 0.2930 0.0125 0.000679 0.9754 0.000003 1.8745

Table 6.2. Convergence test.

6.4.2. Numerical test of a two-asset step-down ELS. Let u and v be

the solutions with payoffs which knock-in event happens and does not happen,

respectively. Fig. 6.4(a) and (b) show the initial configurations of u and v,

respectively.

And Fig. 6.5(a) and (b) show the final profiles of u and v, respectively, at

T = 1 with Nx = Ny = 100, K0 = 100, L = 300, and the parameters listed in

Table. 6.1.

6.4. COMPUTATIONAL RESULTS 77

0
100

200
300

0
100

200
300

0

50

100

x
y

u

(a) Initial u

0
100

200
300

0
100

200
300

0

50

100

x
y

v

(b) Initial v

Figure 6.4. (a) and (b) are the initial conditions for u and v, respectively.

0
100

200
300

0
100

200
300

0

50

100

x
y

u

(a) Final u

0
100

200
300

0
100

200
300

0

50

100

x
y

v

(b) Final v

Figure 6.5. (a) and (b) are the numerical results for u and v,
respectively, at T = 1.

The final two-asset step-down ELS price is obtained by a weighted average of

u and v by each probability. By performing a Monte Carlo (MC) simulation [45]

for 20000 samples, we estimated that a knock-in event occurs with a probability

of approximately 0.1. Therefore, we defined the final ELS value as 0.1u + 0.9v.

Fig. 6.6 (a) shows the weighted average value 0.1u + 0.9v, and (b) shows the

overlapped contour lines of the weighted average values.

6.4. COMPUTATIONAL RESULTS 78

0
100

200
300

0
100

200
300

0

50

100

x
y

price

(a)

0
20

40
60

80

100

x

y

0 100 200 300
0

100

200

300

(b)

Figure 6.6. (a) The weighted average value 0.1u+0.9v at T = 1.
(b) The contour lines of the weighted average values.

Usually, the position of current underlying assets does not coincide with the

numerical grid points. Therefore, we needed to use an interpolation method. As

shown in Fig. 6.7, we obtained the numerical values at the specific point X by

using the bilinear interpolation.

A B

CD

E

F

X

α 1 − α

β

1 − β

E = (1− α)A + αB

F = (1− α)D + αC

∴ X = (1− β)F + βE

Figure 6.7. A diagram of the bilinear interpolation: the specific
value X is obtained from the numerical solutions A,B, C, and D
near the specific point X by the bilinear interpolation.

6.5. CONCLUSIONS 79

Table 6.3 shows the results for two-asset step-down ELS obtained using the

OSM at the point (100, 100) with different meshes and time steps.

Mesh Nt v(100, 100) u(100, 100) Weighted average 0.1u + 0.9v
300× 300 365 103.041093 101.306561 102.867640
600× 600 730 103.028876 101.359551 102.861944

1200× 1200 1460 103.007394 101.369623 102.843617
2400× 2400 2920 102.987068 101.361671 102.824528

Table 6.3. Two-asset step-down ELS prices u, v, and the
weighted average value 0.1u + 0.9v obtained using the OSM at the
point (100, 100) with different meshes and time steps.

Fig. 6.8 shows the two-asset step-down ELS price at position (x, y) = (100, 100)

obtained using the OSM and the MC simulation. The solid line is the result ob-

tained using the OSM with a 2400× 2400 mesh. The symbol lines are the results

from three trial MC simulations with an increasing number of samples. Gener-

ally, MC simulations in computational finance are easy to apply than the FDM.

Because results obtained using the MC simulation are affected by the distribution

of random numbers, the accuracy of MC simulation can be guaranteed through

many trials.

6.5. Conclusions

In this chapter, we presented a numerical algorithm for the two-asset step-

down ELS option by using the OSM. We modeled the value of ELS option by using

a modified Black–Scholes partial differential equation. A finite difference method

was used to discretize the governing equation, and the OSM was applied to solve

the resulting discrete equations. We provided a detailed numerical algorithm

and computational results demonstrating the performance of the method for two

underlying asset option pricing problems such as cash-or-nothing and step-down

6.5. CONCLUSIONS 80

20,000 40,000 60,000 80,000 100,000
101

102

103

104

105

106

Number of simulation

E
LS

 p
ric

e

FDM
trial 1
trial 2
trial 3

Figure 6.8. Two-asset step-down ELS price obtained using the
OSM and the Monte-Carlo simulation versus the number of simu-
lations.

ELS. In addition, we applied a weighted average value with a probability obtained

using the MC simulation to obtain the option value of two-asset step-down ELS.

81

Chapter 7

An adaptive multigrid technique for option pricing under
the Black–Scholes model

In this chapter, we consider the adaptive multigrid method for solving the

Black–Scholes equation as the numerical technique to improve the efficiency of the

option pricing. Adaptive meshing is generally regarded as an indispensable tool

because of reduction of the computational costs which are needed to obtain finite

difference solutions. Therefore, in this chapter, the Black–Scholes equation is

discretized using a Crank–Nicolson scheme on block-structured adaptively refined

rectangular meshes. And the resulting discrete of equations is solved by a fast

solver such as an multigrid method. Numerical simulations are implemented to

confirm the efficiency of the adaptive multigrid technique. In particular, through

the comparison of computational results on adaptively refined mesh and uniform

mesh, we show that adaptively refined mesh solver is superior to a standard

method.

7.1. Introduction

To obtain an approximation of the option value, option pricing problems have

been solved by the simulation-based methods [21, 22, 48], the lattice methods

[21, 23, 30] and by the finite difference method [13, 18, 24, 30, 42, 66, 68, 69, 75,

77], delaying the study and the application of others numerical methods like the

finite elements method [2, 26, 70, 84, 85, 86] and finite volume method [29, 88],

7.1. INTRODUCTION 82

which are widely documented and used in others fields of science and engineering

for decades.

In this chapter, we propose on efficient and accurate method based on multi-

grid method and adaptive grid refinement method as fast numerical solver.

Among the popular method in recent years, multigrid methods [31, 72, 76]

are widely used for the numerical solution of PDEs. In reference [39], authors

evaluated the option price by using multigrid method under Black–Scholes.

Also, adaptive time-stepping has been proposed by some researchers [89], but

few researchers use space-adaptive methods. Some examples, though, can be

found in Achdou and Pironneau [1] and Pironneau and Hecht in [58] who use

a space-adaptive finite element method for discretization of the Black–Scholes

PDE. In [56], an adaptive finite difference method is developed with full control

of the local discretization error which is shown to be very efficient.

An adaptive mesh refinement (AMR) method is very useful to combine the

two goals of good accuracy and efficiency. In many science and engineering areas,

such as fluid mechanics [3], electromagnetics [62], and materials science [79], an

adaptive finite difference method has been very successful.

The purpose of our work is to propose an efficient adaptive FDM to solve

the Black–Scholes PDEs. We computationally show that applying an adaptive

method to this problem is very efficient compared to standard FDM. We use

the Crank–Nicolson method for the discretization. Other key components of the

algorithm are the use of dynamic, block-structured Cartesian mesh refinement

(see e.g., [8, 9]) and the use of an adaptive multigrid method [72] to solve the

equations at an implicit time level. Locally refined block-structured Cartesian

meshes strike a balance between grid structure and efficiency. And they are very

7.3. NUMERICAL METHOD 83

natural to use together with multilevel multigrid methods. We note that other

multilevel multigrid algorithms have been developed as part of the CHOMBO [5]

software packages. Here, we follow the framework of a block-structured multilevel

adaptive technique (MLAT) developed by Brandt [11].

7.2. Discretization with finite differences

Now, let us first discretize the given computational domain Ω = (0, L)×(0,M)

as a uniform grid with a space step h = L/Nx = M/Ny and a time step ∆t =

T/Nτ . Here, Nx, Ny, and Nτ are the number of space and time steps, respectively.

Let us denote the numerical approximation of the solution by

un
ij = u(xi, yj, t

n) = u ((i− 0.5)h, (j − 0.5)h, n∆t) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny and n = 1, . . . , Nτ .

By applying the Crank–Nicolson scheme to Eq. (1.3), which has an accuracy

O(∆τ 2 + h2), we have

un+1
ij − un

ij

∆τ
=

1

2

(Lun+1
ij + Lun

ij

)
,

where the discrete difference operator L is defined by

Lun
ij =

(σ1xi)
2

2

un
i−1,j − 2un

ij + un
i+1,j

h2
+

(σ2yj)
2

2

un
i,j−1 − 2un

ij + un
i,j+1

h2

+σ1σ2ρxiyj

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
(7.1)

+rxi

un
i+1,j − un

i−1,j

2h
+ ryj

un
i,j+1 − un

i,j−1

2h
− run

ij.

7.3. Numerical method

First, we rewrite the Eq. (7.1) by

N(un+1
ij) = φn

ij, (7.2)

7.3. NUMERICAL METHOD 84

where

N(un+1
ij) = un+1

ij − ∆t

2
Lun+1

ij and φn
ij = un

ij +
∆t

2
Lun

ij.

7.3.1. Dynamic adaptive mesh refinement method. In this section, we

present an adaptive hierarchy of nested rectangular grids [3]. Both the initial cre-

ation of the grid hierarchy and the subsequent regriding operations in which the

grids are dynamically changed to reflect changing solution conditions use the same

procedure to create new grids [61]. Cells requiring additional refinement are iden-

tified and tagged using user-supplied criteria. The tagged cells are grouped into

rectangular patches using the clustering algorithm given in Berger and Rigoutsos

[10]. These rectangular patches are refined to form the grids at the next level.

The process is repeated until a specified maximum level is reached. We consider

a hierarchy of grids

Ω0, . . . , Ωl, Ωl+1, . . . , Ωl+l∗ ,

where Ω0, . . . , Ωl are global and Ωl+1, . . . , Ωl+l∗ are local grids. A typical hierarchy

of grids for the solution of the problem is shown in Fig. 7.1.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω0

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω1

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω1+1

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω1+2

Figure 7.1. Hierarchy of grids. l = 1 and l∗ = 2.

In this case, Ω0 and Ω1 are global grids (l = 1) and the refined grids Ωl+1,

Ωl+2 (l∗ = 2) cover increasingly smaller subdomains as indicated in Fig. 7.2. For

7.3. NUMERICAL METHOD 85

instance, we can apply the refined local grids near the strike price since the values

of options are not smooth near the strike price. We note that the grid refinement

is automatically done by user-specified criteria.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω̂0

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω̂1

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω̂1+1

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Ω̂1+2

Figure 7.2. Composite grids corresponding to the hierarchy of
grids in Fig. 7.1. l = 1 and l∗ = 2.

In addition to the global and the local grids, we consider their “composition”.

The corresponding sequence of composite grids (see Fig. 7.2) is defined by

Ω̂k := Ωk (k = 0, . . . , l) and Ω̂l+k := Ωl ∪
k⋃

j=1

Ωl+j (k = 1, . . . , l∗).

We use the original multi-level adaptive technique (MLAT) proposed by Brandt

[7]. We now describe an adaptive multigrid cycle. Let us use the operator in Eq.

(7.2) Nk (k = 0, 1, . . . , l, l + 1, . . . , l + l∗) and the restriction and interpolation

operators between Ωk and Ωk−1, Ik−1
k , Ik

k−1 (k = 1, 2, . . . , l, l + 1, . . . , l + l∗) re-

spectively. Let us assume the parameter γ (the number of smoothing iterations),

and starting on the finest grid k = l + l∗, the calculation of a new iterate um+1
k

from a given approximation um
k proceeds:

7.3. NUMERICAL METHOD 86

The details of overall steps are given in Algorithm 1.

Algorithm 1 Adaptive cycle

um+1
k = adapcyc(k, um

k , um
k−1, Nk, φk, γ):

1: Presmoothing
- Compute ūm

k by applying γ smoothing steps, Eq. (7.5), to um
k on Ωk.

2: Coarse-grid correction
- Compute

ūm
k−1 =

{
Ik−1
k ūm

k on Ωk−1 ∩ Ωk

ūm
k−1 on Ωk−1 − Ωk

- Compute

ūm
k−1 =

{
Ik−1
k ūm

k on Ωk−1 ∩ Ωk

ūm
k−1 on Ωk−1 − Ωk

- Compute the right-hand side

φn
k−1 =

{
Ik−1
k (φn

k −Nk(ū
m
k)) + Nk−1I

k−1
k ūm

k on Ωk−1 ∩ Ωk

φn
k−1 on Ωk−1 − Ωk

- Compute an approximate solution ŵm
k−1 of the coarse grid equation on

Ωk−1

Nk−1(w
m
k−1) = φn

k−1. (7.3)

If k = 1, employ smoothing steps.
If k > 1, solve Eq. (7.3) using ūm

k−1 as an initial approximation.

ŵm
k−1 = adapcyc(k − 1, ūm

k−1, u
m
k−2, Nk−1, φk−1, γ).

- Compute the correction v̂m
k−1 = ŵm

k−1 − ūm
k−1, on Ωk−1 ∩ Ωk.

- Set the solution um+1
k−1 = ŵm

k−1, on Ωk−1 − Ωk.

- Interpolate the correction v̂m
k = Ik

k−1v̂
m
k−1, on Ωk.

- Compute the corrected approximation um,afterCGC
k = ūm

k + v̂m
k , on Ωk.

- Carry out a quadratic interpolation at the ghost points.
3: Postsmoothing

- Compute um+1
k by applying γ smoothing steps to um,afterCGC

k on Ωk.

Our implementation of this algorithm is constructed using the Chombo in-

frastructure [5], which has simplified the implementation of the locally adaptive

7.3. NUMERICAL METHOD 87

algorithm. To perform the nonlinear multilevel AMR solver, we use and mod-

ify the Chombo AMR elliptic solver. This solver is based on a linear multigrid

algorithm.

7.3.2. Relaxation method in a multigrid cycle. Now we derive a Gauss-

Seidel relaxation operator. First, we rewrite Eq. (7.2) as

un+1
ij =

[
φn

ij +
∆t

2

(
(σ1xi)

2

2

un+1
i−1,j + un+1

i+1,j

h2
+

(σ2yj)
2

2

un+1
i,j−1 + un+1

i,j+1

h2

+σ1σ2ρxiyj

un+1
i+1,j+1 + un+1

i−1,j−1 − un+1
i−1,j+1 − un+1

i+1,j−1

4h2
(7.4)

+ rxi

un+1
i+1,j − un+1

i−1,j

2h
+ ryj

un+1
i,j+1 − un+1

i,j−1

2h

)]
/

[
1 +

∆t

2

(
(σ1xi)

2 + (σ2yj)
2

h2
+ r

)]
.

Next, we replace un+1
kl in Eq. (7.4) with ūm

kl if (k < i) or (k = i and l ≤ j),

otherwise with um
kl, i.e.,

ūm
ij =

[
φn

ij +
∆t

2

(
(σ1xi)

2

2

ūm
i−1,j + um

i+1,j

h2
+

(σ2yj)
2

2

ūm
i,j−1 + um

i,j+1

h2

+σ1σ2ρxiyj

um
i+1,j+1 + ūm

i−1,j−1 − ūm
i−1,j+1 − um

i+1,j−1

4h2
(7.5)

+ rxi

um
i+1,j − ūm

i−1,j

2h
+ ryj

um
i,j+1 − ūm

i,j−1

2h

)]
/

[
1 +

∆t

2

(
(σ1xi)

2 + (σ2yj)
2

h2
+ r

)]
.

Therefore, in a multigrid cycle, one smooth relaxation operator step consists

of solving Eq. (7.5) given above.

7.4. COMPUTATIONAL RESULTS 88

7.4. Computational results

In this section, several numerical experiments are on performance of the adap-

tive techniques and their benefit in finding accurate solutions efficiently. To

demonstrate its effectiveness, we compare the total computation cost, i.e., the

CPU times with uniform mesh results on a test problem on the computational

domain Ω = (0, 1200) × (0, 1200). The calculations have been performed on an

IBM personal computer with 3.0GHz speed of 3.48GB RAM. It should be noticed

that in our numerical experiments, we simply set ∆t = 1/1024.

7.4.1. European call option. As the benchmark problem, we consider the

European option problem. This problem is of great interest to academicians in

the finance literature and often used to show the accuracy of a given numerical

scheme [15, 27, 30].

The initial state is given as

u(x, y, 0) = max[max(x, y)− 100, 0].

For the parameters, we take σ1 = σ2 = 0.5, ρ = 0.5, and r = 0.03. We perform

an adaptive mesh refinement every 5 time steps. The refinement is based on the

range of values of u, i.e., we refine the grids if 0.3 < u < 10. We compute this

with a base 642 mesh with 3, 4, and 5 levels of refinements. To estimate the

cost of the equivalent uniform-grid solution, we compute 1024 time steps on the

equivalent 5122, 10242, and 20482 meshes. In Fig. 7.3, (a) and (b) show the

initial profile and the final configuration at time τ = 1 on the adaptive mesh,

respectively. We can observe fine meshes around the region of our interests which

are strike prices. And Fig. 7.3(c) and (d) show magnified representations of (a)

and (b), respectively.

7.4. COMPUTATIONAL RESULTS 89

(a) (b)

(c) (d)

Figure 7.3. European call option: (a) The initial configuration
at time τ = 0. (b) The final configuration at time τ = 1. (c) and
(d) magnified representations of (a) and (b), respectively.

Next, we compare the CPU times with AMR and uniform mesh results. The

computational results are shown in Table 7.1 and it is clear that AMR is efficient

than the uniform mesh method. We scale CPU time with the AMR method.

Here, 1 in CPU time of AMR stands for the calculation time for AMR method.

7.5. CONCLUSIONS 90

Case Uniform mesh 5122 AMR with base mesh size, 642

3 levels, effective mesh size 5122

CPU time 68.3 1
Case Uniform mesh 10242 AMR with base mesh size, 642

4 levels, effective mesh size 10242

CPU time 169.7 1
Case Uniform mesh 20482 AMR with base mesh size, 642

5 levels, effective mesh size 20482

CPU time 285.3 1
Table 7.1. CPU time comparison between uniform mesh and
AMR of European call option.

7.4.2. Cash-or-nothing option. Next, we perform the comparison with a

cash-or-nothing option. The initial state is given as

u(x, 0) =

{
Cash if x ≥ K and y ≥ K

0 otherwise.

Here, we simply set Cash = 1 and K = 100. And the other parameters and

computational conditions are chosen as the same in the numerical experiment of

European call option. In figure 7.4, (a) and (b) show the initial profile and the

final configuration at time τ = 1 on the adaptive mesh, respectively. And Fig.

7.4(c) and (d) show magnified representations of (a) and (b), respectively.

Next, the CPU times with AMR and uniform mesh results are presented in

Table 7.2. As can been seen, it is clear that AMR is more robustness than the

uniform mesh method.

7.5. Conclusions

In this chapter, we focused on two major aspects that we encounter when

applying numerical methods to option pricing problems such that grid resolutions

and time steps. We proposed a adaptive mesh refinement method to solve BS

equation. We computationally showed that the proposed adaptive scheme gave

7.5. CONCLUSIONS 91

0

500

1000

0

500

1000

0

0.5

1

(a)

0

500

1000

0

500

1000

0

0.5

1

(b)

0
100

200
300

0

100

200

300
0

0.5

1

(c) (d)

Figure 7.4. Cash-or-nothing option: (a) The initial configuration
at time τ = 0. (b) The final configuration at time τ = 1. (c) and
(d) magnified representations of (a) and (b), respectively.

Case Uniform mesh 5122 AMR with base mesh size, 642

3 levels, effective mesh size 5122

CPU time 80.2 1
Case Uniform mesh 10242 AMR with base mesh size, 642

4 levels, effective mesh size 10242

CPU time 167.2 1
Case Uniform mesh 20482 AMR with base mesh size, 642

5 levels, effective mesh size 20482

CPU time 180.5 1
Table 7.2. CPU time comparison between uniform mesh and
AMR of Cash-or-nothing option.

7.5. CONCLUSIONS 92

much better efficiency than the standard FDM. In particular, we showed that

the use of local refinement resulted in significant savings in computational time

and memory when compared to the equivalent uniform-mesh solution. Studies of

these methods in higher dimensions will be the subject of future research.

93

Chapter 8

Conclusion

We focused on the performance of a multigrid method for option pricing prob-

lems. The numerical results showed that the total computational cost was pro-

portional to the number of grid points. The convergence test showed that the

scheme was first-order accurate since we used an implicit Euler method. In a

forthcoming paper, we will investigate a switching grid method, which uses a fine

mesh when the solution is not smooth and otherwise uses a coarse mesh.

And we performed a comparison study of alternating direction implicit (ADI)

and operator splitting (OS) methods on multi-dimensional Black-Scholes option

pricing models. ADI method has been used extensively in mathematical finance

for numerically solving multi-asset option pricing problems. However, most op-

tion pricing problems have nonsmooth payoffs or discontinuous derivatives at the

exercise price. ADI scheme uses source terms which include y derivatives when

we solve x derivative involving equations. Then, due to the nonsmooth payoffs,

source term contains abrupt changes which are not in the range of implicit dis-

crete operator and this leads to difficulty in solving the problem. On the other

hand, OS method does not contain the other variable’s derivatives in the source

term. We provided computational results showing the performance of the meth-

ods for two underlying asset option pricing problems. The results showed that

OS method is very efficient and gives better accuracy and robustness than ADI

94

method in computational finance problems.

Also, The resulting linear system of BS model is solved by biconjugate gradient

stabilized, operator splitting, and multigrid methods. The performance of these

methods is compared for two asset option problems based on two-dimensional

Black-Scholes equations. Bi-CGSTAB and multigrid solver have a good accuracy

but need a lot of computing times. On the other hand, operator splitting is faster

than other two methods under the same accuracy.

An accurate and efficient numerical method for the Black-Scholes equations is

derived. The method uses an adaptive technique which is based on a far-field

boundary position of the equation. Numerical tests were presented to demon-

strate the accuracy and efficiency of the method. In particular, the computational

time was reduced substantially when compared to a uniform grid.

We presented a numerical algorithm for the two-asset step-down ELS option by

using the OSM.We modeled the value of ELS option by using a modified Black-

Scholes partial differential equation. A finite difference method was used to dis-

cretize the governing equation, and the OSM was applied to solve the resulting

discrete equations. We provided a detailed numerical algorithm and computa-

tional results demonstrating the performance of the method for two underlying

asset option pricing problems such as cash-or-nothing and step-down ELS. In

addition, we applied a weighted average value with a probability obtained using

the MC simulation to obtain the option value of two-asset step-down ELS.

Finally, we focused on two major aspects that we encounter when applying nu-

merical methods to option pricing problems such that grid resolutions and time

steps. We proposed a adaptive mesh refinement method to solve BS equation.

We computationally showed that the proposed adaptive scheme gave much better

95

efficiency than the standard FDM. In particular, we showed that the use of lo-

cal refinement resulted in significant savings in computational time and memory

when compared to the equivalent uniform-mesh solution.

96

Appendix: MATLAB code

1. MATLAB code for closed form of cash or nothing option

K=100;T=0.1;r=0.03;X1=100;X2=100;sigma1=0.5;sigma2=0.5;
rho=0.5;b1=r;b2=r;
VE=zeros(Nx,Ny);mu=[0 0];cov=[1 rho; rho 1];
for i=1:Nx
for j=1:Ny
y1=(log(x(i)/X1)+(b1-sigma1^2/2)*T)/(sigma1*sqrt(T));
y2=(log(y(j)/X2)+(b2-sigma2^2/2)*T)/(sigma2*sqrt(T));
M=mvncdf([y1 y2],mu,cov); V(i,j)=K*exp(-r*T)*M;
end

end
[X, Y]=meshgrid(x(1:Nx),y(1:Ny)); surf(X, Y, V)

2. MATLAB code for closed form of max option

K=100;T=0.1;r=0.03;X1=100;X2=100;sigma1=0.5;sigma2=0.5;
rho=0.5;b1=r;b2=r;
VE=zeros(Nx,Ny);mu=[0 0];cov=[1 rho; rho 1];
for i=1:Nx
for j=1:Ny
y1=(log(x(i)/X1)+(b1-sigma1^2/2)*T)/(sigma1*sqrt(T));
y2=(log(y(j)/X2)+(b2-sigma2^2/2)*T)/(sigma2*sqrt(T));
M=mvncdf([y1 y2],mu,cov); V(i,j)=K*exp(-r*T)*M;
end

end
[X, Y]=meshgrid(x(1:Nx),y(1:Ny)); surf(X, Y, V)

3. Operator Splitting method for BS model

%%%
% Black-Scholes 2Dim. %
% - Operator Splitting Method %
% - uniform mesh %
% %
%%%
clear all; clc; close all; format compact;

.0. 3. OPERATOR SPLITTING METHOD FOR BS MODEL 97

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rho=0.5; r=0.05; sig1=0.25; sig2=0.3; K=100; L=300;
lam1=0.5;lam2=0.5; % weight_factor
cash = 1.0;

pp = 1;

dt = 0.1/2^(pp-1); Nt = 10*2^(pp-1); T = dt*Nt; Nx = 128*2^(pp-1);
Ny=Nx; h = L/Nx;
%%
sh = 1;

%%%%%%%%%%%%%% x and y (cell center included ghost points) %%%%%%%%%%%%%%
x = linspace(-0.5*h, L+0.5*h, Nx+2); y = linspace(-0.5*h, L+0.5*h,
Ny+2);

%%%%%%%%%%%%%%%%%%%%%%%%%% allocate matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
u(1:Nx+2,1:Ny+2) = 0.0; u0 = u; fx(1:Nx) = 0.0; fy = fx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%% coefficients x %%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:Nx+1

main_x(i-1) = 1/dt + (sig1*x(i))^2/(h^2) + r*x(i)/h + lam2*r;
sub_x(i-1) = -0.5*(sig1*x(i))^2/(h^2);
sup_x(i-1) = -0.5*(sig1*x(i))^2/(h^2) - r*x(i)/h;

end
main_x(1) = main_x(1) + 2.0*sub_x(1); sup_x(1) = sup_x(1) -
sub_x(1); sub_x(Nx) = sub_x(Nx) - sup_x(Nx); main_x(Nx) = main_x(Nx)
+ 2.0*sup_x(Nx);

%%%%%%%%%%%%%%%%%%%%%%%%%%%% coefficients y %%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=2:Ny+1

main_y(j-1) = 1/dt + (sig2*y(j))^2/(h^2) + r*y(j)/h + (1-lam2)*r;
sub_y(j-1) = -0.5*(sig2*y(j))^2/(h^2);
sup_y(j-1) = -0.5*(sig2*y(j))^2/(h^2) - r*y(j)/h;

end main_y(1) = main_y(1) + 2.0*sub_y(1); sup_y(1) = sup_y(1) -
sub_y(1); sub_y(Ny) = sub_y(Ny) - sup_y(Ny); main_y(Ny) = main_y(Ny)
+ 2.0*sup_y(Ny);

%%%%%%%%%%%%%%%%%%%%%%%%%% initial condition %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% cash or nothing option %%%
for i = 1:Nx+2

for j = 1:Ny+2
if (x(i)>=K && y(j)>=K)

u0(i,j) = cash;

.0. 3. OPERATOR SPLITTING METHOD FOR BS MODEL 98

end
end

end u=u0;
%%%%%%%%%%%%%%%%%%%%%% Linear Boundary condition %%%%%%%%%%%%%%%%%%%%%%%
u(1,2:Ny+1)=2*u(2,2:Ny+1)-u(3,2:Ny+1);
u(Nx+2,2:Ny+1)=2*u(Nx+1,2:Ny+1)-u(Nx,2:Ny+1);
u(1:Nx+2,1)=2*u(1:Nx+2,2)-u(1:Nx+2,3);
u(1:Nx+2,Ny+2)=2*u(1:Nx+2,Ny+1)-u(1:Nx+2,Ny);

u2 = u; start_time=cputime;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% time loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1:Nt

%%%%%%%%%%%%%%%%%%%%%%%%%%% x - direction %%%%%%%%%%%%%%%%%%%%%%%%%%
for j=2:Ny+1

for i=2:Nx+1
fy(i-1) = lam1*rho*sig1*sig2*x(i)*y(j)...

*(u(i+1,j+1)-u(i+1,j)-u(i,j+1)+u(i,j))/(h^2)...
+ u(i,j)/dt;

sor1(i-1,j-1) = fy(i-1);
end
u2(2:Nx+1,j)=thomas(sub_x,main_x,sup_x,fy);

end
%%% [case1] Linear Boundary %%%%
u2(1,2:Ny+1)=2*u2(2,2:Ny+1)-u2(3,2:Ny+1);
u2(Nx+2,2:Ny+1)=2*u2(Nx+1,2:Ny+1)-u2(Nx,2:Ny+1);
u2(1:Nx+2,1)=2*u2(1:Nx+2,2)-u2(1:Nx+2,3);
u2(1:Nx+2,Ny+2)=2*u2(1:Nx+2,Ny+1)-u2(1:Nx+2,Ny);

%%%%%%%%%%%%%%%%%%%%%%%%%%% y - direction %%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:Nx+1

for j=2:Ny+1
fx(j-1) = (1-lam1)*rho*sig1*sig2*x(i)*y(j)...

*(u2(i+1,j+1)-u2(i+1,j)-u2(i,j+1)+u2(i,j))/(h^2)...
+ u2(i,j)/dt;

sor2(i-1,j-1) = fx(j-1);
end
u(i,2:Ny+1)=thomas(sub_y,main_y,sup_y,fx);

end
%%% [case1] Linear Boundary %%%%
u(1,2:Ny+1)=2*u(2,2:Ny+1)-u(3,2:Ny+1);
u(Nx+2,2:Ny+1)=2*u(Nx+1,2:Ny+1)-u(Nx,2:Ny+1);
u(1:Nx+2,1)=2*u(1:Nx+2,2)-u(1:Nx+2,3);
u(1:Nx+2,Ny+2)=2*u(1:Nx+2,Ny+1)-u(1:Nx+2,Ny);

.0. 3. OPERATOR SPLITTING METHOD FOR BS MODEL 99

end

100

Bibliography

[1] Y. Achdou and O. Pironneau, Computational methods for option pricing, SIAM, Philadel-
phia, 2005.

[2] Y. Achdou and N. Tchou, Variational analysis for the Black & Scholes equation with
stochastic volatility. Math. Mod. & Numer. Anal. 36, 373–395 (2002)

[3] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, and M.L. Welcome, A conservative adap-
tive projection method for the variable density incompressible Navier–Stokes equations. J.
Comput. Phys. 142, 1–46 (1998)

[4] P. Amstera, C. Averbuj, P. de Napoli, and M. Mariani, A parabolic problem arising in
Financial Mathematics. Nonlinear Anal. Real World Appl. 11 759-763 (2010)

[5] Applied numerical algorithms group: The chombo framework for block-structured adap-
tive mesh refinement. Technical report, Lawrence Berkeley National Laboratory (2005).
Available online at http://seesar.lbl.gov/ANAG/chombo/

[6] F. Black and M. Sholes, The pricing of options and corporate liabilities, J. Political Econ-
omy 81 (1973), no. 3, 637–659.

[7] D. Bai and A. Brandt, Local mesh refinement multilevel techniques: J. Sci. Stat. Comput.
8, 109–134 (1987)

[8] M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics. J.
Comput. Phys. 82, 64–84 (1989)

[9] M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equa-
tions. J. Comput. Phys. 53, 484–512 (1984)

[10] M.J. Berger and J. Rigoutsos, An algorithm for point clustering and grid generation.
Courant Inst. of Math. Sci. 21, 1278–1286 (1991)

[11] A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31,
333–390 (1977)

[12] M. Brennan and E. Schwartz, The valuation of American put options, J. Financ. 32 (1977)
449–462.

[13] M. Brennan and E. Schwartz, Finite difference methods and jump processes arising in the
pricing of contingent claims: a synthesis, J. Financ. Quant. Anal. 13 (1978) 461–474.

[14] M. Broadie and J. Detemple, Option pricing: valuation models and applications. Manage.
Sci. 50, 1145–1177 (2004)

[15] G.W. Buetow and J.S. Sochacki, The trade-off between alternative finite difference tech-
niques used to price derivative securities, Appl. Math. Comput. 115 (2000) 177–190.

[16] H.-J. Bungartz, A. Heinecke, and D. Pflüger, S. Schraufstetter, Option pricing with a direct
adaptive sparse grid approach, J. Comput. Appl. Math. 236 (2012) 3741–3750.

[17] Z. Cen and A. Le, A robust and accurate finite difference method for a generalized Black–
Scholes equation, J. Comput. Appl. Math. 235 (2011) 3728–3733.

[18] M. Chawla and D. Evans, Numerical volatility in option valuation from Black–Scholes
equation by finite differences. Int. J. Comput. Math. 81, 1039–1041 (2004)

101

[19] R.C.Y. Chin, T.A. Manteuffel, and J. de Pillis, ADI as a preconditioning for solving the
convection-diffusion equation, SIAM J. Sci. Stat. Comput. 5 (1984), no. 2, 281-299.

[20] C. Christara and D. M. Dang, Adaptive and high-order methods for valuing American
options, J. Comput. Financ. 14(4) (2011) 74–113.

[21] G. Cortazar, Simulation and Numerical Methods in Real Options Valuation. Real Options
and Investment Under Uncertainty, The MIT Press, Cambridge (2004)

[22] G. Cortazar, M. Gravet, and J. Urzúa, The valuation of multidimensional American real
option using the LSM simulation method. Comput. Oper. Res. 35, 113–129 (2008)

[23] J.C. Cox, S.A. Ross, and M. Rubinstein, Option pricing: a simplified approach. J. Finan.
Econ. 7, 229–264 (1979)

[24] D.J. Duffy, Finite Difference Methods in Financial Engineering : a partial differential
equation approach, John Wiley and Sons, New York, 2006.

[25] A. Eckner, Computational techniques for basic affine models of portfolio credit risk, J.
Comput. Financ. 13(1) (2009) 63–97.

[26] A. Ern, S. Villeneuve, and A. Zanette, Adaptive finite element methods for local volatility
European option pricing. Int. J. Theoretical Appl. Finance 7, 659–684 (2002)

[27] S. Figlewski and B. Gao, The adaptive mesh model: a new approach to efficient option
pricing, J. Financ. Econ. 53 (1999) 313–351.

[28] H. Foester and K. Witsch, On efficient multigrid software for elliptic problems on rectan-
gular domains. Math. Comput. Simul. 23 293-298 (1981)

[29] P.A. Forsyth and K.R. Vetzal, Quadratic convergence for valuing American options using
a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

[30] R. Geske and K. Shastri, Valuation by approximation: a comparison of alternative option
valuation techniques, J. Financ. Quant. Anal. 20 (1985) 45–71.

[31] W. Hackbusch, Multi-grid Methods and Applications. Springer-Verlag, New York (1980)
[32] W. Hackbusch, Iterative Solution of Large Linear Systems of Equations, Springer, New

York, 1994.
[33] H. Han and X. Wu, A fast numerical method for the Black-Scholes equation of American

options, SIAM J. Numer. Anal., 41 (2003), 2081–2095.
[34] E.G. Haug, The Complete Guide to Option Pricing Formulas, MaGraw-Hill, 2007.
[35] R. Heynen and H. Kat, Brick by Brick. Risk Mag. 9 28-31 (1996)
[36] K.J. Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston

model with correlation, Int. J. Numer. Anal. Model. 7 (2010) 303–320.
[37] J.C. Hull, Options, Futures and Others, Prentice Hall, 2003.
[38] S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Applied

Mathematics Letters 17 (2004), 809-814.
[39] D. Jeong, J. Kim, and I. Wee, An accurate and efficient numerical method for the Black-

Scholes equations. Commun. Korean Math. Soc. 24, 617–628 (2009)
[40] Gh. Juncu and C. Popa, Preconditioning by Gram matrix approximation for diffusion-

convection-reaction equations with discontinuous coefficients. Math. Comput. Simul. 60
487-506 (2002)

[41] R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations,
SIAM Journal on Numerical Analysis , 38 (4) (2000), 1357–1368.

[42] A.Q.M. Khaliq, D.A. Voss, and K. Kazmi, Adaptive θ-methods for pricing American op-
tions. J. Comput. Appl. Math. 222, 210–227 (2008)

[43] Y.K. Kwok, Mathematical Models of Financial Derivatives, Springer, 1998.
[44] B. Lapeyre, A. Sulem, and D. Talay, Understanding Numerical Analysis for Financial

Models. Cambridge University Press, (2003)

102

[45] K.S. Lee, Y.E. Gwong, and J.H. Shin, Deravatives modeling I: Using MATLABr, A-Jin,
Seoul, 2008.

[46] W. Liao and J. Zhu, An accurate and efficient numerical method for solving Black-Scholes
equation in option pricing. Int. J. Math. Oper. Res. 1 191-210 (2009)

[47] G. Linde, J. Persson, and L. von Sydow, High-order adaptive space-discretizations for the
Black–Scholes equation, Int. J. Comput. Math. 86 (2006)

[48] F. Longstaff and E. Schwartz, Valuing American options by simulation: a simple least-
squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

[49] P. Lötstedt, J. Persson, L. von Sydow, and J. Tysk, Space-time adaptive finite difference
method for European multi-asset options, Comput. Math. Appl. 53 (2007) 1159–1180.

[50] P. Lötstedt, S. Söderberg, A. Ramage, and L. Hemmingsson-Fränd́en, Implicit solution of
hyperbolic equations with space-time adaptivity, BIT. 42 (2002) 128–153.

[51] K. Maekawa, S. Lee, T. Morimoto, and K. Kawai, Jump diffusion model with application
to the Japanese stock market. Math. Comput. Simul. 78 223-236 (2008)

[52] O. Marom and E. Momoniat, A comparison of numerical solutions of fractional diffusion
models in finance. Nonlinear Anal. Real World Appl. 10 3435-3442 (2009)

[53] R.C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci. 4 (1973), no. 1,
141–183.

[54] G.N. Milstein and M.V. Tretyakov, Numerical analysis of Monte Carlo evaluation of Greeks
by finite differences, J. Comput. Financ. 8(3) (2005) 1–34.

[55] C.W. Oosterlee, On multigrid for linear complementarity problems with application to
American-style options, Electronic Transactions on Numerical Analysis, 15 (2003), 165–
185.

[56] J. Persson and L. von Sydow, Pricing European multi-asset options using a space-time
adaptive FD-method, Comput. Visual. Sci. 10 (2007), 173–183.

[57] J. Persson and L. von Sydow, Pricing American options using a space-time adaptive finite
difference method, Math. Comput. Simulat. 80 (2010) 1922–1935.

[58] O. Pironneau and F. Hecht, Mesh adaption for the Black & Scholes equations, East-West
J. Numer. Math. 8 (2000) 25–35.

[59] A. Ramage and L. von Sydow, A multigrid preconditioner for an adaptive Black-Scholes
solver. BIT Numer. Math. 51, 217-233 (2011)

[60] C. Reisinger and G. Wittum, On multigrid for anisotropic equations and variational in-
equalities, Comput. Visual. Sci. 7 (2004), 189–197.

[61] C.A. Rendleman, V.E. Beckner, M. Lijewski, and W. Crutchfield, and J.B. Bell, Paral-
lelization of structured, hierarchical adaptive mesh refinement algorithms. Comput. Visual.
Sci. 3, 147–157 (2000)

[62] A.M. Roma and C.J. Garcia-Cervera, Adaptive mesh refinement for micromagnetics sim-
ulations. IEEE Trans. Magn. 42, 1648–1654 (2006)

[63] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), 856–869.

[64] Y. Saad and H.A. van der Vorst, Iterative solution of linear systems in the 20th century,
J. Comput. Appl. Math. 123 (2000), 1-33.

[65] E. Schwartz, The valuation of warrants: Implementing a new approach, J. Financ. Econ.
4 (1977) 79–93.

[66] R. Seydel, Tools for Computational Finance, Springer Verlag, Berlin, 2003.
[67] H. Sun, N. Kang, J. Zhang, and E. Carlson, A fourth-order compact difference scheme

on face centered cubic grids with multigrid method for solving 2D convection diffusion
equation. Math. Comput. Simul. 63, 651-661 (2003)

103

[68] D. Tavella and C. Randall, Pricing Financial Instruments-The finite difference method,
John Wiley and Sons, Inc., 2000.

[69] J. Topper, Financial Engineering with Finite Elements, John Wiley and Sons, New York,
2005.

[70] J. Topper, Option pricing with finite elements. in: Wilmott Magazine (2005)
[71] J. Toivanen, A high-order front-tracking finite diffrence method for pricing American op-

tions under jump-diffsion models, J. Comput. Financ. 13(3) (2010) 61–79.
[72] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic press, 2001.
[73] Using MATLAB, http://www.mathworks.com/, The MathWorks Inc., Natick, MA., 1998.
[74] H.A. Van Der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (1992), no.
2, 631-644.

[75] B.A. Wade, A.Q.M. Khaliq, M. Khaliq, J. Vigo-Aguiar, and R. Deininger, On smoothing
of the Crank-Nicolson scheme and higher order schemes for pricing barrier options. J.
Comput. Appl. Math. 204, 144–158 (2007)

[76] P. Wesseling, An Introduction to Multigrid Methods. John Wiley and Sons, Chichester
(1991)

[77] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing : mathematical models and
computation, Oxford Financia Press, Oxford, 1993.

[78] R. Windcliff, P.A. Forsyth, and R.A. Vetzal, Analysis of the stability of the linear boundary
condition for the Black–Scholes equation, J. Comp. Finan. 8 (2004) 65–92.

[79] S.M. Wise, J.S. Kim, and J.S. Lowengrub, Solving the regularized, strongly anisotropic
Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226,
414–446 (2007)

[80] A.V. Wouwer, P. Saucez, and W.E. Schiesser, Adaptive Method of Lines, Chapman & Hall,
Boca Raton, 2001.

[81] Y. Xiao, P. Zhang, and S. Shu, Algebraic multigrid methods for elastic structures with
highly discontinuous coefficients. Math. Comput. Simul. 76 249-262 (2007)

[82] N.N. Yanenko, The Method of Fractional Steps, Springer-Verlag, New York, 1971.
[83] S. Zhao and G.W. Wei, Option valuation by using discrete singular convolution, Appl.

Math. Comput. 167 (2005) 383–418.
[84] C. Zhang, Pricing American Options by Adaptive Finite Element Method. Mathematics

Department University of Maryland (2005)
[85] Z. Zhu and N. Stokes, A finite element platform for pricing path-dependent exotic options.

in: CSIRO Mathematical & Information Sciences, Australia (1999)
[86] R. Zvan, P.A. Forsyth, and K.R. Vetzal, Robust numerical methods for PDE models of

Asian options, J. Comp. Finan. 1 (1998) 39–78.
[87] R. Zvan, P.A. Forsyth, and K.R. Vetzal, A General Finite Element Approach for PDE

Option Pricing Models. University of Waterloo, Canada (1998)
[88] R. Zvan, P.A. Forsyth, and K.R. Vetzal, Penalty methods for American options with

stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)
[89] R. Zvan, K. R. Vetzal, and P.A. Forsyth, PDE methods for pricing barrier options, Journal

of Economic Dynamics and Control , 24 (2000), 1563–1590.

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Black-Scholes model
	1.2. Outline of the thesis

	Chapter 2. Multigrid method for Black-Scholes equations
	2.1. Introduction
	2.2. Discretization with finite differences
	2.3. A multigrid method
	2.4. Computational results
	2.5. Conclusions

	Chapter 3. A comparison study of ADI and operator splitting methods on option pricing models
	3.1. Introduction
	3.2. Numerical solutions for the ADI and OS methods
	3.3. Numerical experiments
	3.4. Conclusion

	Chapter 4. Comparison of Bi-CGSTAB, OS, and MG for 2D Black-Scholes equation
	4.1. Introduction
	4.2. Numerical methods
	4.3. Computational results
	4.4. Conclusion

	Chapter 5. An adaptive grid generation technique depending on a far-field boundary position for the Black-Scholes equation
	5.1. Introduction
	5.2. Discretization with finite differences
	5.3. Adaptive grid generation technique
	5.4. Computational results
	5.5. Conclusions

	Chapter 6. An operator splitting method for pricing the ELS option
	6.1. Introduction
	6.2. Two-asset step-down ELS
	6.3. Numerical solution
	6.4. Computational results
	6.5. Conclusions

	Chapter 7. An adaptive multigrid technique for option pricing under the Black-Scholes model
	7.1. Introduction
	7.2. Discretization with finite differences
	7.3. Numerical method
	7.4. Computational results
	7.5. Conclusions

	Chapter 8. Conclusion
	Appendix: MATLAB code
	1. MATLAB code for closed form of cash or nothing option
	2. MATLAB code for closed form of max option
	3. Operator Splitting method for BS model
	Bibliography

<startpage>11
Abstract v
Acknowledgments vii
Chapter 1. Introduction 1
 1.1. Black-Scholes model 1
 1.2. Outline of the thesis 3
Chapter 2. Multigrid method for Black-Scholes equations 7
 2.1. Introduction 7
 2.2. Discretization with finite differences 8
 2.3. A multigrid method 9
 2.4. Computational results 13
 2.5. Conclusions 17
Chapter 3. A comparison study of ADI and operator splitting methods on option pricing models 18
 3.1. Introduction 19
 3.2. Numerical solutions for the ADI and OS methods 19
 3.3. Numerical experiments 26
 3.4. Conclusion 33
Chapter 4. Comparison of Bi-CGSTAB, OS, and MG for 2D Black-Scholes equation 34
 4.1. Introduction 34
 4.2. Numerical methods 35
 4.3. Computational results 43
 4.4. Conclusion 48
Chapter 5. An adaptive grid generation technique depending on a far-field boundary position for the Black-Scholes equation 49
 5.1. Introduction 49
 5.2. Discretization with finite differences 50
 5.3. Adaptive grid generation technique 52
 5.4. Computational results 57
 5.5. Conclusions 64
Chapter 6. An operator splitting method for pricing the ELS option 66
 6.1. Introduction 66
 6.2. Two-asset step-down ELS 67
 6.3. Numerical solution 69
 6.4. Computational results 75
 6.5. Conclusions 79
Chapter 7. An adaptive multigrid technique for option pricing under the Black-Scholes model 81
 7.1. Introduction 81
 7.2. Discretization with finite differences 83
 7.3. Numerical method 83
 7.4. Computational results 88
 7.5. Conclusions 90
Chapter 8. Conclusion 93
Appendix: MATLAB code 96
1. MATLAB code for closed form of cash or nothing option 96
2. MATLAB code for closed form of max option 96
3. Operator Splitting method for BS model 96
Bibliography 100
</body>

