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In this work, the air pollution index in three cities (Seoul, Busan, and Daegu) in South Korea was studied using multifractal
detrended fluctuation analysis (MF-DFA). Hurst, Renyi, and Holder exponents were used to analyze the characteristics of the
concentration time series of PM2.5 and NO2. ,e results showed that multifractality exists in each season interval and the
multifractal degree of PM2.5 is stronger than that of NO2. To investigate the effects of the implementation of the “haze special law”
on February 15, 2019, we analyzed the time series of PM2.5 during the time periods from February 15, 2018, to December 16, 2018,
and February 15, 2019, to December 16, 2019. We found that the multifractal spectrum width after the implementation of the law
was narrower than that before the law for all the cities, which shows that the enactment of the law has played a role in improving
the efficiency of air pollution control in South Korea. We also conclude that the major effects of the law will be particularly visible
in larger cities. To study the main causes of multifractality, the shuffled and phase-randomized series were analyzed using MF-
DFA, and the results demonstrated that the fat-tailed distribution resulted in the multifractality of the time series before and after
the implementation of the “haze special law” in Seoul and Daegu, whereas long-range correlation resulted in multifractality of the
series before and after the implementation of the law in Busan.

1. Introduction

With the rapid development of a social economy and the
acceleration of industrialization and urbanization, air pol-
lution has gradually become an important problem affecting
people’s lives and has therefore garnered considerable at-
tention from the public and government. Air pollution is
closely related to climate, ecology, and health. Studies have
shown that sulfur oxides and nitrogen oxides can cause great
harm to the respiratory system, even leading to respiratory
failure in severe cases [1]. ,erefore, many researchers have
started to investigate the atmospheric particulate matters.
Many studies have stated that PM2.5 and NO2 are the two
major pollutants among various air pollutants [2–6].
,erefore, in this research, we focused on PM2.5 and NO2
and investigated the two pollutants based on the relationship
between the air pollution index (API) and different seasons.
We also checked whether the implementation of the “haze

special law” on February 15, 2019, had an impact on im-
proving the air quality in South Korea using multifractal
detrended fluctuation analysis (MF-DFA).

We know that the MF-DFA model can unveil the
multifractal properties hidden in nonstationary time series
and that multifractality originates from temporal correla-
tions [7, 8]. ,erefore, the multifractal properties of stock
markets [9–13], foreign exchange markets [14–16], bitcoin
markets [17], atmospheric sciences [18], and phase transi-
tions [19] have been studied previously. Recently, multi-
fractal analysis was used to study the daily air temperature
time series [20]. Moreover, MF-DFA is also an efficient
method in analyzing the human heart rate time series [21].
Based on the analysis of blood pressure and heart-rate
complexity, Gender Castiglioni et al. [22] used the multi-
fractal technique to investigate cardiovascular warning
signals. Moreover, MF-DFA has been used in some studies
to implement specific image analysis [23, 24].
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In recent years, many studies on air pollutants have been
conducted and the results suggested that the increased levels
of PM2.5 are associated with a higher mortality and some
negative effects on the lungs [25]. Although there are many
studies on API, few studies have focused on the MF-DFA of
the API time series. ,rough the hourly PM2.5 average
concentration time series, Shi et al. [26] analyzed the
multifractal nature at four air monitoring stations of
Chengdu using MF-DFA. Zhang et al. [27] used the mul-
tifractal detrended cross-correlation analysis (MF-DCCA) to
analyze the cross-correlations between PM2.5 and meteo-
rological factors. Recently, Zhang et al. [28] analyzed the
multifractal characteristics of the PM2.5 time series in Hong
Kong using the empirical mode decomposition-based MF-
DFA method. Multifractal property links between meteo-
rological factors and pollutants in urban and rural areas have
been verified by He [29].

Based on MF-DFA, the variations of multifractal char-
acteristics of pollutants present in different seasons were
investigated in this study. ,e effects of seasonal factors on
PM2.5 and NO2 were analyzed, and the seasonal physical
changes of PM2.5 and NO2 concentrations were confirmed
using multifractality. Additionally, we conducted a multi-
fractal comparison analysis of the effectiveness of air pol-
lution renovation since the enactment of the “haze special
law.” From this, we can provide a basis for formulating a
scientific and effective comprehensive air pollution control
policy.

,e paper is organized as follows. We briefly outline the
procedure of MF-DFA in Section 2. In the next section, we
describe the data information. Section 4 illustrates the
empirical results. Section 5 concludes the paper.

2. Methodology

In this section, we describe the utilization of the MF-DFA
[30] to measure the multifractal behavior of haze in all
seasons, and the multifractal characteristics of the API time
series before and after the implementation of the “haze
special law.” Kantelhardt summarized the technical details of
MF-DFA as follows.

As a time series Xi starts from X1 to XN, where N is the
length of the signal, the corresponding summation sequence
is constructed by the following integration:

Y(k) � 􏽘
k

i�1
Xi − X( 􏼁, k � 1, 2, . . . , N, (1)

where X is the mean value of Xi.
Subsequently, the profile Y is further divided into Ns

nonoverlapping windows of equal length s. In most cases, the
scale s is not a multiple of the time series and a short part at
the end of series Y exists. To overcome the problem of
information being lost in the division process, the same
process is repeated starting from the other side of the series.
,us, 2Ns windows are acquired.

Next, the least squares method is used to fit the data for
evaluating the local trend of each window
v (v � 1, 2, . . . , 2Ns), and the fitting polynomial in the vth

window is denoted by yv(i). ,e variance is determined by
the detrended time series, which is calculated as the dif-
ference between Y and y, and the resultant equation is
described as

F
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s
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2
, (2)

if v � 1, 2, . . . , Ns, and
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if v � Ns + 1, Ns + 2, . . . , 2Ns.
Finally, computing the mean of 2Ns windows, the q

order wave function Fq(s) is obtained as

Fq(s) �
1

2Ns
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if q � 0; according to L’Hôpital’s rule,

Fq(s) � exp
1

2Ns

􏽘

2Ns
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ln F

2
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⎧⎨

⎩
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,rough the analysis of double log plots of Fq(s) versus s
and a varied q, the scaling behavior of the fluctuation is
determined by the power-law Fq(s)∝ sh(q), and from this, a
family of scaling exponents h(q), which are generalized
Hurst components, can be obtained. Fq(s) is the standard
DFA, if q � 2. ,e Hurst exponents provide information on
the time series, such as power-law correlated behavior, and
when 0< h(q)< 0.5, it indicates that the time series has a
negative or antipersistence property. When 0.5< h(q)< 1,
then the time series has a positive persistence, and h(2) � 0.5
indicates that the time series has an uncorrelated Brownian
process.

,e Renyi exponent τ(q), which is related to the general
Hurst exponent, can be expressed by

τ(q) � qh(q) − 1. (6)

In addition,

α � h(q) + qh′(q), (7)

f(α) � q[α − h(q)] + 1, (8)

where α represents the Holder exponent and characterizes
the singularity strength and f(α) is a fractal dimension of
the set of points with particular α. In the plotted curve
between α and f(α), the shape resembles an inverted pa-
rabola and the degree of their complexity is denoted by the
width of their fractal strength Δα [31].

3. Data Collection

We used the API time series of Seoul to study the multi-
fractal characteristics of API sequences in different seasons.
To gauge the impact of the implementation of the “haze
special law,” our data set covered 3 cities in South Korea.,e
3 cities are located in different parts of South Korea, and
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there is a certain distance between any two cities. ,e results
calculated from the samples selected in this manner fully
reflect the impact and effect of the implementation of the
“haze special law” over the entirety of South Korea.

,e experimental data sources for the PM2.5 (μg/m3) and
NO2(ppm) concentrations were the “Korean Ministry Of
Environment” and “Korea Environment Corporation,” and
more specific data were provided by the monitoring stations
in South Korea. For more detailed information, please refer
to https://www.airkorea.or.kr/web and https://aqicn.org/
city/seoul/kr. Table 1 shows information of the target cit-
ies and the corresponding monitoring stations. For the
multifractal analysis of API in different seasons, the samples
were recorded fromMarch 3, 2018, to February 25, 2019. We
considered March to May, June to August, September to

November, and December to February as the four seasons:
spring, summer, autumn, and winter, respectively. Each
interval was assigned a time series of 90 daily data points. For
analyzing the efficiency of the implementation of the “haze
special law” on February 15, 2019, we selected a time series of
PM2.5 over the same period. ,e data were recorded from
February 15, 2018, to December 16, 2018, and from February
15, 2019, to December 16, 2019, and each interval was
assigned a time series of 305 daily data points. ,e de-
scriptive statistics for each time series are shown in Table 2.

4. Experiment Results

We first analyze the multifractal properties for two time
series of each season and compare the multifractal degree of

Table 1: Information of cities in the sample.

City Location Monitoring station
Seoul Northwest Jung-gu
Busan Southeast Gaegeum-do
Daegu Centrum Guseong-dong

Table 2: Descriptive statistics.

Observation Observation number Minimum Maximum Mean Standard deviation
Spring (PM2.5) 90 18 195 94.289 43.470
Summer (PM2.5) 90 13 139 71.722 33.368
Autumn (PM2.5) 90 14 170 67.711 36.996
Winter (PM2.5) 90 35 204 102.022 33.840
Spring (NO2) 90 0.013 0.059 0.033 0.011
Summer (NO2) 90 0.008 0.039 0.024 0.007
Autumn (NO2) 90 0.009 0.066 0.031 0.012
Winter (NO2) 90 0.010 0.073 0.038 0.015
Seoul (before law) 305 13 195 79.708 39.268
Seoul (after law) 305 12 210 78.498 37.907
Busan (before law) 305 42 161 91.161 28.590
Busan (after law) 305 23 169 84.023 26.869
Daegu (before law) 305 25 158 86.138 31.332
Daegu (after law) 305 21 168 82.902 28.525
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Figure 1: Time series of (a) PM2.5 concentration and (b) NO2 concentration.
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Figure 2: Log-log plots of fluctuation function Fq(s) for (a) PM2.5 and (b) NO2. From top to bottom are spring, summer, autumn, and
winter.
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Figure 3: Hurst exponent of (a) PM2.5 concentration and (b) NO2 concentration.

Table 3: Multifractality for PM2.5 and NO2 concentrations.

h(2) ΔH(q) Δα

PM2.5

Spring 1.4290 1.0297 1.2224
Summer 0.9991 1.2021 1.4787
Autumn 1.1797 1.4247 1.6851
Winter 1.1626 1.5500 2.0520

NO2

Spring 1.0705 1.1699 1.4212
Summer 0.7468 1.1350 1.4151
Autumn 1.2635 0.4880 0.6705
Winter 0.7718 0.8884 1.0958
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Figure 4: Renyi exponent of (a) PM2.5 concentration and (b) NO2 concentration.
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PM2.5 with that of NO2. Second, we conduct multifractal
analysis for two time series in the same season and confirm
whether the implementation of the “haze special law” has
any implications for the air quality.

In this study, we choose the minimum segment scale to
be smin � 5, and the maximum segment scale smax � 15, and
q is taken from −10 to 10.,e range of qwas similarly chosen
for the multifractal analysis of stock prices and returns in
Latin-American stock markets [32]. Besides, the range of s
was selected according to suggestions in [33, 34].

4.1. Multifractal Analysis of PM2.5 and NO2. From the daily
API data selected in Section 3, we draw the time series of
PM2.5 and NO2 in Figure 1. From Figure 1, we can see that a
pattern of high concentrations on both sides and low
concentrations in the middle emerges, which indicates that
due to seasonal factors, both air pollutants have the char-
acteristics of low concentrations in summer and high
concentrations in winter. In summer (June to August), the
concentration of air pollutants tends to rise, while in winter
(December to February of the following year), the con-
centration of air pollutants tends to decrease.

To check the existence of a scaling range, long-range
correlations, and multifractality of both indices in four
seasons, we first show the log-log plots of Fq(s) versus time
scale s of PM2.5 and NO2. In Figure 2, the continuous line
represents the double plots between the calculated Fq(s) and
time scale s, and the dashed line denotes the corresponding
fitting line. As the dashed line shows, the decreasing gradient
with q increases from −10 to 10, which indicates that PM2.5
and NO2 time series of all seasons have multifractal
properties.

To measure the multifractality quantitatively, we apply
MF-DFA to estimate properties for two pollutants of indices
PM2.5 and NO2. First, we calculate the generalized Hurst

exponent h(q) and then obtain the Renyi exponent τ(q) and
the Holder exponent α for both indices.

Figure 3 shows the relationship between h(q) and q. ,e
generalized Hurst exponents for both time series in any
season are not constants, which indicate that the series are
not monofractal. We note that h(q) decreases monotonously
with an increase in q, which shows that the time series of
PM2.5 and NO2 are not single fractals. Figures 3(a) and 3(b)
represent PM2.5 and NO2, respectively.

As illustrated in Table 3, the values of h(2) for all time
series are larger than 0.5, implying that the fluctuations have
significant positive persistence. Both indices of the time
series in some seasons are even larger than 1, which is
consistent with the conclusions drawn in some previous
studies [26, 35]. For the PM2.5 time series, the persistence in
spring is stronger than for other seasons, and for the NO2
time series, autumn has the strongest persistence. We
compute ΔH(q) for each time series using
ΔH(q) � h(qmin) − h(qmax). From Figure 3 and Table 3, we
observe that ΔH(q) in winter is the highest for the PM2.5
time series, which implies its’ multifractal characteristic is
stronger in winter, and themultifractalities of the other three
seasons are relatively stable. However, for the NO2 time
series, the multifractality in spring is higher than for all other
seasons.

Furthermore, the multifractality strength of a time series
can also be measured with a nonlinear Renyi exponent curve
[36]. As shown in Figure 4, all curves of the Renyi exponent
are nonlinear, which reflects the evidence of multifractality
of the PM2.5 and NO2 series. Moreover, the different
nonlinear behaviors of the curves of these series show that
the multifractal strengths have different degrees.

,en, we calculate the Holder exponent α and the fractal
dimension f(α) using equation (8). ,e width of α also
stands for the degree of the multifractality. A larger Δα
indicates a stronger multifractal nature. In Figure 5 and
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Figure 5: Holder exponent of (a) PM2.5 concentration and (b) NO2 concentration.
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Figure 6: Time series of PM2.5 (a) before and (b) after implementation of the law. From top to bottom are Seoul, Busan, and Daegu.
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Figure 7: Confidence intervals of h(2) versus the length of PM2.5 time series (a) before and (b) after implementation of the law with
confidence level by 95.0%. From top to bottom are Seoul, Busan, and Daegu.
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Figure 8: Log-log plots of the fluctuation function Fq(s) for PM2.5 (a) before and (b) after implementation of the law. From top to bottom
are Seoul, Busan, and Daegu.
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Figure 9: Hurst exponent of PM2.5 concentration of (a) Seoul, (b) Busan, and (c) Daegu.
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Figure 10: Renyi exponent of PM2.5 concentration of (a) Seoul, (b) Busan, and (c) Daegu.
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Table 3, the conclusion we described above about the Hurst
exponent and the Renyi exponent is discussed. Moreover, as
shown in Figure 5, the multifractal spectra are strongly
asymmetrical, and as an important indicator of fractal or-
ganization, the asymmetry coefficient, which is used to
quantify the asymmetry of the multifractal spectrum, has
been estimated in [37].

Based on Table 3, the multifractal features can be clearly
confirmed for all time series, and it can be seen that except
for spring, the Hurst exponents and multifractal spectrum
widths of PM2.5 are obviously larger than those of NO2 and
the multifractal degrees of PM2.5 are stronger than those of
NO2.

4.2. Implications of the “Haze Special Law”. In this section,
we focus on the enactment of the “haze special law” and
study whether the law is effective in the governance of at-
mospheric pollution. We select daily data from the same
period described in Section 3. As we studied above, the
multifractal degree of PM2.5 is stronger than that of NO2.
,us, in this section, we focus on the comparison of PM2.5
concentrations. We show the PM2.5 time series before and
after the law was implemented in Seoul, Busan, and Daegu in
Figure 6.

As the fluctuation statistics are of asymptotic feature, a
sufficiently long-length sequence guarantees the accurate
estimation of the Hurst exponent, and for a small-length
sequence, the asymptotic value in the slope of ln(Fq(s))

versus ln(s) will be lacked [38]. As the total number of
observations is selected to be 305, to eliminate the doubt of
whether the selected time series can give representative
results for a multifractal analysis in the investigation, we
dealt with this concern by computing confidence intervals of
Hurst exponent h(2) to check whether there is a difference
caused by the law for all the three cities. ,e number of
samples increased from 50 to 300, and every additional
interval is 10. ,e confidence level is selected as 95.0%. For
each set of sample lengths, we generate the shuffled time
series 1000 times, and then, the confidence interval is plotted
in Figure 7.

As shown in Figure 7 and as expected, the domain size
decreases with an increase in the length of the time series.
However, when the length of the time series is larger than 200,
the decrease in the domain size of the confidence intervals is
rather slow, and of a distinct asymptotic behavior. Besides, we

see that the confidence intervals do not overlap for Seoul,
while for Busan ([0.34, 0.39] before and [0.32, 0.37] after) and
Daegu ([0.55, 0.64] before and [0.58, 0.69] after), the confi-
dence intervals overlap a lot. ,erefore, we can conclude that
there is a difference caused by the law for Seoul; however, the
same conclusion is inconclusive for Busan and Daegu.

Now, we first depict the log-log plots of the fluctuation
function Fq(s) versus q and s for the PM2.5 time series. As
illustrated in Figure 8, for all series, the fluctuation value
increases linearly with s, indicating that a power-law be-
havior and long-range correlations exist in each series pair.
,e decreasing gradient shows that all time series have
multifractal characteristics.

,e generalized Hurst exponent h(q), Renyi exponent
τ(q), and Holder exponent α of the time series before and
after the enactment of the “haze special law” for all the three
cities are shown in Figures 9–11, respectively.

In Figure 9, it is shown that the generalized Hurst ex-
ponents h(q) of PM2.5 of all three cities decrease with varied
q, thereby showing the multifractal behaviors of these two
series. We present h(2) for these series in Table 4. All Hurst
exponents are confirmed to be larger than 0.5, which in-
dicates that all the time series exhibit positive persistence.
Besides, we observe that h(2) before the implementation of
the law is larger than after the law, implying that the fluc-
tuations before the law have more significant persistence.
Subsequently, we calculate the range of h(q) for each time
series and list them in Table 4. We find that for all three
cities, ΔH(q) after the law is larger, which indicates that the
multifractal characteristics are stronger, and that the mul-
tifractalities of the time series before the law are more stable.

,e Renyi exponents τ(q) plotted in Figure 10 are
nonlinear along q, which provides further evidence of the
existence of multifractality. We notice that the curvature of
the Renyi exponents before the law are higher, which implies
that the time series before the implementation of the law
have stronger multifractal characteristics. All of these are
consistent with the results calculated from the generalized
Hurst exponents.

At last, the multifractal spectrums of these time series are
examined. We depict the curves between α and f(α) in
Figure 11. We see that the multifractal spectra are not shown
as points, which indicates all the time series have multi-
fractality. ,en, Δα are calculated and presented in Table 4.
From Table 4, it can be seen that ΔH(q) and Δα of the time
series after the enactment of law are lower than those before

Table 4: Multifractality for PM2.5 concentration.

City Multifractality Before law After law

Seoul
h(2) 1.2270 1.2085
ΔH(q) 1.7329 1.1410
Δα 2.2414 1.3953

Busan
h(2) 1.2905 1.1041
ΔH(q) 1.3539 0.9565
Δα 1.7463 1.2708

Daegu
h(2) 1.1975 1.0878
ΔH(q) 2.2910 1.9516
Δα 2.9610 2.5043
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Figure 12: Hurst exponent (a) before law and (b) after law. From top to bottom are Seoul, Busan, and Daegu.
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Figure 13: Renyi exponent (a) before law and (b) after law. From top to bottom are Seoul, Busan, and Daegu.
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Figure 14: Holder exponent (a) before law and (b) after law. From top to bottom are Seoul, Busan, and Daegu.
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the implementation of the law for all three cities, implying
that the multifractality of the time series becomes more
stable with the measures taken by the government and that
the efficiency of the “haze special law” in three cities is
demonstrable; this conclusion can be referred to [16, 39], in
which it was pointed out that the decrease in multifractality
means the efficiency is improved when some measures are
taken. Moreover, we also notice that the efficiency of the
“haze special law” in Seoul is most obvious, when compared
with Busan, and in last place is Daegu. Interestingly, the
order is the same as the scale and prosperity of the cities.
We can therefore conclude that the law has a higher effect
on a larger city.

4.3. Sources of Multifractal Features. ,e two universally
acknowledged sources of multifractality are long-range
correlations and a fat-tailed distribution [7, 40]. Now, we
investigate the major source of multifractality of the PM2.5
concentration series. To check the contribution of long-
range correlations and fat-tailed distribution quantitatively,
we shuffle and phase-randomize the time series.

Subsequently, we calculate the Hurst exponent h(q), the
Renyi exponent τ(q), and the Holder exponent Δα of the
original, shuffled, and phase-randomized time series of the
three cities. As shown in Figures 12–14, all the time series are
strongly multifractal. From Table 5, all h(2) of the original
series are larger than those of the shuffled and phase-ran-
domized time series, which indicates that the persistence has
been moved after shuffling and phase-randomization.
Moreover, the original series of all three cities has the
greatest spectrum width Δα, while the multifractality de-
creased after shuffling and phase-randomizing the series.
,e findings can also be confirmed in Figures 12–14.

To examine the main source of multifractality, the first
and third rows of Figure 14 show that the multifractal
spectra of phase-randomized series are the narrowest ones,

which means that the main source of multifractality of the
series before and after the law in Seoul and Daegu are the fat-
tailed distributions. ,e second row in Figure 14 shows that
the multifractal spectrum of the shuffled series is the nar-
rowest, which implies that the long-range correlation results
in multifractality of the series before and after imple-
mentation of the law in Busan.

5. Conclusions

In this study, we examined the multifractal characteristics of
PM2.5 and NO2 time series of all seasons. We determined
that multifractality existed in each season, and the multi-
fractal property of PM2.5 was stronger than that of NO2 in
each season. We also validated the effectiveness of the “haze
special law,” which was implemented to improve the gov-
ernance of air pollution in South Korea. We checked
whether there is a difference caused by the law for these cities
and calculated confidence intervals of Hurst exponent h(2).
,e results showed that the confidence intervals do not
overlap for Seoul, while the confidence intervals overlap a lot
for Busan and Daegu, indicating that there is a difference
caused by the law for Seoul; however, the same conclusion is
inconclusive for Busan and Daegu. By comparing the Hurst
exponent, Renyi exponent, and Holder exponent, the time
series of the PM2.5 concentration before the implementation
of the law was found to have a higher multifractal degree,
which decreased after the enactment of the law. ,is phe-
nomenon reflected the fact that the law has played a role in
improving the efficiency of air pollution control in South
Korea. We also concluded that the effect of the law will be
more significant in a larger city. To explore the major causes
of multifractality, we shuffled and phase-randomized the
original series of PM2.5. By analyzing the width of the
multifractal spectrum Δα, the results showed that the fat-
tailed distribution contributed to the multifractality of both
times series before and after the implementation of the “haze
special law” in Seoul and Daegu, whereas long-range cor-
relations resulted in the multifractality of the series before
and after the implementation of the law in Busan. We
concluded that the implementation of the law was very
successful and effective for the improvement of PM2.5 levels.
,erefore, we believe that the “haze special law” is a possible
cause for the change in API in South Korea.
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Table 5: Multifractality of PM2.5 time series.

h(2) Δα LRC FTD

Seoul

Before
Original 1.2270 2.2414

No YesShuffled 0.7232 1.7946
Phase-randomized 0.6965 0.9574

After
Original 1.2085 1.3953

No YesShuffled 0.3177 1.0978
Phase-randomized 0.3049 0.8569

Busan

Before
Original 1.2905 1.7463

Yes NoShuffled 0.3982 0.9999
Phase-randomized 0.3993 1.3512

After
Original 1.1041 1.2708

Yes NoShuffled 0.3678 0.7175
Phase-randomized 0.3794 0.8673

Daegu

Before
Original 1.1975 2.9610

No YesShuffled 0.5901 2.2093
Phase-randomized 0.5868 2.0587

After
Original 1.0878 2.5043

No YesShuffled 0.6756 2.5600
Phase-randomized 0.6407 2.2981

LRC and FTD represent the long-range correlations and fat-tailed distri-
bution, respectively.
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[37] S. Drożdż and P. Oświecimka, “Detecting and interpreting
distortions in hierarchical organization of complex time se-
ries,” Physical Review E, vol. 91, Article ID 030902, 2015.

[38] C. Ibarra-Valdez, J. Alvarez, and J. Alvarez-Ramirez, “Ran-
domness confidence bands of fractal scaling exponents for
financial price returns,” Chaos, Solitons & Fractals, vol. 83,
pp. 119–124, 2016.
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