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In this paper, we propose a new unconditionally stable hybrid numerical method for
minimizing the piecewise constant Mumford–Shah functional of image segmentation. The
model is based on the Allen–Cahn equation and an operator splitting technique is used to
solve the model numerically. We split the governing equation into two linear equations
and one nonlinear equation. One of the linear equations and the nonlinear equation
are solved analytically due to the availability of closed-form solutions. The other linear
equation is discretized using an implicit scheme and the resulting discrete system of
equations is solved by a fast numerical algorithm such as a multigrid method. We prove the
unconditional stability of the proposed scheme. Since we incorporate closed-form solutions
and an unconditionally stable scheme in the solution algorithm, our proposed scheme is
accurate and robust. Various numerical results on real and synthetic images with noises are
presented to demonstrate the efficiency, robustness, and accuracy of the proposed method.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is one of the fundamental tasks in automatic image analysis. Its goal is to partition a given image
into regions that contain distinct objects. For example, the segmentation of structures from images is an important first step
for object recognition [6], interpretation [21], image restoration [29], and image inpainting [4,7,9]. The most common form
of segmentation is based on the assumption that distinct objects in an image have different and approximately constant
colors. A natural approach is therefore to decompose an image domain into approximately homogeneous regions that are
separated by sharp changes in image features. One of the general approaches for image segmentation is the minimizer of
the piecewise constant Mumford–Shah functional [23]. Chan–Vese [10,28] solved the minimization problem by the level set
method proposed by Osher and Sethian [24]. Recently, the Allen–Cahn equation [1] has been used in image segmentation [3,
8,14,18,17]. In particular, Esedoḡlu and Tsai [14] used the Allen–Cahn equation to solve the reduced Mumford–Shah problem
with the Chan–Vese fitting terms.

In this paper, we propose an unconditionally stable hybrid numerical method which consists of the Allen–Cahn equation
and a fitting term. An operator splitting technique is used to solve the model numerically. We describe its numerical solution
algorithm and give a proof of the unconditional stability of the scheme. We also present various numerical results on real
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and synthetic images with various types and levels of noise to demonstrate the efficiency, robustness, and accuracy of the
proposed numerical method.

This paper is organized as follows. In Section 2, three models for image segmentation are briefly reviewed. In Section 3,
we describe the proposed unconditionally stable hybrid operator splitting method and provide a proof of the unconditional
stability of the scheme. In Section 4, we perform some characteristic numerical experiments for image segmentation. Finally,
conclusions are given in Section 5.

2. Description of the previous models

In this section, we briefly review three approaches such as Mumford–Shah, Chan–Vese, and phase-field models for image
segmentation.

2.1. Mumford–Shah model

With a given image f0 on the image domain Ω and its segmenting curve C , Mumford and Shah [23] proposed that the
segmentation of an image can be obtained through the minimization of the following Mumford–Shah energy functional:

EMS( f , C) = μLength(C) +
∫
Ω

∣∣ f0(x) − f (x)
∣∣2

dx + ν

∫
Ω\C

∣∣∇ f (x)
∣∣2

dx,

where μ and ν are positive parameters and f is the piecewise smooth approximation to f0. However, in practice it is not
easy to minimize this functional because of the unknown set C of lower dimension than f .

2.2. Chan–Vese model

Chan and Vese [10] proposed an algorithm for decomposing the image into two regions with piecewise constant approx-
imations by minimizing the energy of the Mumford and Shah functional

ECV(c1, c2, C) = μLength(C) + λ1

∫
inside(C)

∣∣ f0(x) − c1
∣∣2

dx + λ2

∫
outside(C)

∣∣ f0(x) − c2
∣∣2

dx,

where μ, λ1, and λ2 are positive parameters [15,20]. The constants c1 and c2 are the averages of f0 inside and outside of
C , respectively. Chan and Vese replaced the unknown curve C by the level-set function φ(x). Then the energy functional
ECV(c1, c2, C) can be rewritten as

ECV(c1, c2, φ) = μ

∫
Ω

δε
(
φ(x)

)∣∣∇φ(x)
∣∣dx + λ1

∫
Ω

∣∣ f0(x) − c1
∣∣2

Hε

(
φ(x)

)
dx

+ λ2

∫
Ω

∣∣ f0(x) − c2
∣∣2(

1 − Hε

(
φ(x)

))
dx.

By applying the gradient descent method, we obtain the following equation:

∂φ

∂t
= δε(φ)

[
μ∇ ·

( ∇φ

|∇φ|
)

− λ1
(

f0(x) − c1
)2 + λ2

(
f0(x) − c2

)2
]
.

The level set based algorithm of Chan and Vese can be used to process the image with a large amount of noise and detect
objects whose boundaries cannot be defined by gradient. For more details about parameters and description of equations,
please refer to Ref. [10].

2.3. Phase-field model

A phase-field approximation for minimizing the Mumford–Shah functional, by using the Allen–Cahn equation to replace
the length of the segmenting curve C , is given by the following energy functional:

E(φ) =
∫
Ω

(
F (φ)

ε2
+ |∇φ|2

2
+ G(φ, f0)

)
dx, (1)

where F (φ) = 0.25(φ2 − 1)2 is a double-well potential as shown in Fig. 1, ε is the gradient energy coefficient related to the
interfacial energy, and Ω is the image domain.

When φ is locally equilibrated, the first two terms in Eq. (1) are proportional to the length of the segmenting curve C
[12] by
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Fig. 1. A double well potential, F (φ) = 0.25(φ2 − 1)2.

∫
Ω

(
F (φ)

ε2
+ |∇φ|2

2

)
dx ≈ 2

√
2

3ε
Length(C).

The third term in the functional is the fitting term and defined as

G(φ, f0) = λ

2

[
(1 + φ)2( f0 − c1)

2 + (1 − φ)2( f0 − c2)
2].

Here, the fitting term plays a key role in curve evolution by making the phase-field resemble the original image shape,
λ is a nonnegative parameter and f0 is the given image. Also c1 and c2 are the averages of f0 in the regions (φ � 0) and
(φ < 0), respectively:

c1 =
∫
Ω

f0(x)(1 + φ(x))dx∫
Ω

(1 + φ(x))dx
and c2 =

∫
Ω

f0(x)(1 − φ(x))dx∫
Ω

(1 − φ(x))dx
.

Once φ reaches a steady state, the zero level set of φ becomes the contour that separates the object from the background.
For this purpose, we seek a law of evolution in the form [11]: φt = −∇E(φ). The symbol ‘∇ ’ here denotes the gradient in
the space L2(Ω). Let φ,ϕ ∈ D = {c ∈ H2(Ω) | ∂c

∂n = 0 on ∂Ω}. Then, we have

(∇E(φ),ϕ
)

L2 = lim
h→0

E(φ + hϕ) − E(φ)

h

=
∫
Ω

(
F ′(φ)

ε2
− 
φ + λ

[
(1 + φ)( f0 − c1)

2 − (1 − φ)( f0 − c2)
2])ϕ dx

=
(

F ′(φ)

ε2
− 
φ + λ

[
(1 + φ)( f0 − c1)

2 − (1 − φ)( f0 − c2)
2],ϕ

)
L2

.

Therefore, we get the following gradient descent flow equation:

φt = − F ′(φ)

ε2
+ 
φ + λ

[
(1 − φ)( f0 − c2)

2 − (1 + φ)( f0 − c1)
2]. (2)

In Eq. (2), φt = −F ′(φ)/ε2 + 
φ is the Allen–Cahn equation which approximates motion by mean curvature of the interface
that separates −1 and 1 phases of the solutions [14]. Therefore, depending on the sign of the term λ[(1 − φ)( f0 − c2)

2 −
(1 + φ)( f0 − c1)

2], the interface shrinks or expands to become the segmentation curve.

3. Numerical solution

In this section, we describe a new unconditionally stable hybrid numerical method for minimizing the piecewise constant
Mumford–Shah functional of image segmentation. Using an operator splitting technique, we split its numerical solution
algorithm into two linear equations and one nonlinear equation. One linear equation and the nonlinear equation are solved
analytically. The other linear equation is discretized using an implicit scheme and the resulting discrete system of equations
is solved by a multigrid method. We prove the unconditionally stable property of the proposed scheme by analysis.
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3.1. Proposed numerical scheme

Eq. (2) is discretized in a two-dimensional space Ω = (a,b) × (c,d). Let Nx and N y be positive even integers, h =
(b − a)/Nx be the uniform mesh size, and Ωh = {(xi, y j): xi = (i − 0.5)h, y j = ( j − 0.5)h,1 � i � Nx,1 � j � N y} be the set
of cell-centers. Let φn

i j be approximations of φ(xi, y j,n
t), where 
t = T /Nt is the time step, T is the final time, and Nt

is the total number of time steps. Using the standard five point stencil for the discrete Laplacian 
dφi j = (φi−1, j + φi+1, j −
4φi j + φi, j−1 + φi, j+1)/h2, we propose the following operator splitting numerical algorithm:

φn+1
i j − φn

i j


t
= − F ′(φn+1

i j )

ε2
+ 
dφ

n+1,2
i j + λ

[(
1 − φ

n+1,1
i j

)(
f0,i j − cn

2

)2 − (
1 + φ

n+1,1
i j

)(
f0,i j − cn

1

)2]
,

where F ′(φ) = φ(φ2 − 1) and φ
n+1,k
i j for k = 1,2 are defined in the following operator splitting scheme.

φ
n+1,1
i j − φn

i j


t
= λ

[(
1 − φ

n+1,1
i j

)(
f0,i j − cn

2

)2 − (
1 + φ

n+1,1
i j

)(
f0,i j − cn

1

)2]
, (3)

φ
n+1,2
i j − φ

n+1,1
i j


t
= 
dφ

n+1,2
i j , (4)

φn+1
i j − φ

n+1,2
i j


t
= − F ′(φn+1

i j )

ε2
, (5)

where cn
1 and cn

2 are

cn
1 =

∑Nx
i=1

∑N y

j=1 f0,i j(1 + φn
i j)∑Nx

i=1

∑N y

j=1 (1 + φn
i j)

and cn
2 =

∑Nx
i=1

∑N y

j=1 f0,i j(1 − φn
i j)∑Nx

i=1

∑N y

j=1 (1 − φn
i j)

.

We can consider Eq. (3) is an approximation of the equation

φt = −λ
[
( f0 − c1)

2 + ( f0 − c2)
2]φ − λ

[
( f0 − c1)

2 − ( f0 − c2)
2] (6)

by the implicit Euler method with the initial condition φn . We can solve Eq. (6) analytically since it is a first-order linear
differential equation and the solution after 
t is given as

φ
n+1,1
i j = e−λ[( f0−cn

1)2+( f0−cn
2)2]
tφn

i j + (
e−λ[( f0−cn

1)2+( f0−cn
2)2]
t − 1

) ( f0 − cn
1)

2 − ( f0 − cn
2)

2

( f0 − cn
1)

2 + ( f0 − cn
2)

2
.

Next Eq. (4) is the implicit Euler scheme and can be solved by a multigrid method [5,27] with the initial condition φn+1,1.
Finally we can consider Eq. (5) as an approximation of the equation

φt = (φ − φ3)

ε2
(7)

by an implicit Euler method with the initial condition φn+1,2. Then the solution of Eq. (7) after 
t , solved by the method of

separation of variables [16,26], is given as φn+1 = φn+1,2/

√
e−2
t/ε2 + (φn+1,2)2(1 − e−2
t/ε2

). Finally, our proposed scheme
is written as

φn+1,1 = e−λ[( f0−cn
1)2+( f0−cn

2)2]
tφn + (
e−λ[( f0−cn

1)2+( f0−cn
2)2]
t − 1

) ( f0 − cn
1)

2 − ( f0 − cn
2)

2

( f0 − cn
1)

2 + ( f0 − cn
2)

2
, (8)

φn+1,2 − φn+1,1


t
= 
dφ

n+1,2, (9)

φn+1 = φn+1,2√
e

−2
t
ε2 + (φn+1,2)2(1 − e

−2
t
ε2 )

. (10)

The solutions of Eqs. (8) and (10) are explicitly defined. Eq. (9) is a heat equation and we apply a fast solver such as a
multigrid method to solve the equation.
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3.2. Stability analysis for the proposed scheme

When we solve time-dependent partial differential equations, stability of the numerical scheme to the equations is very
important. Explicit time integration schemes are generally only conditionally stable and require small time steps to be
employed to insure numerical stability. Therefore, the step size restriction is often more severe than accuracy considerations
require. However, since our proposed hybrid splitting method is unconditionally stable we do not have time step restrictions.
Next we prove the unconditional stability of the scheme. For simplicity, let us define

α = e−λ[( f −cn
1)2+( f −cn

2)2]
t and β = ( f0 − cn
1)

2 − ( f0 − cn
2)

2

( f0 − cn
1)

2 + ( f0 − cn
2)

2
.

Then, Eq. (8) can be rewritten as φn+1,1 = αφn + (α − 1)β . Now, we get∣∣φn+1,1
∣∣ � α

∣∣φn
∣∣ + (1 − α)|β| � α + 1 − α = 1. (11)

Here we have used 0 < α � 1, |β| � 1, and |φn| � 1. For Eq. (9), a von Neumann stability analysis [13] shows that an implicit
Euler method is unconditionally stable. The inequality |φn+1,2| � ‖φn+1,1‖∞ is satisfied by the discrete maximum principle
for the heat equation [22]. Then by Eq. (11), we get |φn+1,2| � 1. Finally, from Eq. (10), we have

∣∣φn+1
∣∣ = |φn+1,2|√

e
−2
t
ε2 + (φn+1,2)

2
(1 − e

−2
t
ε2 )

= 1√
1 + ( 1

(φn+1,2)
2 − 1)e

−2
t
ε2

� 1.

Hence, if |φn| � 1, then we get |φn+1| � 1. Therefore the proposed scheme is unconditionally stable for any time step. And
we also define the numerical quadrature for the energy functional, Eq. (1).

E(φ) =
Nx∑

i=1

N y∑
j=1

h2
(

F (φi j)

ε2
+ |∇dφi j|2

2
+ λ

2
(1 + φi j)

2( f0,i j − c1)
2 + λ

2
(1 − φi j)

2( f0,i j − c2)
2
)

.

4. Experimental results

In this section, we present numerical results using the proposed numerical algorithm on various synthetic and real
images. We show that a very fast and accurate minimization can be achieved by the proposed algorithm. In our numerical
experiments, we normalize the given image f as f0 = f − fmin

fmax− fmin
, where fmax and fmin are the maximum and the minimum

values of the given image, respectively. Across the interfacial regions, the phase-field varies from −0.9 to 0.9 over a distance
of approximately 2

√
2ε tanh−1(0.9). Therefore, if we want this value to be approximately m grid points, then the ε value

needs to be taken as follows: εm = hm/[2√
2 tanh−1(0.9)]. Since solutions with the proposed numerical scheme are almost

insensitive to the initial configuration of φ0, we simply initialize φ0 = 2 f0 − 1. We stop the numerical computations when
the difference between the (n + 1)th and nth time step energies becomes less than a given tolerance, tol. The termination
criterion algorithm is listed as follows:

Set a maximum iteration number N , a tolerance tol, and k = 1.
While (k � N) do Steps 1–2

Step 1 Compute φn+1 from φn by solving Eqs. (8)–(10).
Step 2 If |E(φn+1) − E(φn)| < tol, then stop the calculation.

Else k = k + 1.

4.1. The basic mechanism of the algorithm

We start with an example which shows the basic mechanism of the algorithm, Eq. (2). Let us consider a synthetic image

on the computational domain, Ω = (0,1) × (0,1) : f (x, y) = 1
2 [1 + tanh(

0.2−√
(x−0.4)2+(y−0.5)2√

2ε5
)]. This image is shown in the

first row in Fig. 2. White region is close to 1 and gray region is close to 0. Let an initial phase-field φ0 as φ0(x, y) =
tanh(

0.2−√
(x−0.6)2+(y−0.5)2√

2ε5
), which is shown in the second row in Fig. 2(a). A 64 × 64 grid, interface parameter ε5, time step


t = 1E–4, tol = 0.2, and λ = 8E3 are used.
The top row shows the evolving contours overlaid on the original image. The middle and bottom rows show the evolution

of φ with its zero level set and the fitting term in Eq. (3), i.e., λ[(1−φn+1,1)( f0 − cn
2)

2 − (1+φn+1,1)( f0 − cn
1)

2], respectively.
Columns (a), (b), (c), and (d) are at n = 0, 1, 3, and 10, respectively. From the results in Fig. 2, we observe that the positive
and negative values of the fitting term imply that φ will increase and decrease until the segmentation curve is on the edge
of the object, respectively. Note that in the third row of Fig. 2(d), the value of fitting term is positive and negative inside
and outside of the disk, respectively. This makes the segmentation evolution reach a steady state.
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Fig. 2. Synthetic image segmentation using the proposed method. Top: the evolution of the zero level set of φ is presented. Middle: the evolution of φ and
its zero level set. Bottom: the evolution of the right hand side term in Eq. (3), λ[(1 −φn+1,1)( f0 − cn

2)2 − (1 +φn+1,1)( f0 − cn
1)2] is shown. Columns (a), (b),

(c), and (d) are at n = 0,1,3, and 10, respectively.

Fig. 3. (a) Original image with 10% salt-and-pepper noise. (b), (c), and (d) are zero level filled contours at times t = 0, 2E–5 (1 iteration), and 8E–5
(4 iterations), respectively. Interface parameter ε8, 
t = 2E–5, and λ = 1E4 are used.

4.2. Salt-and-pepper noise

Fig. 3(a) is a text image ‘Allen–Cahn’ with ‘Brush Script MT’ font and blurred with 10% salt-and-pepper noise [2] on the
computational domain, Ω = (0,4)× (0,1) with a 512 × 128 mesh. Interface parameter ε8, 
t = 2E–5, tol = 0.2, and λ = 1E4
are used. Salt-and-pepper noise is defined as randomly occurring white and black pixels. The given probability r% means
setting a fraction of (r/2)% randomly selected pixels to black and the other (r/2)% randomly to white. Figs. 3(b), (c), and (d)
are zero level filled contours at times t = 0, 2E–5 (1 iteration), and 8E–5 (4 iterations), respectively. We also note that we
can segment the enclosed holes in the letters.

Fig. 4 is an image segmentation for a fingerprint on the computational domain Ω = (0,1) × (0,1) with a 256 × 256
mesh. Interface parameter ε3, time step 
t = 5E–6, tol = 0.25, and λ = 1.5E5 are used. We can observe that the proposed
model fully segments the image after 10 iterations.

4.3. Gray-scale noise

Fig. 5 shows characters with gray-scale noises. r% gray-scale noise means that r% of the pixels in the image are replaced
with random numbers chosen from a uniform distribution between 0 and 1. The computational domain is set to Ω =
(0,4) × (0,1) with a 512 × 128 mesh. Interface parameter ε6, time step 
t = 5E–5, tol = 0.25, and λ = 5E3 are used. The
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Fig. 4. Finger print. (a) Initial image, (b) 10% salt-and-pepper noise is superposed over the original image, (c) t = 4E–6 (2 iterations), (d) t = 8E–6 (4 itera-
tions), and (e) t = 2E–5 (10 iterations).

Fig. 5. The first column is the original images with gray-scale noises 25%, 50%, and 70% from top to bottom, respectively. The second column is the restored
images with 5, 7, and 9 iterations from top to bottom, respectively.

Fig. 6. Europe night-lights. (a) initial image, (b) contour of the initial image, (c) t = 2.5E–4 (2 iterations), and (d) t = 1.375E–3 (11 iterations).
Image source: NASA/Goddard Space Flight Center Scientific Visualization Studio (http://svs.gsfc.nasa.gov/vis/a000000/a002200/a002276/index.html).

left column consists of the original images with 25%, 50%, and 70% noises from top to bottom and the right column is their
restored images. The proposed model successfully segments the images with 25% and 50% gray-scale noises. Even the 70%
noise-blurred image can be segmented well.

4.4. Contours without gradient

In this example, we show that our proposed model can be used to detect cognitive contours from objects which cannot
be defined by a gradient. We want to test our method on a very challenging image with scattered data such as a satellite
image of Europe showing clusters of light. In Fig. 6, the segmentation of Europe night-lights is shown. The computational
domain is set to Ω = (0,1) × (0,1) with a 256 × 256 mesh. Interface parameter ε100, time step 
t = 1.25E–4, tol = 10, and
λ = 1.5E5 are used. The method produces visually clear results. It only took 11 iterations, which is one order of magnitude
smaller than the previous methods [10,18].

4.5. Blood vessel image

Fig. 7 shows the segmentation results for a real blood vessel (left anterior descending) image with inhomogeneous
intensity via use of the proposed numerical method. The computational domain is set to Ω = (0,1) × (0,1) with a 64 × 64

http://svs.gsfc.nasa.gov/vis/a000000/a002200/a002276/index.html
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Fig. 7. The image with the left anterior descending vessel. The iteration numbers are shown below each figure.

Fig. 8. Segmentation of the image for a solid brain tumor. (a) Initial image, (b) contour of the initial image, (c) contour the image (20 iterations), and
(d) contour is superposed over the initial image to show the accuracy.

Fig. 9. Texture image. (a) Initial image, (b) contour of initial image, (c) t = 2E–4 (2 iterations), and (d) t = 6E–4 (6 iterations).

mesh. Interface parameter ε5, time step 
t = 1.6E–6, tol = 0.2, and λ = 2E5 are used. It can be seen from Fig. 7(c) that the
image is successfully segmented after 16 iterations.

4.6. Brain MR image

We show that our proposed model can be used to analyze medical images to provide necessary and useful information
for medical treatment. In Fig. 8, the segmentations of brain MR image are shown on the computational domain Ω =
(0,1) × (0,1) with a 256 × 256 mesh. Interface parameter ε5, time step 
t = 5E–6, tol = 0.05, and λ = 1E4 are used. As
can be observed from Fig. 8(d), the agreement between the area of the brain solid tumor and the segmentation of image is
good.

4.7. Texture image

Texture image, based on local spatial variations of intensity or color to identify these types of homogeneous image
regions, is an important attribute used in image analysis and pattern recognition. Fig. 9 shows that our proposed model
can be very useful in detecting texture image segmentation. The computational domain is set to Ω = (0,1) × (0,1) with a
256 × 256 mesh. Interface parameter ε50, time step 
t = 1E–4, tol = 1, and λ = 1E4 are used. As can be seen, our proposed
method has performed well in texture image segmentation. Another test is performed to compare with a well-known model
[19], in which the authors provided a general algorithm for partitioning grayscale images into disjoint regions of coherent
brightness and texture. Here a 256 × 384 mesh grid is used on the computational domain Ω = (0,1) × (0,1.5). And other
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Fig. 10. Texture image. (a) Initial image, (b) contour of the segmented image (10 iterations), (c) overlapped simulation by comparing the initial image, and
(d) the results obtained by Malik et al. [19].
Figure reprinted with permission from Malik et al., Int. J. Comput. Vis., 43 (2001) 7–27 [19].
© 2013 Springer.

Fig. 11. The top row shows original images and the bottom row shows the segmented results.

Table 1
The performance of our proposed method in segmenting images in Fig. 11.

Case (a) (b) (c) (d) (e)

Image size 256 × 256 256 × 256 64 × 64 256 × 256 256 × 256
Iterations 4 11 16 20 6
CPU time (s) 0.250 0.687 0.015 0.967 0.406

parameters are chosen as ε10, 
t = 1E–4, tol = 20, and λ = 5E5. The image is successfully segmented after 10 iterations
as shown in Figs. 10(b) and (c). In Fig. 10(d), we show the result which is obtained by the previous work [19]. As can be
observed that both of two methods perform well to segment texture image. While our method is to partition the image into
several regions and segment the texture image. On the other hand, Malik et al.’s model works by using a gating operator
based on the texturedness of the neighborhood at a pixel.

4.8. Computational cost

Next, we show the performance of the five test problems which were conducted in previous sections (see Fig. 11 and
Table 1). Tests were performed on a 3.4 GHz Intel Pentium with 3.4 GB of RAM. Since our algorithm consists of two explicit
evaluations of the closed-form solutions and one implicit heat equation solver, we can expect both accuracy and efficiency.
For the heat equation solver, we apply a multigrid method which was used in [25] for geometric active contour problems
successfully. The image sizes, the iteration numbers, and the CPU times in Fig. 11 are listed in Table 1. In most cases, the
number of iterations is relatively small.
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Fig. 12. Parameter sensitivity analysis for ε . (a) Original image, (b) segmented image with ε6, (c) segmented image with ε1, and (b) segmented image
with ε15.

Fig. 13. Comparison of segmented image and energy functional with different λ. Here E0 is the total energy functional E at initial time. The chosen λ

values are listed below each figure. (a) Finger print, (b) Europe night-lights, and (c) left anterior descending vessel.
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4.9. Parameter sensitivity analysis

Finally, we perform parameter sensitivity analysis for the model parameters ε and λ. First, we take the image from
Fig. 5(a) and investigate the effect of parameter ε on the results. The time step size is taken as 
t = 1E–5. Fig. 12(b), (c),
and (d) are results with ε6, ε1, and ε15, respectively. Here λ = 5E3 is used. When ε is too small, then small clusters cannot
be removed effectively. On the other hand, if ε is too large, then the restored letters become so much fatter.

Next we investigate the effect of parameter λ on the results. Before that, let us denote E1 = ∫
Ω

(F (φ)/ε2 + |∇φ|2/2)dx
and E2 = ∫

Ω
G(φ, f0)dx. Thus our proposed functional can be written as E = E1 + E2. Fig. 13 shows the comparison of

segmented image and energy functionals (E , E1, E2) with different λ. The chosen λ values are listed below each figure.
For all the cases, the total energy functionals are decreasing. In general, when λ is too small, then motion by the mean
curvature flow is dominant. On the other hand, if λ is too large, then the fitting term is dominant and the restored image
tends to become the original image with noise.

5. Conclusion

In this paper, we proposed an unconditionally stable hybrid numerical scheme for minimizing the problems associated
with the piecewise constant Mumford–Shah functional of image segmentation. The model and its numerical scheme are
based on the Allen–Cahn equation and an operator splitting technique, respectively. We described the numerical solution
algorithm and gave the proof of the unconditional stability of the numerical scheme. Finally various experimental results on
real and synthetic images with noise were presented to demonstrate the accuracy and efficiency of the proposed method.
It should be pointed that our proposed model is a modified version of Chan and Vese’s model, which is a powerful method
that can successfully segment many types of images, including some that would be difficult to segment with gradient-based
methods. While Chan and Vese’s model fails to detect the certain images which have edges and poor image quality. In our
proposed method, there is a parameter λ which should be chosen by trial and error. In our future work, we will classify
images and find an automatic decision of the range of λ values according to image features.
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