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We numerically investigate periodic traveling wave solutions for a diffusive predator–prey system
with landscape features. The landscape features are modeled through the homogeneous Dirichlet
boundary condition which is imposed at the edge of the obstacle domain. To effectively treat
the Dirichlet boundary condition, we employ a robust and accurate numerical technique by
using a boundary control function. We also propose a robust algorithm for calculating the
numerical periodicity of the traveling wave solution. In numerical experiments, we show that
periodic traveling waves which move out and away from the obstacle are effectively generated.
We explain the formation of the traveling waves by comparing the wavelengths. The spatial
asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply
our numerical technique to the complicated real landscape features.
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1. Introduction

The spatial behavior of species has been considered
as a central problem in the ecological field [Cross &
Hohenberg, 1993]. For the interactions of species,
predator and prey equations have been mathe-
matically studied after Lotka’s [Lotka, 1925] and

Volterra’s [Volterra, 1926] models. These studies
are usually considered on the homogeneous domain.
However, the realistic domain is a large-scale
domain with heterogeneity [Benson et al., 1993].
In experimental results [Ims & Andreassen, 2000;
Lambin et al., 1998; Mackin-Rogalska & Nabaglo,
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1990; MacKinnon et al., 2001; Myberget, 1973;
Ranta & Kaitala, 1997; Steen et al., 1996], predator
and prey densities often show the periodic travel-
ing wave on a large domain. From the mathemat-
ical point of view, the spatiotemporal movement
has been studied for the predator–prey system mov-
ing out from the obstacle which constructs periodic
traveling solutions [Deng et al., 2013; Li & Qiao,
2012; Sheratt & Smith, 2008; Smith et al., 2008;
Upadhyay et al., 2010]. For the first time, Sherratt
et al. modeled the landscape features by applying
the homogeneous Dirichlet boundary at the edge of
the obstacles [Sherratt et al., 2002].

To solve the reaction–diffusion equations,
numerical schemes such as an implicit–explicit
scheme [Ascher et al., 1995; Garvie, 2007; Ruuth,
1995] and a theta method [Borzi, 2004] have been
developed. These numerical methods are generally
calculated on the homogeneous domain and the
numerical study on the nonhomogeneous domain
has been generally restricted to the whole domain
[Crooks et al., 2004]. Therefore, it is worthwhile to
study robust numerical methods to have numerical
solutions on the realistic domain. By the numerical
experiments, theoretical results can be supported
[Borzi, 2004; Crooks et al., 2004; Wang, 2012; Waite
et al., 2014].

In this paper, we investigate the periodic travel-
ing wave solutions with complicated landscape fea-
tures. We present a numerical method by using a
boundary control function [Li et al., 2013] to accu-
rately treat the boundary of obstacle. Moreover,
we propose an accurate algorithm to calculate the
numerical periodicity. By employing the numerical
periodicity algorithm, we have efficient numerical
solutions without extra calculations. An operator
splitting method is used where a linear diffusion
term is solved by using multigrid method and a
nonlinear term is solved by using the fourth-order
Runge–Kutta method [Zhong, 1996]. We investigate
the mechanism of the periodic traveling wave solu-
tions for the predator–prey model with landscape
features through numerical experiments.

This paper is organized as follows. The gov-
erning system is briefly introduced in Sec. 2. We
describe the numerical scheme in Sec. 3 including
the algorithm for the periodic numerical traveling
wave solution. Moreover, the numerical scheme with
the Dirichlet boundary is presented. In Sec. 4, vari-
ous numerical results are obtained. Discussions are
included in Sec. 5.

2. The Governing System

The governing system for the ratio-dependent
predator–prey model having prey-dependent func-
tional response [Sherratt et al., 2002; Banerjee &
Banerjee, 2012] with the diffusion is:

∂U

∂t
= rU

(
1 − U

U0

)
− ckUV

1 + kU
+ D1∆U, (1)

∂V

∂t
= −bV +

akUV

1 + kU
+ D2∆V, (2)

where U(x, t) and V (x, t) are the population densi-
ties of prey and predators, respectively. ∆ is the
Laplacian operator. D1, D2 are prey and preda-
tor diffusion coefficients, respectively. Here r is a
growth factor of the prey, b is a death rate of the
predator in the absence of the prey, U0 is the maxi-
mal carrying capacity of the prey, a and c are inter-
actions between the prey and the predator, and k
measures the satiation effect [Dunbar, 1986]. By
introducing dimensionless variables

t̃ = rt, ũ =
U

U0
, ṽ =

cV

rU0
, x̃ =

x√
D1

r

,

α̃ =
a

b
, β̃ =

r

a
, γ̃ = kU0, σ̃ =

D2

D1
,

we have the nondimensional system after omitting
tilde notation:

ut = u(1 − u) − γuv

1 + γu
+ ∆u, (3)

vt =
γuv

β(1 + γu)
− v

αβ
+ σ∆v. (4)

Here u and v are non-negative. The governing sys-
tem has the equilibrium points at (0, 0), (1, 0),
and at least one point having positive values (u, v)
where u and v are defined as u = 1/(γ(α − 1))
and v = (1 − u)(1 + γu)/γ, respectively. For pos-
itiveness, α > 1. The domain Ω is constituted as
Ω = Ωo ∪ ∂Ωo ∪ Ωc ⊂ R

d, d = 1, 2, where Ωo is
an obstacle domain, ∂Ωo is an obstacle boundary,
and Ωc is a physical domain as shown in Fig. 1. The
boundary condition, ∂Ω, is imposed as the no-flux
boundary condition:

n · ∇u = n · ∇v = 0, (5)

where n is the unit vector normal to the domain
boundary ∂Ω. Moreover, the homogeneous Dirichlet
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∂Ωo

∂Ω

Ωc

Ωo

Fig. 1. Neumann boundary condition for the domain bound-
ary ∂Ω and the homogeneous Dirichlet boundary condition
for the obstacle domain boundary ∂Ωo.

boundary condition is assumed for the obstacle
domain ∂Ωo which means both the predator and
prey die at the obstacle boundary.

3. Numerical Solution

In this section, we present a robust numerical
scheme for the discretized governing system and
an accurate algorithm for calculating numerical
periodicity is proposed. The governing systems (3)
and (4) are solved by using an operator splitting
method: For the first step, we solve the system
of nonlinear ordinary differential equations ut =
F1(u, v) and vt = F2(u, v), where

F1(u, v) := u(1 − u) − γuv

1 + γu
, (6)

F2(u, v) :=
γuv

β(1 + γu)
− v

αβ
. (7)

Here, we solve them by using the fourth-order
Runge–Kutta method [Zhong, 1996]. The second
step is solving the system of diffusion equations
ut = ∆u and vt = σ∆v. Here, fully implicit time
and centered difference space discretizations are
used.

3.1. Discretization

Let us discretize the two-dimensional domain Ω =
(0, L) × (0, L). A uniform spatial step size h =
L/Nx = L/Ny for even positive integers Nx and Ny

is assumed. We use a temporal step size ∆t = T/Nt

where T is the total time and Nt is a positive
integer. The numerical solutions to u(x, y, t) and

v(x, y, t) are approximated at cell-centers by un
ij ≡

u(xi, yj , n∆t) and vn
ij ≡ v(xi, yj , n∆t), where xi =

(i − 0.5)h and yj = (j − 0.5)h for i = 1, 2, . . . , Nx,
j = 1, 2, . . . , Ny, and n = 0, 1, . . . , Nt. The zero
Neumann boundary conditions are imposed at the
domain boundary, un

0j = un
1j , un

i0 = un
i1, un

Nx+1,j =
un

Nxj, and un
i,Ny+1 = un

iNy
.

We treat the obstacle boundary by introducing
the boundary control function G which is defined
as

Gij =

{
0, if (xi, yj) ∈ Ωo ∪ ∂Ωo,

1, otherwise.
(8)

Then we denote the discrete physical domain by
Ωh

c = {(xi, yj) |Gij = 1}. Figures 2(a) and 2(b)
illustrate the domain with the obstacle (shaded
region) and the discrete domain with the bound-
ary control function Gij , respectively. If Gij = 0,
then un+1

ij = u∗
ij = 0 and vn+1

ij = v∗ij = 0. Moreover,
uij and vij with Gij = 0 are automatically used on
the obstacle including the zero Dirichlet boundary
condition at the obstacle boundary.

Then the operator splitting scheme is presented
as follows:

Step 1. A system of ut = F1(u, v) and vt = F2(u, v)
is solved by using Runge–Kutta method. Then we
have the intermediate variables u∗ and v∗ with the
initial conditions un and vn.

Step 2. To obtain approximations un+1 and vn+1,
we solve ut = ∆u and vt = σ∆v with the initial con-
ditions u∗ and v∗. The discretized system is written
as:

un+1
ij − u∗

ij

∆t
= Gij∆du

n+1
ij , (9)

vn+1
ij − v∗ij

∆t
= σGij∆dv

n+1
ij , (10)

where the discrete Laplacian for the Cartesian
domain is defined as

∆du
n+1
ij

=
un+1

i−1,j + un+1
i+1,j − 4un+1

ij + un+1
i,j−1 + un+1

i,j+1

h2
.

To have efficient numerical solutions for Step 2,
we use a multigrid method [Briggs, 1987]. For the
multigrid method, detailed description is summa-
rized in [Li et al., 2013]. Note that the dimensional
case and the radially symmetric domain can be sim-
ilarly defined.
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Fig. 2. (a) Description of the domain where the shaded region is the obstacle and (b) closed view of discrete domain with
the boundary control function Gij .

3.2. Algorithm for numerical
periodicity

In this section, we will describe an efficient algo-
rithm to find the periodic traveling wave solution
[Zhang et al., 2007] in one-dimensional space. When
the numerical solution un

i satisfies un+1
i = un

i+p for
some integers p and i, we call un

i is a traveling wave
solution. Especially, this solution is space-periodic
with period of hp for a space step size h. For some
integer τ , if un

i satisfies un+τ
i = un

i , the solution
un

i is time-periodic with period of τ∆t for the time
step ∆t. Let us define the velocity l as un+1

i = un
i+l.

Then the velocity l/k satisfies un+k
i = un

i+l.

Definition 3.1. The solution un
i satisfying un+k

i =
un

i+l is called the periodic traveling wave solution
[Zhang et al., 2007].

That is, the periodic traveling wave solution is
the space and time periodic solution. Then we pro-
pose an algorithm on the one-dimensional space to
detect the numerical periodicity in the following:

Algorithm 1. The numerical periodicity is obtained
by calculating the smallest velocity Tp with follow-
ing steps:

Step 1. Initial conditions for u and v are given
as small random perturbations from the stationary
solutions u and v, respectively.

Step 2. Let unref and vnref be solutions at the ref-
erence time.

The discrete l2-norm error is defined as

en =

√√√√ 1
Nx

Nx∑
i=1

((un
i − unref

i )2 + (vn
i − vnref

i )2),

for n > nref .

Step 3. Calculate the local maximum and local
minimum errors.

If em−2 − em−1 < 0 and em−1 − em > 0, the
temporal error has the local maximum. While el−2−
el−1 > 0 and el−1 − el < 0 where l > m, the error
has the local minimum. When the error reaches the
local minimum and |enref − el| < tol, we define the
numerical periodicity as Tp = l − n. Therefore, we
have one-period from nref to nref + Tp.

If enref − el > tol, return to Step 2.

Step 4. To confirm the obtained numerical period-
icity Tp, we calculate the error between nref + Tp to
nref + 2Tp.

Figure 3(a) shows the description for the
one-period of predator with a space-time plot.
Figure 3(b) shows the temporal plot of e with the
first one-period Step 3 (marked as circles) and the
second one-period Step 4 (solid line) of the trav-
eling wave solution. The result suggests that our
method performs well to get the period of preda-
tor. Moreover, we can use the algorithm Step 3 to
find the one-period of the space traveling wave solu-
tion when we analyze the spatial amplitude and
wavelength.
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Fig. 3. (a) A space-time plot for the predator and (b) a temporal plot of e.

4. Numerical Experiments

In this section, we perform various numerical
experiments to systematically demonstrate various
aspects of the formation of the traveling wave solu-
tions in one-dimensional space, radially symmetric
domain, and two-dimensional space. Our numeri-
cal experiments confirm the formation of the travel-
ing wave solution in a complicated two-dimensional
space. Moreover, the existence of the traveling wave
solution and the convergence test are included. In
numerical tests, following the field experiments,
nondimensionalized values α = 1.8, β = 1.2, γ = 4.9
[Sherratt et al., 2002] are used, unless otherwise
specified. The diffusion effect is governed as σ = 2.5.
Unless otherwise specified, we use a tol = 0.001,
a temporal step size ∆t = 0.5 and a spatial step
size h = 1. In two-dimensional space, we set ini-
tial conditions u(x, y, 0) = v(x, y, 0) = 0 in the
domain Ωo and u(x, y, 0) = 1.1u + 0.05 rand(x, y)
and v(x, y, 0) = 1.1v + 0.05 rand(x, y) in domain
Ωc. Here, rand(x, y) ∈ [−1, 1] is a random gener-
ated number.

4.1. Existence of traveling wave
solution

When the kinetic system has a stable limit cycle,
there exists traveling wave solution [Kopell &
Howard, 1973]. In the kinetic system, the prey and
predator systems have complex eigenvalues with
given parameter values. After some calculation, the
equilibrium solution (u, v) is an unstable node when

γ > (α + 1)/(α − 1) and the kinetic system shows
oscillatory behavior [Sherratt et al., 2002]. To exam-
ine the existence of the traveling wave solution
numerically, we illustrate the phase portraits with
velocity fields (arrows) for the prey and predator
in the kinetic system (without diffusion terms).
Figure 4 shows two phase portraits arising from
different initial points with given parameter sets,
i.e. (u, v) = (u + 0.05, v) (marked as a star) and
(u, v) = (u + 0.7, v) (marked as a circle) where the
square marker represents (u, v) and the solid line

0.25 0.5 0.75 1
0

0.25

0.5

0.75

u

v

Fig. 4. Phase portraits starting from two points (u, v) =
(u + 0.05, v) (marked as a star) and (u, v) = (u + 0.7, v)
(marked as a circle) associated with velocity fields (arrows).
Here, the square marker represents (u, v) and the solid line
represents the stable limit cycle.
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Fig. 5. (a) Prey solutions and (b) predator solutions with different values of γ = 2.1, 4.9, and 6.

represents the stable limit cycle. Here, ∆t = 0.1
and T = 50 are used for the computation. The tem-
poral evolutions of the phase portraits converge to
the limit cycle with two different initial conditions.
Hence, the limit cycle is stable and the traveling
wave solution for the system exists.

4.2. Parameter studies

We calculate the formation of traveling wave solu-
tions having an obstacle with varying parameter
values. It is sufficient to show in one-dimensional
space. The given parameter set α = 1.8, β = 1.2,
and γ = 4.9 shows oscillatory behavior in the kinetic
system, as described in Sec. 4.1. With obstacle
at x = 0, numerical solutions are obtained with

h = 0.1 on the domain (0, 204). We terminate
the numerical calculation when the solution shows
periodicity (see Sec. 3.2). First, we consider different
values of γ = 2.1, 4.9, and 6 [Sherratt et al., 2002].
As shown in Fig. 5, the kinetic solution is stable, if
γ = 2.1 < (α + 1)/(α − 1), and the kinetic solution
shows oscillatory behavior, when γ is larger than
(α + 1)/(α − 1). Furthermore, when the governing
system is stable, it does not generate traveling wave
solution in spite of the presence of obstacle. When
the system has a limit cycle, it generates traveling
wave solution with obstacle.

Then we consider the effect of β. As a and r are
positive in governing systems (1) and (2), β is pos-
itive. Here we numerically examine different values
of β = 0.4, 1.2, and 2 as shown in Fig. 6. When the
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Fig. 6. (a) Prey solutions and (b) predator solutions with different values of β = 0.4, 1.2, and 2.
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Fig. 7. (a) Prey solutions and (b) predator solutions with different values of σ = 1.5, 2.5, and 3.5.

values of β increases, the amplitude of prey solution
gets bigger and the amplitude of predator solution
gets smaller.

Finally, we consider the effect of σ, which is the
ratio of diffusion coefficient, with different values of
σ = 1.5, 2.5, and 3.5. Observing the results in Fig. 7,
we can find that as the values of σ are increasing, the
wavelength of the numerical solutions gets larger.

4.3. Convergence test

We perform numerical calculations to obtain the
spatial convergence rate with increasingly finer
grids h = 1/2n−8 for n = 8, 9, 10, and 11 on the one-
dimensional domain (0, 256). The initial conditions
are given as

u(x, 0) = α sin
(

πx

256

)
and

v(x, 0) = β sin
(

πx

256

)
.

Numerical solutions are computed up to time T =
250 with a small time step size ∆t = h2. Since no
analytical solutions are available, we use the relative
error. We define the error as the discrete l2-norm of
the difference between the grid and the average of
the neighboring solutions as follows:

eh
i := uh

i − u
h
2
2i−1 + u

h
2
2i

2
.

The rate of convergence is defined as the ratio of
successive errors: log2(‖eh‖2/‖eh

2 ‖2). The obtained
errors and rates of convergence using these def-
initions are given in Table 1. For u and v, the

Table 1. Error and convergence results with various mesh
grids.

Case 256–512 Rate 512–1024 Rate 1024–2048

u: l2-error 5.623e−3 2.15 1.264e−3 2.02 3.110e−4
v: l2-error 1.238e−3 2.03 3.025e−4 1.93 7.939e−5

second-order accuracy with respect to the space is
observed as expected from the discretization.

To obtain the convergence rate for the temporal
discretization, we fix the spatial grid as 512 and
choose a set of decreasing time steps ∆t = 1, 0.5,
0.25, and 0.125. We also run the computation up
to time T = 250. Note that we define the temporal

discrete l2-norm error as e∆t
i := u∆t

i − u
∆t
2

i . The
obtained errors and rates of convergence are given
in Table 2. For both u and v, the first-order accuracy
with respect to the time is observed.

4.4. Numerical solutions in
one-dimensional domain

We examine numerical solutions with an obstacle
given at x = 0 in the one-dimensional space. The
numerical solutions are calculated on the domain
(0, 512) with the spatial step size h = 2 and tem-
poral step size ∆t = 0.5. The initial conditions are

Table 2. Error and convergence results with various time
steps.

Case 1–0.5 Rate 0.5–0.25 Rate 0.25–0.12

u: l2-error 1.718e−3 1.05 8.301e−4 1.02 4.090e−4
v: l2-error 3.981e−4 0.99 2.005e−4 1.00 9.995e−5

1550117-7



August 19, 2015 11:41 WSPC/S0218-1274 1550117

A. Yun et al.

0 50 100 150
space

tim
e

reference solution
temporal evolution

0 50 100 150
space

tim
e

reference solution
temporal evolution

(a) (b)

Fig. 8. Space-time plots of the one-period of the periodic traveling wave solutions of (a) the prey and (b) the predator with
the obstacle at x = 0.

given with two different randomly perturbed values
with magnitudes of 0.01 from (u, v). The numeri-
cal solution is calculated until it shows periodicity.
Figure 8 depicts space-time plots showing a one-
period of the periodic traveling wave solutions of
the (a) prey and (b) predator (represented as solid
lines) overlapped with the reference solutions uref

and vref (marked as circles), respectively. As the ref-
erence solutions are completely overlapped to the
temporal evolutions, the periodic traveling waves
are obviously observed.

To find the range of the prey and predator dur-
ing the one-period of the solutions, we show the
overlapped space-time plots of u (marked as solid
lines) and v (marked as dotted lines) in Fig. 9.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

space

u

v

Fig. 9. Space-time plots showing the range of the prey and
the predator at the one-period.

In this test, we set the domain as (0, 163.84) with
16 384 spatial grid points. The effect of the Dirichlet
boundary to the local region is observed around the
zero Dirichlet boundary. In the local region, numer-
ical solutions show one bounded fluctuation for each
calculation. The region far from the boundary, the
maximum and minimum densities constitute the
amplitude of the traveling wave solutions.

4.5. Numerical solutions in radially
symmetric domain

The governing Eqs. (3) and (4) are rewritten on a
radially symmetric domain with respect to r-axis
Ω = (0, L) as follows:

ut = ∆ru + u(1 − u) − γuv

1 + γu
, (11)

vt = σ∆rv +
γuv

β(1 + γu)
− v

αβ
. (12)

Here, we consider the obstacle size defined as
rb then it is sufficient to calculate the numerical
solutions on the domain (rb, L) [see Fig. 10(a)].
For h = (L − rb)/(Nr + 0.5), a number of node
points Nr, the discretized system for the radially
symmetric case is written as:

un+1
i − un

i

∆t
= F1(un, vn) + Gi∆ru

n+1
i , (13)

vn+1
i − vn

i

∆t
= F2(un, vn) + σGi∆rv

n+1
i , (14)
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Fig. 10. (a) Schematic representation of radially symmetric domain and (b) numerical solutions in radially symmetric domain.

for F1(un, vn) = un
i (1−un

i )− γun
i vn

i /(1 + γun
i ) and

F2(un, vn) = γun
i vn

i /(β(1 + γun
i )) − vn

i /(αβ).
The Laplacian operator in the radially symmet-

ric domain is defined as:

∆ru
n+1
i =

1
h2

[ri+ 1
2

ri
(un+1

i+1 − un+1
i )

−
ri− 1

2

ri
(un+1

i − un+1
i−1 )

]
,

where ri = ih, ri+ 1
2

= (ri + ri+1)/2, and ri− 1
2

=
(ri+ri−1)/2. We illustrate the numerical result with
rb = 40 and L = 284.5 for h = 1 in Fig. 10(b).

Then we perform numerical calculation to show
the effect of the obstacle radius using our scheme
following the results in Smith et al.’s work [2008].
With varying sizes of an obstacle, the formulation

of the traveling wave solution is obtained for an
obstacle size rb. The initial configurations are set as
u(r, 0) = u + 0.1 rand(r), v(r, 0) = v + 0.1 rand(r) if
r > rb and u(rb, 0) = v(rb, 0) = 0 otherwise.

In the first test, we calculate amplitudes and
wavelengths in radially symmetric domain. The cal-
culations are computed on the domain (rb, 512) with
2048 mesh grids. The amplitude is defined as half
of the average of difference between the maximum
and minimum values of each density. Figure 11(a)
shows the amplitudes of the prey (marked as cir-
cles) and predator (marked as stars) with increasing
obstacle sizes rb, respectively. Likewise, Fig. 11(b)
shows the wavelengths of the prey (marked as cir-
cles) and predator (marked as stars). The obtained
values are drawn with solid lines using a line inter-
polation and the dashed lines are results obtained

10 30
0.233

0.288

0.343

0.398

obstacle radius(rb)

am
pl
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de
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predator
1D

10 20 30

80

100

obstacle radius(rb)

w
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el
en

gt
h

prey
predator
1D

(a) (b)

Fig. 11. Effect of obstacle radius. (a) Amplitudes of the predator with increasing obstacle sizes and (b) wavelengths of the
prey and predator.
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v

R=10
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R=400
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Fig. 12. Range of the predator solution in the local region
with increasing obstacle radius.

from the one-dimensional space. These results sug-
gest that the amplitudes decrease as the obstacle
radius rb increases, which approaches dashed lines
(results from 1D) for both prey and predator numer-
ical solutions. From Fig. 11(b), we deduce that the
formations of the periodic traveling wave solutions
have similar pattern between the prey and predator.

Figure 12 shows the convergence of the range
of the predator solution with increasing obstacle
radius. The star (rb = 10), circle (rb = 50), and plus
sign (rb = 400) symbols denote the spatial plots
for each obstacle size. Solid lines indicate the max-
imum (upper side) and the minimum (lower side)

of the numerical solution. From these graphs, we
attain that the range of increasing obstacle radius
converges to the one-dimensional case.

4.6. Numerical solutions in
two-dimensional domain

The numerical solutions are calculated to show
the generation of the wave in the two-dimensional
domain. The zero Dirichlet boundary condition at
x = 2 is imposed on the domain (0, 128)×(0, 32). In
Fig. 13, we display the temporal evolutions of the
predator. By the effect of Dirichlet boundary con-
dition, the propagation of waves starting from the
left (x = 2) generates the traveling wave solution.

For the circular obstacle with a radius of 18,
the temporal evolutions of the predator are drawn
in Fig. 14. As can seen that the periodic traveling
wave solutions around the obstacle are generated.
Moreover, as we impose the zero-flux boundary, the
waves are orthogonal to the boundary at the edge
of the domain boundary.

4.7. Numerical experiments for
convex obstacles

In this section, we examine some numerical experi-
ments to describe the formation of the periodic trav-
eling wave solutions with convex obstacles.

t = 200 t = 400

t = 700 t = 1000

Fig. 13. Temporal evolution of the predator in two-dimensional space with obstacle (0, 2).
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Fig. 14. Temporal evolution with a circular obstacle at t = 1505, 1512.5, 1520, and 1525 (from left to right).

4.7.1. Comparison of circular obstacles

We compare the radially symmetric domain and 2D
with the same obstacle radius. For detailed com-
parison, Fig. 15(a) is the solution on the radially
symmetric domain which is represented in two-
dimensional space as shown in Fig. 10(a) (dashed
arrow). Here, the obstacle radius rb = 25.6 is
imposed. And the predator solution is calculated
at time T = 1420 on (rb, 256.5) with a spatial
mesh size h = 1. Figures 15(a) and 15(b) show
the contour plots of the predator solutions obtained
from the radially symmetric domain and the two-
dimensional space, respectively. Figure 15(c) is the
overlapped spatial plots on the radially symmet-
ric and two-dimensional domains. The spatial plots
suggest that the generation of traveling wave occurs
similarly for all directions surrounding the circle.

4.7.2. Comparison of rectangular
obstacles

The generation of the traveling wave solutions are
observed by rectangular obstacles. On the domain

Ω = (0, 256) × (0, 256), the obstacle domains Ωo =
(0, 10) × (0, 10) (upper row) and Ωo = (0, 50) ×
(0, 2) (lower row) are considered. The calculations
are computed with a spatial mesh size h = 1.
The contour of the predator solution in the two-
dimensional space is overlapped with the stem plot
as shown in Fig. 16(a). The x-axis (x = 1, marked
as circle), axial side (x = y, marked as triangle,
upper row), and y-axis (y = 1, marked as star) are
illustrated with stem plots. Figure 16(b) shows over-
lapped spatial plots at the x-axis (x = 1, marked as
circle), axial side (x = y, marked as triangle, upper
row), and y-axis (y = 1, marked as star). Observing
the results in Fig. 16(b), we can see that the wave-
lengths are different due to the size of the obstacle.
When far from the obstacle, the effect of the obsta-
cle will be much reduced.

4.7.3. Range of the wavelengths

The range of the class of wavelengths is examined
based on the wavelength. Let us define w(m) as
the wavelength of the obstacle for obstacle radius

0

0.25

0.5

0.75

space

radial
2D

(a) (b) (c)

Fig. 15. Traveling wave solutions for predator with obstacle for (a) radially symmetric domain, (b) two-dimensional space
and (c) comparison between radially symmetric and 2D.
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space
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Fig. 16. Predator solutions with obstacles Ωo = (0, 10) × (0, 10) (upper row) and Ωo = (0, 50) × (0, 2) (lower row). (a) The
stem plot of 2D at x = 1, y = 1 and (b) overlapped spatial plots at x = 1, y = 1. For the upper rows, results for y = x are
included.

rb = m, m ∈ N . And we define wc and wi as the
radius of sectors of circumscribed and inscribed cir-
cles of the obstacle with origin as O, respectively.
The obstacle domains are given as Ω1

o,k = (0, 10) ×
(0, k) for k = 1, 2, . . . , 10. Table 3 shows the rela-
tionship between Ωo,k and w(n). Figure 17(a) shows
the overlapped spatial plots for obstacle domains
Ω1

o,1 (marked with circles) and the correspond-
ing result from radially symmetric domain with
w(7) (marked with solid line). Likewise, Fig. 17(b)
illustrates Ω1

o,10 (marked with circles) at y = 1

Table 3. Comparison between rectangular obstacles
and ω.

Case Ω1
o1 Ω1

o2 Ω1
o4 Ω1

o6 Ω1
o8 Ω1

o10

w w(7) w(8) w(9) w(10) w(11) w(12)

and corresponding w(12) (marked with solid line),
respectively. In this test, we shifted spatial plots and
the results are completely matched. Figure 17(c)
describes obstacle domains Ω1

o,1 (marked with cir-
cles) and Ω1

o,10 (marked with triangles) with wc

and wi for Ω1
o,1 (marked with stars) and for Ω1

o,10

(dashed lines). As we have w(7) and w(12), we
deduce that R lies between wc and wi.

For the second test, we investigate the circular
obstacles with obstacle domains defined as Ω2

o,a,b
where a and b are one-half of the ellipse’s major and
minor axes. Table 4 shows the relationship between
Ω2

o,10,b and corresponding w(n). Based on Table 4,
corresponding values of w(n) are w(6) and w(10),
w lies between wc and wi.

Figure 18 shows temporal evolutions of the
predator with triangle and rectangle shaped obsta-
cles. The calculations are obtained for one-period
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ωi, ωc: Ω1
o10

(c)

Fig. 17. (a) Overlapped spatial plots for Ω1
o,1 (marked with circles) at y = 1 corresponding to w(7) (marked with solid line),

(b) overlapped spatial plots for Ω1
o,10 (marked with circles) at y = 1 corresponding to w(12) (marked with solid line) and (c)

obstacle domains Ω1
o,1 (marked with circles) and Ω1

o,10 (marked with triangles) with wc and wi for Ω1
o,1 (marked with stars)

and for Ω1
o10 (dashed lines), respectively.

at t = 1500, 1750, 2250, and 2750 (upper row) and
t = 1500, 1625, 1750, and 1875 (lower row).

4.8. Numerical experiments for
formation of traveling wave
solutions with nonconvex
obstacle

For the nonconvex obstacles, we observe the charac-
teristics based on the wavelength as in the previous
section. In (0, 256) × (0, 256), complex nonconvex

Table 4. Comparison between circular obstacles and ω.

Case Ω2
o,10,2 Ω2

o,10,4 Ω2
o,10,6 Ω2

o,10,8 Ω2
o,10,10

w w(6) w(7) w(8) w(9) w(10)

obstacles with Ω4
o,1 = ((0, 5) × (0, 10)) ∪ ((0, 10) ×

(0, 1)) and Ω4
o,9 = ((0, 5)× (0, 10))∪ ((0, 10)× (0, 9))

are considered. Wavelengths are matched for Ω4
o,1

as w(10) and Ω4
o,9 as w(12). Figure 19(a) shows wc

and wi for Ω4
o,1 (marked with circles) and Ω4

o,9. Cir-
cles and triangles depict the spatial plot at x = 1
and y = 1 for Ω4

o,9 with corresponding w(10) (solid
line) in Fig. 19(b). For the nonconvex obstacle, we
have similar results as convex obstacles.

To observe more cases, Fig. 20 shows the non-
convex obstacles such as a polygon and a star with
w(10) and w(12), respectively. The spatial plots for
corresponding waves w are overlapped with (b) a
polygon (dashed line) and (c) a star (dashed dots).
We observe that the wavelengths are also between
wc and wi.
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Fig. 18. Temporal evolutions of the predator with various convex obstacle domains. From left to right, t = 1500, 1750, 2250,
and 2750 (upper row), t = 1500, 1625, 1750, and 1875 (lower row).

Figure 21 illustrates temporal evolutions for the
predator with two shapes of obstacles. Compared
to the nonconvex cases, the formation of the peri-
odic traveling waves is different from the convex
obstacles.

4.9. Geometric landscape features

In this section, we consider the traveling wave
solutions around the geometric landscape fea-
tures, which are obtained by using the image
segmentation. The first geometric landscape is the

large domain with an obstacle as the Kielder
Water in northern Britain. Note that the regular
periodic population dynamics for the predator is
experimentally performed in [Lambin et al., 1998].
Figures 22(a) and 22(b) show a whole view and a
closed view of the predator at t = 7000. As can be
seen that our numerical simulation indeed demon-
strates the traveling wave solutions with compli-
cated obstacles.

For the second example, the traveling wave
solutions for the Inari region in Fennoscandia are
considered. The population dynamics on islands in

0 5 10 15

5

10

15

50 100 150 200 250
0

0.2

0.4

0.6

0.8

space

square
rectangle
polygon

(a) (b)

Fig. 19. (a) Stars and dashed lines depict wc and wi for Ω4
o,1 (marked with circles) and Ω4

o,9 (marked with triangles) and

(b) circles and triangles depict the spatial plot at x = 1 and y = 1 for Ω4
o,9 corresponding to w(10) (solid line).
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Fig. 20. (a) Stars and dots depict the range of R for a polygon (marked with circles) and a star (marked with triangles),
(b) corresponding wavelengths with w(10) (dashed line) and (c) corresponding wavelengths with w(12) (marked with dashed
dots).

(a)

Fig. 21. Temporal evolution of the predator with various nonconvex obstacle domains. From left to right: (a) t = 1625, 1750,
1875, and 2125 and (b) t = 2200, 2800, 3400, and 3900.
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(b)

Fig. 21. (Continued)

(a) (b)

Fig. 22. Traveling wave solutions with obstacle (Kielder Water) for the predator at: (a) t = 7000 and (b) closed up view of
dashed region in (a).

(a) (b)

Fig. 23. Traveling wave solutions having obstacle (the Lake Inari) for the predator at: (a) t = 7000 and (b) closed up view
of dashed region in (a).
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the Lake Inari for the regional synchrony was also
experimentally studied by [Heikkilä et al., 1994] in
a small domain. The predator solution is illustrated
in Fig. 23(a) at t = 7000. And a closed up view
of dashed region in (a) is shown in Fig. 23(b). In
a large domain, which has not been studied experi-
mentally, numerical simulation can perform well to
simulate the regular traveling wave.

5. Discussion

The periodic traveling wave solutions for the
predator–prey model with landscape features have
been studied after the work of Sherratt et al.
[2002] who imposed homogeneous Dirichlet bound-
ary at the edge of the obstacles. We have analyzed
the numerical traveling wave solutions with robust
and accurate numerical methods. For the regular
periodic traveling wave solutions in spatiotemporal
oscillations, we proposed a numerical algorithm for
numerical periodicity to detect one-period of trav-
eling wave solutions. Based on the assumption of
the homogeneous Dirichlet boundary condition at
the edge of the domain, we systematically inves-
tigate numerical solutions in one-, radially sym-
metric, and two-dimensional domains where the
asynchrony behaviors are almost similar. Then we
measured wavelengths to evaluate the spatial asyn-
chrony around the two-dimensional obstacles, con-
vex and nonconvex shapes where wavelengths are
bounded. By adapting this method, we expect to
have more general description for a generation of
traveling wave solutions.

By the numerical simulations with realistic
landscape features such as the Kielder Water and
the Lake Inari, the generation of traveling wave
solutions was able to be observed which takes a
long time in field studies. Our investigation clearly
reflected the regular periodicity and the geometric
assumption with a larger domain including the Lake
Inari suggesting movement of predator and prey.
We expect that our numerical approach could give
a good tool to investigate the ecological features, as
well as provide a mathematical analysis.
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