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We propose an efficient phase-field model for multi-component Cahn–Hilliard (CH) 
systems in complex domains. The original multi-component Cahn–Hilliard system with 
a fixed phase is modified in order to make it suitable for complex domains in the 
Cartesian grid, along with contact angle or no mass flow boundary conditions on the 
complex boundaries. The proposed method uses a practically unconditionally gradient 
stable nonlinear splitting numerical scheme. Further, a nonlinear full approximation storage 
multigrid algorithm is used for solving semi-implicit formulations of the multi-component 
CH system, incorporated with an adaptive mesh refinement technique. The robustness of 
the proposed method is validated through various numerical simulations including multi-
phase separations via spinodal decomposition, equilibrium contact angle problems, and 
multi-phase flows with a background velocity field in complex domains.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Cahn–Hilliard (CH) equation was originally derived for spinodal decomposition [1,2] and has been widely adopted to 
model many other physical phenomena such as mixing [3], contact angle and wetting problems [4,5], liquid–liquid jets [6–9], 
solid tumor growth [10,11], image processing [12], and surface/volume reconstruction [13]. The generalized CH equation for 
multi-component systems was first proposed by Fontaine [14] and Morral and Cahn [15] for modeling the dynamic behavior 
of alloy materials exhibiting multiple phases in their micro-structures. Many researchers have investigated the mathematical 
modeling of multi-component CH systems. For example, Hoyt [16] extended the CH continuum theory of nucleation to 
multi-component solutions. Elliott and Luckhaus [17] obtained a global existence result under constant mobility and specific 
assumptions. Eyre [18] studied the differences between multi-component and binary alloys and discussed the equilibrium 
and dynamic behavior of multi-component systems. Elliot and Garcke [19] proved the global existence of multi-component 
systems when the mobility matrix depends on the concentration. Maier-Paape et al. [20] explained the initial-stage phase 
separation process in multi-component CH systems through spinodal decomposition.

One of the main problems in numerically solving the CH system is associated with the characteristics of the fourth-order 
spatial derivatives in the system, which makes the finite-difference stencils extremely large and introduces a severe time 
step restriction due to numerical instability. To overcome this problem, various numerical approaches have been developed 
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for a large number of components. Lee and Kim [21] proposed an efficient nonlinear multigrid method to solve a discrete 
multi-component CH system with second-order temporal accuracy. This approach can significantly reduce the required 
computer memory and CPU time because it only needs to solve a 2(N − 1) × 2(N − 1) matrix inversion in an N-component 
CH system. Here, N is the number of components. Subsequently, Lee et al. [22] proposed a practically unconditionally 
gradient stable conservative nonlinear numerical scheme for converting an N-component CH system into a system of N − 1
binary CH equations. Although the two above-mentioned methods are efficient in terms of computational costs, they are 
limited to multi-phase CH systems in a simple rectangular domain.

Recently, many researchers have studied the Cartesian grid method and the finite-volume method for solving the Pois-
son equation [23,24] and the binary CH equation [25,26] in an irregular domain. Cartesian grid embedded (or immersed) 
boundary methods [27–29] have an advantage compared to unstructured or body-conformal grid methods because of the 
simplicity in the grid generation. However, Cartesian methods require special treatments such as immersed boundary tech-
niques for predicting accurate phase distributions near complex boundaries. Furthermore, their extension to the adaptive 
mesh refinement (AMR) framework involves challenging issues in accurately imposing a contact boundary condition at 
complex boundaries with mesh refinements. Since AMR is able to provide spatial multi-resolution in a computational do-
main, it is a good choice for increasing computational efficiency [30–33]. However, AMR implementation in an irregular 
domain could be difficult for different boundary conditions.

In this paper, we propose an efficient numerical procedure for solving multi-component CH systems in complex domains. 
The complex domain is first defined with a Cartesian grid and then can be determined by a signed distance function and a 
hyperbolic tangent profile. We modify the original multi-component CH system in a complex domain as a multi-component 
CH system with a fixed phase that mimics the complex boundary in the Cartesian grid. Then, by considering a hyperbolic 
tangent profile for the equilibrium phase interface at the complex boundaries, we recast the multi-component CH system 
with no mass flow or contact angle boundary conditions to satisfy the surface energy formulation. The proposed method 
is implemented in the AMR framework with the gradient stable nonlinear splitting numerical scheme [22] in order to 
eliminate high-order time step stability constraints. We use a nonlinear full approximation storage multigrid algorithm for 
solving the multi-component CH system. Further, we perform various numerical simulations of multi-component CH systems 
in complex domains such as multi-phase separations via spinodal decomposition, equilibrium contact angle problems, and 
multi-phase flows with a background velocity field in order to demonstrate the robustness and accuracy of the proposed 
method.

The remainder of this paper is organized as follows. The proposed phase-field model for a multi-component CH system 
in a complex domain is formulated in Section 2. The implementation of the proposed model in the AMR framework is 
described in Section 3. Various numerical simulation results for multi-component CH systems are presented in Section 4. 
Finally, the paper is concluded in Section 5.

2. Governing equations

2.1. Original multi-component Cahn–Hilliard system

We consider a system of an N-component mixture in a domain � ⊂ Rd (d = 1, 2, 3). Let ci = ci(x, t) for i = 1, . . . , cN be 
the concentration of each component in the mixture as a function of space and time. Thus, the admissible states belong to 
the Gibbs N-simplex,

G :=
{

c ∈R
N

∣∣∣∣∣
N∑

i=1

ci = 1, 0 ≤ ci ≤ 1

}
. (1)

Let c = (c1, c2, . . . , cN) be a vector-valued phase field; the Helmholtz free energy can be written as

E(c) =
∫
�

(
F (c) + ε2

2

N∑
i=1

|∇ci|2
)

dx, (2)

where F (c) = ∑N
i=1 c2

i (1 − ci)
2/4 is the Helmholtz free energy per unit volume of a homogeneous system of composition 

c and ε > 0 is the gradient energy coefficient. The time evolution of c is governed by the energy changes with respect to 
the Ḣ−1 inner product. Note that the Hilbert space Ḣ is chosen as a zero-average subspace with a bounded linear mapping 
Ḣ−1 on the zero-average space. The multi-component CH system takes the following form [22]:

∂ci

∂t
= ∇ · (M(c)∇μi), (3)

μi = f (ci) + β(ci) − ε2�ci, for i = 1, . . . , N, (4)

where

M(c) =
N∑ N∑

(c2
i c2

j ), f (ci) = ∂ F (c)

∂ci
, and β(ci) = − 1

N

N∑ ∂ F (c)

∂c j
. (5)
i=1 j>i j=1
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Fig. 1. Complex domain �in .

Here, M(c) is a concentration-dependent mobility, μi is a chemical potential, and f (ci) is simplified as ci(ci −0.5)(ci −1). In 
the present study, the Lagrangian undetermined multiplier β(ci) used in Eq. (5) is based on the form in Refs. [16,17,21,34]
for holding the additional constraint in Eq. (1), which implies that ∂

∂t �
N
i=1ci(x, t) = 0 for any time t and space x. Substituting 

Eq. (4) into Eq. (3) and summing parts by parts yield 
∑N

i=1 f (ci) + ∑N
i=1 β(ci) = 0. Thus, a simple choice of β(ci) leads to 

Eq. (5). The zero Neumann boundary conditions [22] are imposed at the domain boundary (∂�) for mixture concentration 
in the N-component CH system in order to maintain the mass conservation:

∇ci · n = ∇μi · n = 0 on ∂�, (6)

where n is the unit normal vector to ∂�. For the Gibbs N-simplex in Eq. (1), we only need to solve Eqs. (3) and (4) with 
N − 1 components and update cN = 1 − ∑N−1

i=1 ci for the Nth component in the CH system.

2.2. Modified multi-component Cahn–Hilliard system in a complex domain

Numerical simulations for a multi-component CH system in a complex domain need to accurately predict the mixture 
concentrations at the boundaries of the domain. Although a body-conformal grid for the complex domain allows boundary 
conditions to be accurately imposed, it requires non-trivial efforts for grid generation and complicates the computation 
owing to the burden of grid transformation. When the CH equation is solved in the Cartesian grid, special treatments such 
as immersed boundary techniques are required for resolving the complex domain. Here, we propose a multi-component 
CH system suitable for complex domains in the Cartesian grid, along with two types of boundary conditions (no mass flow 
and contact angle boundary conditions) on the complex boundaries. The no mass flow boundary condition implies that the 
boundary condition is undetermined (or unknown) under the constraint that an N-component mixture cannot penetrate 
into the boundaries. The Neumann boundary condition is also considered, which is defined with a special contact angle 
of 90◦ . Compared to other efficient algorithms for simulations in complex domains, the proposed numerical scheme has an 
additional advantage in that it can be straightforwardly applied to adaptive mesh refinement.

Let �in be a complex domain in �, as shown in Fig. 1. We consider the complex domain as a fixed component, c0(x), 
satisfying

c0(x) =
{

1, if x ∈ �in,

0, if x ∈ � − �in.
(7)

An N-component CH system with a complex domain can be extended to the Gibbs (N +1)-simplex as an (N +1)-component 
CH system,

Ĝ :=
{

c ∈R
N+1

∣∣∣∣∣
N∑

i=0

ci = 1, 0 ≤ ci ≤ 1

}
. (8)

Since the fixed phase c0(x) for the complex domain cannot mix with other phases, this phase can be determined by 
imposing a proper boundary treatment. Thus, the CH equation can be modified as

∂ci

∂t
= ∇ · (M̂(c)∇μi), (9)

μi = f (ci) + β̂(ci) − ε2�ci, for i = 1, . . . , N − 1, (10)

where

M̂(c) =
N∑ N∑

(c2
i c2

j ) and β̂(ci) = −ci

N∑
f (c j). (11)
i=0 j>i j=0
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Fig. 2. Definitions of dihedral angles at the junction of the three phases.

Note that we obtain the phase ci(x) for i = 1, . . . , N − 1 by solving Eqs. (9) and (10), while the phase c0(x) is fixed and 
cN(x) is directly calculated by Eq. (8).

On the other hand, the dihedral contact angle is formed at the interface among the three phases or between the liquid 
and vapor phases and a solid surface. If the boundary condition is explicitly defined as a specific contact angle, the wetting 
condition can be expressed in terms of the microscale contact angle θ . In the surface energy formulation, the condition 
yields Young’s equation [35]:

σV L cos θ = σV S − σL S , (12)

where σV L , σV S , and σL S are the surface tensions for vapor–liquid, vapor–solid, and liquid–solid, respectively, as shown in 
Fig. 2. Thus, in the multi-component CH system, the boundary condition,

∇ci · ns = −|∇ci | cos θ = −ci(ci − 1) cos θ/(
√

2ε) (13)

should be satisfied on the solid domain boundary. Here, ns = ∇c0/|∇c0| denotes the unit normal vector to ∂�in . If the 
equilibrium interfacial profile takes a hyperbolic tangent function, we can use |∇ci | = ci(1 − ci)/(

√
2ε) defined in [36]. Since 

∇ci · ns = ∇ci · ∇c0/|∇c0| on ∂�in , Eq. (13) yields

ε2∇c0 · ∇ci + εci(ci − 1)|∇c0| cos θ/
√

2 = 0. (14)

Considering the boundary condition in Eq. (14) and the fixed phase condition in Eq. (7), the CH system is then modified 
as

∂ci

∂t
= ∇ · ((1 − c0)M(c)∇μi) , for i = 1, . . . , N − 1 (15)

μi = f (ci) + β(ci) + εci(ci − 1)|∇c0| cos θ/
√

2 − ε2∇ · ((1 − c0)∇ci), (16)

on the entire domain �. Further, we can directly compute cN = 1 − ∑N−1
i=0 ci using Eq. (8). Here, the fixed phase condition 

in Eq. (7) is used as a Heaviside function indicating the fixed phase or non-fixed phases in formulating Eq. (15). It should 
be noted that Eqs. (15) and (3) are equivalent because c0 = 0 in the liquid domain (� − �in). Moreover, Eq. (15) yields 
∂ci/∂t = 0 because c0 = 1 in the solid domain (�in), which means that ci remains zero for any value of μi . By starting from 
Eq. (4) in the original model, the chemical potential μi can be given as

μi = f (ci) + β(ci) − ε2∇ · ((1 − c0)∇ci) − ε2∇c0 · ∇ci − ε2c0�ci . (17)

Incorporating the boundary condition in Eq. (14) and the fixed phase condition in Eq. (7), the chemical potential in 
Eq. (17) can be approximated by that in Eq. (16) for the following reasons. Because c0 = 0 in the liquid domain (� − �in), 
Eqs. (16) and (17) are equivalent. Since Eq. (15) can be deduced to ∂ci/∂t = 0 in the solid domain (�in), μi can be given 
as any value. According to the boundary condition in Eq. (14) on the solid boundary (∂�in), ε2∇c0 · ∇ci in Eq. (17) can be 
replaced by −εci(ci − 1)|∇c0| cos θ/

√
2. Since the last term in Eq. (17) becomes approximately zero as c0 → 0, we ignore 

the effect of the last term on the boundary. This implies that the contact angle boundary condition can be exactly held as 
c0 → 0. Although Eq. (16) may induce the interface of the phases to significantly overlap the solid boundary, the numerical 
tests in Section 4.2.2 indicate that the proposed form accurately captures an equilibrium phase interface contacting a solid 
boundary.

2.3. Diffusion process for complex domains

The fixed phase c0(x) is set to one and zero inside and outside the complex domain, respectively, which implies that 
the fixed phase is defined as a sharp interface. However, in a finite-difference method, it is difficult to accurately calculate 
∇c0 unless a higher-order method is applied. Therefore, instead of considering the sharp interface, we consider a diffusion 
deformable interface in a discrete domain, which is more suitable for the AMR framework. In this approach, we define c0(x)

as

c0(x) = 0.5 + 0.5 tanh(d(x)/(2
√

2ε)), (18)
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Fig. 3. (a) Schematic illustration of a complex solid region whose boundary is shown as a line with circles, (b) definition of signed discrete distance function 
d(x), (c) mesh plot of c0(x) defined in Eq. (18), and (d) a transition region where transaction boundaries (solid lines) are extracted using c0(x) = 0.5.

where ε is the thickness of the solid boundary transition layer and d(x) is a signed distance function from x in � to the 
Cartesian grid X in ∂�in . The sign of d(x) is positive if x is inside �in and negative otherwise. Fig. 3 (a) shows a solid region 
represented by a set of boundary points X in a domain �. The signed discrete distance functions d(x) are computed in a 
discrete domain �h (see Fig. 3 (b)), where the length of the dash-dot line segment represents the distance from x in �h to 
X in ∂�in . Fig. 3 (c) shows the mesh plot of c0(x) defined in Eq. (18). Fig. 3 (d) shows the extracted transition boundaries by 
contour lines with c0(x) = 0.5, along with the solid boundary. The signed distance approach captures the shape of a complex 
solid boundary effectively and provides a reliable solid boundary transition region with uniformly distributed thickness of 
the transition layer.

3. Numerical procedure

Let � = (a, b) × (c, d) be a computational domain in two-dimensional space. Let xi = a + (i − 0.5)h, y j = c + ( j − 0.5)h, 
0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ N y + 1, where Nx and N y are positive even integers and h = (b − a)/Nx = (d − c)/N y is the uniform 
mesh size. The discrete domain is then defined as �h = {(xi, y j)| 1 ≤ i ≤ Nx, 1 ≤ j ≤ N y}. Let cn

r,i j be an approximation of 
cr(xi, y j, n�t), where �t = T /Nt is the time step, T is the final time, and Nt is the total number of computational time 
steps. A semi-implicit formulation for the multi-component CH equations in Eqs. (9) and (10) can be written as [21]

cn+1
r,i j − cn

r,i j

�t
= ∇d · (M̂(cn

i j)∇dμ
n+1
r,i j ), (19)

μn+1
r,i j = f (cn+1

r,i j ) + 0.25cn+1
r,i j − 0.25cn

r,i j + β̂i j − ε2�dcn+1
r,i j . (20)

The second-order central difference scheme in space is used for discretization of Eqs. (19) and (20), and the Laplacian terms 
are defined as

∇d · (M̂(cn
i j)∇dμ

n+1
r,i j ) = M̂(cn

i+1/2, j)(μ
n+1
r,i+1, j − μn+1

r,i j ) − M̂(cn
i−1/2, j)(μ

n+1
r,i j − μn+1

r,i−1, j)

h2
(21)

+ M̂(cn
i, j+1/2)(μ

n+1
r,i, j+1 − μn+1

r,i j ) − M̂(cn
i, j−1/2)(μ

n+1
r,i j − μn+1

r,i, j−1)

2
,

h
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Fig. 4. Block-structured local refinement with the level l∗ = 3. The contours represent the interface of the phase-field, i.e., c ∈ [0.01,0.99].

�dcn+1
r,i j = cn+1

r,i+1, j + cn+1
r,i−1, j − 4cn+1

r,i j + cn+1
r,i, j+1 + cn+1

r,i, j−1

h2
, (22)

where cn
i+1/2, j is the average value of cn

i+1, j and cn
i j . The other terms can be defined in a similar manner. The resulting 

nonlinear system of Eqs. (19) and (20) is solved efficiently using a nonlinear multigrid method. This nonlinear system is 
proven to be unconditionally gradient stable in [31].

3.1. Dynamic adaptive mesh refinement algorithm

For an adaptive mesh refinement (AMR) algorithm, we consider a hierarchy of increasingly finer grids, �l+1, . . . , �l+l∗ , 
restricted to increasingly smaller subdomains, while the last hierarchy of global grids is �0, �1, . . . , �l . In other words, we 
consider a hierarchy of grids, �0, �1, . . . , �l+0, �l+1, . . . , �l+l∗ . Here, we denote �l+0 as level zero, �l+1 as level one, and 
so on. The construction of the multi-level mesh begins at the zero-level grid. Grids of finer resolutions are added at level 
one to cover those grid points at level zero where refinements are flagged. This process continues in the same manner until 
level l∗ is reached. Moreover, the grid spacing hk at level k is related to that at the next level (k + 1) as hk = 2hk+1. Fig. 4
shows a schematic illustration of a set of finer grids with four levels (l∗ = 3), where the AMR is implemented by uniformly 
subdividing each mother cell into four daughter cells. Here, the contour lines represent the interface of the phase field, i.e., 
c ∈ [0.01, 0.99].
3.1.1. Creation of hierarchical grid

There are many possible criteria for determining a region where grid refinement is necessary. For example, the gradient 
and the distributions of the order parameter provide an indicator for grid refinement [37,38]. In the present implementation, 
the grid is dynamically adapted on the basis of an undivided gradient |∇u M|k , which is defined as

|∇u M|ki j =
√

(Mk
i+1, j − Mk

i−1, j)
2 + (Mk

i, j+1 − Mk
i, j−1)

2, (23)

where Mk
ij represents the cell center values at (xi, y j) defined for the level-k grid on the domain �l+k . Then, we tag the cells 

containing the interface where the undivided gradient of the order parameter is greater than a tolerance ε, i.e., |∇u M|k > ε. 
Throughout this paper, we use ε = 0.01. After determining the cells that need to be refined, the algorithm of Berger and 
Rigoutsos [39] is used to tag points that are clustered into efficient boxes. The ghost-layer values are then obtained by using 
quadratic interpolation based on the previous level data. For further details, refer to Refs. [37,38].

3.2. Numerical solution – adaptive nonlinear multigrid method

Here, we briefly describe the adaptive nonlinear multigrid procedure for solving the nonlinear discrete system of 
Eqs. (9) and (10). First, we recast the equations as N(cn+1, μn+1) = (φn, ψn), where N(cn+1, μn+1) = (cn+1/�t − ∇d ·
(M̂(cn)∇dμ

n+1), μn+1 − g(cn+1) + ε2�dcn+1) and the source term is given as (φn, ψn) = (cn/�t, − 0.25cn + β̂(cn)1). Here, 
g(cn+1) = f (cn+1) +0.25cn+1. Then, the relaxation operator step can be written in 2 ×2 matrix-vector form for each i and j
as follows:

cn+1
r,i j

�t
+

M̂n
i+ 1

2 , j
+ M̂n

i− 1
2 , j

+ M̂n
i, j+ 1

2
+ M̂n

i, j− 1
2

h2
μn+1

r,i j = φn
r,i j

+
M̂n

i+ 1
2 , j

μn+1
r,i+1, j + M̂n

i− 1
2 , j

μn+1
r,i−1, j + M̂n

i, j+ 1
2
μn+1

r,i, j+1 + M̂n
i, j− 1

2
μn+1

r,i, j−1

h2
, (24)

− 4ε2

2
cn+1

r,i j − g(cn+1
r,i j ) + μn+1

r,i j = ψn
r,i j − ε2

cn+1
r,i+1, j + cn+1

r,i−1, j + cn+1
r,i, j+1 + cn+1

r,i, j−1
2

. (25)

h h
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Fig. 5. Equilibrium concentration profile in an interfacial region.

Next, the pointwise Gauss–Seidel relaxation scheme is used as a smoother in the multigrid method. We replace 
cn+1

r,pq and μn+1
r,pq in Eqs. (24) and (25) with c̄m

r,pq and μ̄m
r,pq if p ≤ i and q ≤ j; otherwise, we replace them with cm

r,pq and 
μm

r,pq . Thus, Eqs. (9) and (10) yield

c̄m
r,i j

�t
+

M̂n
i+ 1

2 , j
+ M̂n

i− 1
2 , j

+ M̂n
i, j+ 1

2
+ M̂n

i, j− 1
2

h2
μ̄m

r,i j = φn
r,i j

+
M̂n

i+ 1
2 , j

μm
r,i+1, j + M̂n

i− 1
2 , j

μ̄n
r,i−1, j + Mn

i, j+ 1
2
μm

r,i, j+1 + M̂n
i, j− 1

2
μ̄m

r,i, j−1

h2
, (26)

− 4ε2

h2
c̄m

r,i j − g(c̄m
r,i j) + μ̄m

r,i j = ψn
r,i j − ε2

cm
r,i+1, j + c̄m

r,i−1, j + cm
r,i, j+1 + c̄m

r,i, j−1

h2
. (27)

Since g(c̄m
r,i j) is nonlinear with respect to c̄m

r,i j , we linearize g(c̄m
r,i j) at cm

r,i j as

g(c̄m
r,i j) = g(cm

r,i j) + g′(cm
r,i j)(c̄m

r,i j − cm
r,i j). (28)

Using Eq. (28), Eq. (27) yields(
−g′(cm

r,i j) − 4ε2

h2

)
c̄m

r,i j + μ̄m
r,i j

= ψn
r,i j + g(cm

r,i j) − g′(cm
r,i j)cm

r,i j − ε2
cm

r,i+1, j + c̄m
r,i−1, j + cm

r,i, j+1 + c̄m
r,i, j−1

h2
, (29)

where g′(cm
r,i j) is the first derivative of g(cm

r,i j). This completes the pointwise Gauss–Seidel relaxation. Similarly, the adaptive 
nonlinear multigrid procedure can be applied for solving other CH systems in Eqs. (3) and (4), and Eqs. (15) and (16). For 
details of the adaptive V-cycle multigrid method, refer to Refs. [37,38].

4. Numerical experiments

This section discusses the numerical experiments that we performed for spinodal decomposition, stability and accuracy 
tests of the proposed scheme, comparison between uniform and adaptive mesh, and multi-component Cahn–Hilliard system 
with background fluid. We assume an equilibrium profile, c(x) = 0.5 + 0.5 tanh(x/(2

√
2ε)) in an infinite domain. Across an 

interfacial region, the phase concentration varies from 0.1 to 0.9 over a distance of approximately ξ = 4
√

2ε tanh−1(0.9), as 
shown in Fig. 5. Thus, ε can be determined as ε = εm = mh/[4√

2 tanh−1(0.9)] such that ξ is around m grid points in the 
interfacial transition layer.

4.1. Spinodal decomposition

Spinodal decomposition is a mechanism by which a solution of two or more components separates into differ-
ent phases. The system separates into spatial regions that are rich in one species and poor in the other species, and 
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Fig. 6. Spinodal decomposition of a multi-phase mixture. (a) Four components in a rectangular domain: the circle-shaped phase is set as a liquid and can be 
mixed with other phases. (b) Three components with a solid region treated with no mass flow boundary condition. (c) Three components with Neumann 
boundary condition. From left to right, the snapshots are taken at t = 0.391, 1.953, 7.813, and 39.062.

evolves into an equilibrium state with a lower overall free energy [2,26]. Here, we consider a case of four compo-
nents in a rectangular domain [0, 1] × [0, 1] and two cases of a circular solid region where a no mass flow boundary 
condition or Neumann boundary condition is imposed. The initial conditions in the first case are set to c3(x, y, 0) =
0.5 + 0.5 tanh((0.2 −√

(x − 0.5)2 + (y − 0.5)2)/(2
√

2ε)), c1(x, y, 0) = (0.4 + 0.1 rand(x, y))(1 − c3(x, y, 0)), and c2(x, y, 0) =
(0.4 + 0.1 rand(x, y))(1 − c3(x, y, 0)). Here, rand() denotes a random function that generates a value from −1 to 1. The solid 
phase in the other two cases is set to c0 = c3 and the other components are defined in the same ways as those in the first 
case. We use h = 1/128 and ε = ε5. Simulations are run up to time T = 39.062 with time step �t = h. Fig. 6 shows the 
evolution of spinodal decomposition for the three cases. For the four-component case, Fig. 6 (a) shows that the phases are 
well mixed as time proceeds. As shown in Fig. 6 (b), for the case of a solid region with a no mass flow boundary condition, 
the liquid phases are well mixed with each other, but the no mass flow boundary condition at the solid surface makes the 
liquid phases completely separated from the solid region for a long time evolution period. However, the Neumann boundary 
condition enables the liquid phases to maintain a contact angle of 90◦ on the boundary (see Fig. 6 (c)).

We also perform numerical simulations of spinodal decomposition with a fairly large time step �t = 10 in order to show 
the stability of the proposed method. The order parameters (c) after ten iterations for the three cases are shown in Fig. 7. In 
all the cases, the maximum amplitudes are bounded and the numerical solutions do not blow up during the computation. 
This indicates that the proposed method provides stable numerical solutions with a fairly large time step.

Further, we investigate the robustness of the proposed method with AMR for simulating spinodal decomposition. The 
four-level grid refinement (l∗ = 4) is considered in the unit domain, where the minimum grid spacing is hmin = 1/1024. 
The computational time step and interface transition layer are set to �t = 0.002 and ε = 0.01, respectively. Fig. 8 shows 
the phase distributions along with the corresponding hierarchical grid at t = 10 for the proposed method with no mass 
flow and Neumann boundary conditions. The spinodal decomposition patterns depend on the imposed boundary condition 
while maintaining the volumes of the initial phases. As shown in Figs. 8 (c) and (d), the proposed grid refinement technique 
based on the criteria in Eq. (23) provides appropriate grid resolutions near the phase interfaces. This indicates that the 
proposed method with two different boundary conditions has been properly implemented with AMR for simulating spinodal 
decomposition of multi-component phases.

4.2. Accuracy of the proposed scheme

Here, we consider two problems to show the accuracy of the proposed scheme. The first is linear stability analysis in a 
rectangular domain and the second is an equilibrium phase interface contacting a solid boundary.
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Fig. 7. Mesh plots of order parameters (c) after ten iterations. Here, a fairly large computational time step �t = 10 is used. (a) Four components with a 
circle-shaped phase and three components with a solid region treated with (b) no mass flow boundary condition and (c) Neumann boundary condition.

4.2.1. Linear stability analysis
Linear stability analysis is an effective means for showing the accuracy of the multi-phase CH system. Here, we consider 

it with four compounds in one-dimensional space. For simplicity, we set M = 1. In Refs. [21] and [22], the authors have 
shown that the solutions of a four-component CH system are given as

c(x, t) = m +
∞∑

k=1

cos(kπx)(αk(t),βk(t), γk(t))

on the domain � = (0, 1). Here, m = (m, m, m), where m is a positive value, and αk(t), βk(t), and γk(t) take the following 
form:

(αk(t),βk(t), γk(t)) = αk(0) + βk(0) + γk(0)

3
(1,1,1) eλ1t

+ −αk(0) − βk(0) + 2γk(0)
(−1,0,1) eλ2t
3



10 Y. Li et al. / Journal of Computational Physics 323 (2016) 1–16
Fig. 8. Simulations of spinodal decomposition with AMR. Here, a circular solid is located at the center of the domain, with radius 0.2. Contour plots of 
phase distributions from numerical simulations with (a) no mass flow and (b) Neumann boundary conditions along with the corresponding adapted meshes 
(c) and (d), respectively. Note that for better visualization, the mesh plots in (b) and (d) are displayed at one-fourth of the actual density.

+ −αk(0) + 2βk(0) − γk(0)

3
(−1,1,0) eλ3t,

where

λ1 = −k2π2

2
(42m2 − 15m + 1 + 2ε2k2π2)

λ2 = λ3 = −k2π2

2
(6m2 − 6m + 1 + 2ε2k2π2).

The initial conditions are set to c1(x, 0) = 0.24 + 0.1 cos(2πx), c2(x, 0) = 0.24 + 0.2 cos(2πx), and c3(x, 0) = 0.24 +
0.3 cos(2πx). The simulation is run up to T = 0.1 with time step �t = 0.1h. Here, h = 1/128 and ε = ε5 are used. Fur-
thermore, the numerical definition of α, β , and γ are as follows:

αn =
(

max
1≤i≤Nx

cn
1(xi) − min

1≤i≤Nx

cn
1(xi)

)
/2

βn =
(

max
1≤i≤Nx

cn
2(xi) − min

1≤i≤Nx

cn
2(xi)

)
/2

γ n =
(

max
1≤i≤Nx

cn
3(xi) − min

1≤i≤Nx

cn
3(xi)

)
/2.

Fig. 9 shows that the present numerical solutions of α, β , and γ are in good agreement with the theoretical solutions.

4.2.2. Equilibrium contact angles
To show the accuracy of the proposed method defined in Eqs. (15) and (16) for a complex domain, we consider an 

equilibrium phase interface contacting a solid with a prescribed contact angle θ . The solid (c0) and initial compound (c1)

are defined as
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Fig. 9. Comparisons of numerical solutions with analysis solution.

Fig. 10. Evolution of phase interface contacting a solid boundary. (a) t = 0 (initial condition), (b) t = 3.125, (c) t = 6.250, and (d) t = 14.063 (equilibrium 
condition).

c0(x, y) = 0.5 + 0.5 tanh

(
0.5 − √

(x − 0.5)2 + (y + 0.25)2

2
√

2ε

)
, (30)

c1(x, y) =
{

1 − c0(x, y) if c0(x, y) + ψ(x, y) > 1,

ψ(x, y) otherwise,
(31)

where

ψ(x, y) = 0.5 + 0.5 tanh

(
0.25 − √

(x − 0.5)2 + (y − 0.2)2
√

2ε

)
. (32)

We consider the computational domain � = (0, 1) × (0, 1) with a 256 × 256 mesh. Numerical simulations with com-
putational time step �t = 0.5h are performed until an equilibrium condition is obtained. The equilibrium condition is 
determined by a convergence criterion based on ||(cn+1

1 − cn
1)||2/||cn

1||2 ≤ 10−6.
Fig. 10 shows a typical evolution of the liquid phase c1 from the initial condition to the equilibrium condition. The 

theoretical contact angle is given as θ = 60◦ , while the contact angle is initially set to θ ≈ 120◦ . The proposed method clearly 
predicts that the phase interface contacting the solid boundary approaches the equilibrium condition with the theoretical 
contact angle.

To quantify the accuracy of the proposed model, we perform numerical simulations of the equilibrium contact angle 
problem considering different theoretical (or prescribed) contact angles θ = 45◦, 60◦, 90◦ , and 135◦ . Two grids (256 × 256
and 512 × 512) are used for this analysis with computational time step �t = 0.5h. Table 1 indicates that with a better 
grid resolution, the contact angle under the equilibrium condition is predicted with greater accuracy. Overall, the proposed 
model shows good agreement between the theoretical contact angles and numerical results [4], which confirms that the 
model accurately captures phase interfaces in a complex domain.
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Table 1
Numerical results of contact angles under the equilibrium condition for different theoretical contact angles and 
mesh sizes. Here, for comparison of our results with the numerical results [4], we show them together. Note that 
the numerical tests [4] are performed in a rectangular domain, while our tests are performed in the complex 
domain.

Case Grid Theoretical contact angle (◦)

θ = 45◦ θ = 60◦ θ = 90◦ θ = 135◦

Complex domain 256 × 256 47.445 63.544 91.032 132.564
512 × 512 46.124 61.758 90.017 133.346

Rectangular domain [4] 256 × 128 43.969 60.893 90.842 135.593
512 × 256 44.245 60.683 90.421 135.284

Fig. 11. Velocity field in Taylor–Couette cell.

4.3. Multi-component CH system with background fluid

To verify the robustness of the proposed CH system in a complex domain, we consider an advection CH system where 
the phase interfaces can be advected with the given background velocity field u. The corresponding advection CH equation 
can be written as

∂ci

∂t
+ ∇ · (uci) = 1

Pe
∇ · (M(c)∇μi), (33)

where Pe is a positive parameter. In the present study, background velocity fields have been prescribed on the basis of 
theoretical analysis or determined a priori by using the immersed boundary method in a Cartesian grid [29]. Based on the 
velocity fields in the Cartesian mesh, quadratic interpolation is applied to obtain velocity fields at adaptive meshes to solve 
the advection CH equation, i.e., Eq. (33). It should be noted that the AMR framework is used only for the multi-component 
CH system.

4.3.1. Multi-component Cahn–Hilliard system for Taylor–Couette cell
We consider the shear-driven spinodal decomposition occurring in a Taylor–Couette cell, where incompressible fluid is 

trapped between two concentric cylinders [40]. For the Taylor–Couette flow, we assume that the inner cylinder is rotating, 
and the outer cylinder is fixed. The computational domain is defined as a ring-type domain where the radii of the inner 
and outer cylinders are set to 0.25 and 0.9, respectively. The background velocity field in Fig. 11 is given as

u = (u, v) =
(

0.0676

(x − 1)2 + (y − 1)2
− 0.0734

)
(1 − y, x − 1). (34)

Two types of phase boundary conditions (Neumann and no mass flow boundary conditions) are applied to both the inner 
cylinder and the outer cylinder. The initial condition is set to c1(x, y, 0) = 0.5 + 0.1 rand(x, y). The five-level grid refinement 
(l∗ = 5) is considered in the unit domain, where the minimum and maximum grid spacings are hmin = 1/1024 and hmax =
1/32, respectively. The other numerical parameters are set as follows: ε = 0.01, �t = 0.002, and Pe = 1.
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Fig. 12. Spinodal decomposition occurring in a Taylor–Couette cell. Contour plots of phase distributions from numerical simulations with (a) Neumann 
boundary condition and (b) no mass flow boundary condition along with (c) the corresponding adaptive meshes. From left to right, the computational 
times are t = 0, 0.5, 2.5, and 7.5.

Fig. 13. Velocity field in a wavy channel.

Fig. 12 shows the spinodal decomposition occurring in the Taylor–Couette cell with two-component phase. Since the 
velocity near the inner cylinder is higher than that near the outer one, the phases are more separated away from the 
inner cylinder. As time proceeds, the two phases become completely separated, forming two circular bands in the cylinder. 
Interestingly, the no mass flow boundary condition on the solid boundary results in faster phase separation compared to 
the Neumann boundary condition.

4.3.2. Multi-component CH system in a wavy channel
The proposed model is tested through numerical simulations of multi-phase flows interacting with complex channel 

boundaries. The channel geometry is modeled by two sine functions with a period of 2 in the streamwise direction and an 
amplitude of 0.25. The vertical gap in the channel is set to 0.4. The computational domain is defined as � = (0, 4) × (0, 1). 
Using the immersed boundary method [29], the background velocity field is obtained by solving the Navier–Stokes equation 
with the no-slip Dirichlet boundary condition at a Reynolds number of 10 in a uniform grid of size 1024 × 256. At the 
inlet, a parabolic velocity profile is assumed as u(0, y) = (−25(y − 0.7)(y − 0.3),0). The corresponding flow field is shown 
in Fig. 13.
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Fig. 14. Multi-phase separations in a wavy channel. Numerical simulations with (a) Neumann boundary condition and (b) no mass flow boundary condition. 
From top to bottom, the computational times are t = 0, 1.5, 4.5, and 15.0.

Fig. 15. Flow field in a porous medium.

We conduct numerical simulations of time-varying three-component multi-phase separations with adaptive mesh refine-
ment in a wavy channel for the given multi-phase distributions. Here, the five-level grid refinement (l∗ = 5) is considered 
in the same computational domain. The level zero domain (�l+0) is discretized with a uniform grid of size 64 × 16, while 
the minimum grid spacing hmin = 1/512 is used for the level l∗ domain (�l+l∗ ). The computational time step and interface 
transition layer are set to �t = 0.002 and ε = 0.01, respectively. Periodic boundary conditions are applied to the multi-
component phase at the inlet and outlet. Figs. 14 (a) and (b) show the evolutions of droplets in the wavy channel at t = 0, 
1.5, 4.5, and 15.0 for numerical simulations with Neumann and no mass flow boundary conditions, respectively. The results 
indicate that the length scale of the phases tends to be larger than the initial length scale owing to the phase separation and 
merging process as the phases move through the channel. Depending on the boundary condition, the dynamic evolutions of 
multi-phases differ. The no mass flow boundary condition seems to provide a slightly faster phase separation (or merging) 
than the Neumann boundary condition.

4.3.3. Multi-component Cahn–Hilliard system in a porous medium
Transport phenomena in porous media play an important role in many fields such as hydrology and petroleum engineer-

ing. Recently, a phase-field modeling approach has attracted considerable attention in the study of transport phenomena in 
a porous medium because of its ability to accurately predict flow physics involving sophisticated moving interfaces and com-
plex topologies [41]. Here, we consider two phase flows in a modeled porous medium, as shown in Fig. 15. The background 
flow field, as shown in Fig. 15, is obtained a priori by using the immersed boundary method [29] to solve the incompress-
ible Navier–Stokes equation with the no-slip Dirichlet boundary condition on the solid surface. The computational domain 
is defined as � = (0, 3) × (0, 1) with a uniform grid (768 × 256). Here, we set the Reynolds number to 2 on the basis of the 
channel height and bulk velocity.

Based on the background flow field, we carry out numerical simulations of the two phase flows in the porous medium 
by solving the multi-component CH system. We consider the four-level grid refinement (l∗ = 4), where the maximum and 
minimum grid sizes are hmax = 1/32 and hmin = 1/512, respectively. The other numerical parameters are set as follows: 
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Fig. 16. Multi-component CH system in a porous medium. Numerical simulations with (a) Neumann boundary condition and (b) no mass flow boundary 
condition. From top to bottom, the computational times are t = 0, 1.8, 3.6, and 4.8. Note that the two phases are represented in black and white.

�t = 0.002, ε = 0.01, and Pe = 0.1. Fig. 16 shows that the proposed method with Neumann or no mass flow boundary 
conditions provides evolutions of the phase separations interacting with the immersed pore-like obstacles in the wavy 
channel. Although the transient behaviors of the phase evolutions are slightly different near the obstacles depending on the 
boundary condition, the overall characteristics of the time-dependent phase advection are similar for both the boundary 
conditions.

5. Conclusions

We proposed an efficient phase-field model for multi-component CH systems with different boundary conditions in com-
plex domains. Considering the complex domain as a fixed phase, the original multi-component CH system was modified to 
accurately predict phases near the domain boundaries by proper boundary treatment in the Cartesian grid. Two different 
boundary conditions (no mass flow and contact angle boundary conditions) were applied to resolve the complex domain 
boundaries. The chemical potential in the CH system was also recast on the basis of a hyperbolic tangent profile for the 
equilibrium interface at the boundaries, satisfying the surface energy formulation based on Young’s equation. For the fixed 
phase, a diffusion deformable interface approach was considered in a discrete domain, which is more suitable for the AMR 
framework. The multi-component CH system was formulated semi-implicitly with a practically unconditionally gradient sta-
ble nonlinear splitting numerical scheme in order to eliminate the high-order time step stability constraints. The resulting 
nonlinear discrete equations were then solved using a nonlinear full approximation storage multigrid algorithm. We carried 
out numerical simulations of phase separations via spinodal decomposition to assess the proposed method under the two 
above-mentioned boundary conditions in the AMR framework. Further, the accuracy of the proposed method was investi-
gated via comparisons with linear stability analysis and estimations of equilibrium contact angles with complex boundaries. 
The numerical results confirmed that the proposed method accurately captures phase interfaces as compared to the the-
oretical estimates. In addition, we demonstrated the robustness of the proposed method for simulating multi-phase flows 
with a background fluid in a complex domain.

Acknowledgements

Y.B. Li is supported by the Fundamental Research Funds for the Central Universities, China (No. XJJ2015068) and by 
the China Postdoctoral Science Foundation (No. 2015M572541). J.-I. Choi is supported by the National Research Foundation 
of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-20151009350). J.S. Kim is supported by the Basic 
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education 
(NRF-2014R1A2A2A01003683).



16 Y. Li et al. / Journal of Computational Physics 323 (2016) 1–16
References

[1] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.
[2] J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795–801.
[3] R. Chella, J. Viñals, Mixing of a two-phase fluid by cavity flow, Phys. Rev. E 53 (1996) 3832–3840.
[4] H.G. Lee, J.S. Kim, Accurate contact angle boundary conditions for the Cahn–Hilliard equations, Comput. Fluids 44 (2011) 178–186.
[5] W. Jiang, W. Bao, C.V. Thompson, D.J. Srolovitz, Phase field approach for simulating solid-state dewetting problems, Acta Mater. 60 (15) (2012) 

5578–5592.
[6] H. Ding, D.D.M. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007) 

2078–2095.
[7] J. Kim, Phase field computations for ternary fluid flows, Comput. Methods Appl. Mech. Eng. 196 (45–48) (2007) 4779–4788.
[8] J. Kim, A generalized continuous surface tension force formulation for phase-field models for immiscible multi-component fluid flows, Comput. Meth-

ods Appl. Mech. Eng. 198 (2009) 3105–3112.
[9] Y. Li, J.-I. Choi, J. Kim, A phase-field fluid modeling and computation with interfacial profile correction term, Commun. Nonlinear Sci. Numer. Simul. 30 

(2016) 84–100.
[10] S. Wise, J. Lowengrub, H. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth: I. Model and numerical method, J. Theor. Biol. 

253 (2008) 524–543.
[11] V. Cristini, X. Li, J.S. Lowengrub, S.M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, J. Math. Biol. 

58 (2009) 723–763.
[12] A. Bertozzi, S. Esedoglu, A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Image Process. 16 (2007) 285–291.
[13] Y. Li, J. Shin, Y. Choi, J. Kim, Three-dimensional volume reconstruction from slice data using phase-field models, Comput. Vis. Image Underst. 137 

(2015) 115–124.
[14] D. de Fontaine, A computer simulation of the evolution of coherent composition variations in solid solutions, Ph.D. Thesis, Northwestern University, 

1967.
[15] J.E. Morral, J.W. Cahn, Spinodal decomposition in ternary systems, Acta Metall. 19 (1971) 1037–1045.
[16] J.J. Hoyt, The continuum theory of nucleation in multicomponent systems, Acta Metall. 38 (1990) 1405–1412.
[17] C.M. Elliott, S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy, IMA Prepr. 

Ser. 887 (1991).
[18] D.J. Eyre, Systems of Cahn–Hilliard equations, SIAM J. Appl. Math. 53 (1993) 1686–1712.
[19] C.M. Elliott, H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D 109 (1997) 

242–256.
[20] S. Maier-Paape, B. Stoth, T. Wanner, Spinodal decomposition for multicomponent Cahn–Hilliard systems, J. Stat. Phys. 98 (2000) 871–896.
[21] H.G. Lee, J. Kim, A second-order accurate non-linear difference scheme for the N-component Cahn–Hilliard system, Physica A 387 (2008) 4787–4799.
[22] H.G. Lee, J.-W. Choi, J. Kim, A practically unconditionally gradient stable scheme for the N-component Cahn–Hilliard system, Physica A 391 (2012) 

1009–1019.
[23] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys. 176 (2) 

(2002) 231–275.
[24] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, 

J. Comput. Phys. 174 (2001) 345–380.
[25] J. Shin, D. Jeong, J. Kim, A conservative numerical method for the Cahn–Hilliard equation in complex domains, J. Comput. Phys. 230 (2011) 7441–7455.
[26] Y. Li, D. Jeong, J. Shin, J. Kim, A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains, 

Comput. Math. Appl. 65 (2013) 102–115.
[27] J.-I. Choi, R.C. Oberoi, J.R. Edwards, J.A. Rosati, An immersed boundary method for complex incompressible flows, J. Comput. Phys. 224 (2007) 757–784.
[28] P. Gómez, J. Hernández, J. López, On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows, Int. J. Numer. 

Methods Eng. 63 (2005) 1478–1512.
[29] M.-C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 

705–719.
[30] H.D. Ceniceros, A.M. Roma, A nonstiff, adaptive mesh refinement-based method for the Cahn–Hilliard equation, J. Comput. Phys. 225 (2007) 1849–1862.
[31] J. Kim, H.-O. Bae, An unconditionally gradient stable adaptive mesh refinement for the Cahn–Hilliard equation, J. Korean Phys. Soc. 53 (2008) 672–679.
[32] R.H. Stogner, G.F. Carey, B.T. Murray, Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening 

with C1 elements, Int. J. Numer. Methods Eng. 76 (2008) 636–661.
[33] S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Math. Comput. Model. 

53 (2011) 1–20.
[34] B. Nestler, A.A. Wheeler, A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures, Physica D 138 (2000) 

114–133.
[35] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65–87.
[36] H. Ding, P.D.M. Spelt, Wetting condition in diffuse interface simulations of contact line motion, Phys. Rev. E 75 (2007) 046708.
[37] Y. Li, J. Kim, Phase-field simulations of crystal growth with adaptive mesh refinement, Int. J. Heat Mass Transf. 55 (2012) 7926–7932.
[38] Y. Li, D. Jeong, J. Kim, Adaptive mesh refinement for simulation of thin film flows, Meccanica 49 (2014) 239–252.
[39] M. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybern. 21 (1991) 1278–1286.
[40] J. Liu, L. Dedè, J.A. Evans, M.J. Borden, T.J.R. Hughes, Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear 

flow, J. Comput. Phys. 242 (2013) 321–350.
[41] H.A. Akhlaghi Amiri, A.A. Hamouda, Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through 

dual-permeability porous medium, Int. J. Multiph. Flow 52 (2013) 22–34.

http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4348s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4361686Es1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4356s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4B436F6E74s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4A425453s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4A425453s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib445353s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib445353s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4B696D31s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4B696D32s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4B696D32s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E574731s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E574731s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E574732s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E574732s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib424547s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C53434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C53434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4646s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4646s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4D43s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib486F7974s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib456C6Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib456C6Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib45797265s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4547s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4547s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4D5357s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C32434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C32434Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib43616Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib43616Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib554D524Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib554D524Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib534A4Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4A534Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4A534Bs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib434F4552s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C2D47484Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C2D47484Cs1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C5032303030s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C5032303030s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4352s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4B42s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib53434Ds1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib53434Ds1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib574C43s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib574C43s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E57s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4E57s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib596F756E67s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4453s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4B63s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C4A4B74s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4D49s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C44454248s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4C44454248s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4148s1
http://refhub.elsevier.com/S0021-9991(16)30312-6/bib4148s1

	Multi-component Cahn-Hilliard system with different boundary conditions in complex domains
	1 Introduction
	2 Governing equations
	2.1 Original multi-component Cahn-Hilliard system
	2.2 Modiﬁed multi-component Cahn-Hilliard system in a complex domain
	2.3 Diffusion process for complex domains

	3 Numerical procedure
	3.1 Dynamic adaptive mesh reﬁnement algorithm
	3.1.1 Creation of hierarchical grid

	3.2 Numerical solution - adaptive nonlinear multigrid method

	4 Numerical experiments
	4.1 Spinodal decomposition
	4.2 Accuracy of the proposed scheme
	4.2.1 Linear stability analysis
	4.2.2 Equilibrium contact angles

	4.3 Multi-component CH system with background ﬂuid
	4.3.1 Multi-component Cahn-Hilliard system for Taylor-Couette cell
	4.3.2 Multi-component CH system in a wavy channel
	4.3.3 Multi-component Cahn-Hilliard system in a porous medium


	5 Conclusions
	Acknowledgements
	References


