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We propose an efficient and robust algorithm to reconstruct the volumes of multi-labeled objects from
sets of cross sections without overlapping regions, artificial gaps, or mismatched interfaces. The algorithm
can handle cross sections wherein different regions have different labels. The present study represents a
multicomponent extension of our previous work (Li et al. (2015), [1]), wherein we modified the original
Cahn-Hilliard (CH) equation by adding a fidelity term to keep the solution close to the single-labeled slice
data. The classical CH equation possesses desirable properties, such as smoothing and conservation. The
key idea of the present work is to employ a multicomponent CH system to reconstruct multicomponent
volumes without self-intersections. We utilize the linearly stabilized convex splitting scheme introduced
by Eyre with the Fourier-spectral method so that we can use a large time step and solve the discrete
equation quickly. The proposed algorithm is simple and produces smooth volumes that closely preserve
the original volume data and do not self-intersect. Numerical results demonstrate the effectiveness and
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robustness of the proposed method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Developing efficient and robust three-dimensional (3D) algo-
rithms for volume reconstruction from series of slice data is highly
important, because 3D volume reconstruction from sequences of
medical images has many practical applications, such as plastic
surgery, medical diagnostic systems, treatment planning, anatomy
teaching, and virtual surgery systems [1,2] (see Fig. 1(a) and (b)).

Much research work has been dedicated to reconstructing sur-
faces or volumes from sets of planar cross sections [3-10]. Guo
et al. [3] developed a morphology-based interpolation method for
3D medical image reconstruction. The authors of [4]| proposed a
3D volume reconstruct algorithm from serial cross sections us-
ing spline theory, an elastic interpolation algorithm, and the sur-
face consistency theorem. Jones and Chen [5] presented a surface
reconstruction method from a stack of contour slices using
only basic geometric properties. Memari and Boissonnat [6]
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utilized Delaunay triangulation for a volume constrained by cross-
section curves. The authors of [7] presented a shape-based interpo-
lation scheme for multidimensional images. Liu et al. [8] proposed
a surface reconstruction method from non-parallel networks. Deng
et al. [9] developed a surface reconstruction method for freehand
3D ultrasound based on a variational implicit function. Sharma
and Agarwal [10] developed a method for 3D surface reconstruc-
tion from unorganized planar cross sections using a level-set
function.

Recently, we developed a fast and accurate method for volume
reconstruction from a set of slice data [11]. The developed method
was based on the Cahn-Hilliard (CH) equation [12], which achieves
a good smoothing effect and can be applied to image inpainting
problems [13]. By adding a fidelity term, the modified CH equation
can obtain a smooth volume while keeping the solution close to
the slice data. In the phase-field framework, Bretin et al. [14] pro-
posed a variational approach based on a minimizer of a geometric
regularity criterion with inclusion-exclusion constraints associated
with the cross sections. All of the above-mentioned reconstruction
methods can process one region or separated regions, but cannot
process contacting regions. That is, if we reconstruct each region
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Fig. 1. Volume reconstruction procedure from slice data: (a) given slice data and (b) 3D volume reconstruction.
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Fig. 2. Comparison of the results obtained by applying the binary volume reconstruction method twice and the proposed multicomponent volume reconstruction method.
(a) synthetic slice data, (b) initial shape, (c) volume reconstructed using the binary volume reconstruction method twice, and (d) volume reconstructed using the proposed
multicomponent volume reconstruction method. (e) and (f) show the half-level contours of (c) and (d) at the middle slice, respectively. (g) and (k) show the closed views of

(e) and (f), respectively.
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Fig. 3. Comparison between the binary and multicomponent volume reconstructions. (a) and (c) show the given slice data. (b) and (d) show the 3D volume reconstructions

from (a) and (c), respectively.

separately, then the reconstructed objects may overlap with each
other (see Fig. 2).

Therefore, we require an efficient and robust algorithm to re-
construct the 3D volumes of multi-labeled objects from a set of
cross sections without overlapping regions. Another application
of multicomponent volume reconstruction is to obtain a divided
model, where the structures are located relatively close to each
other. Fig. 3 shows separated regions merged together in the bi-

nary volume reconstruction framework. On the other hand, the
multicomponent volume reconstruction method can keep the re-
gion divided. Recently, several approaches [15-18] have been de-
veloped to work with multiple models. Bermano et al. [15] used
multiple implicit functions to extract multi-labeled material inter-
faces from sampled planar cross sections of arbitrary orientation.
Ju and his collaborators [16-18] developed an efficient topology-
controlled reconstruction algorithm to reconstruct a multi-labeled
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volume from cross sections. Their algorithms are able to both pro-
duce a smooth multi-material interface and simultaneously satisfy
the topological requirements. Our proposing method will generate
similar results with a simple algorithm. We only solve the govern-
ing partial differential equation to reconstruct multi-labeled vol-
umes from cross sections.

For multicomponent volume reconstruction, the proposed
method should construct 3D models without overlapping regions,
artificial gaps, or mismatched interfaces. In this study, we propose
an efficient and robust algorithm to reconstruct 3D volumes of
multi-labeled objects from a set of cross sections. The proposed
algorithm can handle cross sections in which different regions are
classified as having different labels. The present study represents
an extension of our previous work [11]. The main contribution of
the present work is to reconstruct multicomponent volumes with-
out self-intersections or gaps.

The remainder of this paper is organized as follows. In
Section 2, we briefly review our previous method for binary 3D
reconstruction. Section 3 describes the proposed method for mul-
ticomponent 3D reconstruction. In Section 4, we describe a prac-
tically stabilized convex splitting scheme for volume reconstruc-
tion, and present an efficient and robust numerical method based
on a Fourier-spectral method. In Section 5, we present various nu-
merical experiments to demonstrate the efficiency and robustness
of the proposed algorithm. Finally, our conclusions are provided in
Section 6.

2. Binary 3D reconstruction

We briefly review a numerical method [11] for single compo-
nent volume reconstruction using a set of slice data, which will be
extended to a multicomponent volume reconstruction algorithm.
In the single component volume reconstruction algorithm, we first
perform image segmentation for the given slice data using a mod-
ified Allen-Cahn (AC) equation [19-21]. Note that there exists a
level-set-based image segmentation method [22,23]. Next, we re-
construct the volume using a modified CH equation. Let S; for | =
1,..., N, be the given two-dimensional slice data at z =Z;, where
N, is the number of slice data sets. For example, medical slice data
can be obtained from MR images [24]. Let (x, ¥, Z;) be the two-
dimensional segmented data obtained using the image segmenta-
tion method, the modified AC equation, on S;. For simplicity, we
assume that the 3D domain is given as Q ={x=(x, y, 2)| x¢
(0,Lx), y € (0,Ly), ze (0,L;)}. For (x,y,2) € Q, let

Y(xy.7) = {Bﬁ’(x?;vzl),

be the fidelity term. To obtain a volume fraction function ¢ and
retrieve the surface as a level set of the function ¢, we use the
following modified CH equation with a fidelity term:

if z= Zl’
otherwise.

8(75;):, B = AuXt) +AX) (U X) —px.t)), xXe, 0<t<T, (1)
/’L(x’ t) = F/(¢(x’t))_62A¢(x7 t)7 (2)
$(x,0) = p°(x), (3)
where F(¢) = 0.25¢2(¢ — 1)2, € is a positive constant, and

)\0, if z= Z],
Ax.y.2) = { 0, otherwise.

Here, ¢(x, t) is a phase-field function, which takes values of ap-
proximately 1 and O in the reconstructed volume’s interior and

exterior regions, respectively. Furthermore, ¢ (X, t) = 0.5 represents
the interface of the two phases. The zero Neumann boundary
conditions are applied as the boundary conditions on ¢ and u:
n-V¢ =n-Vu =0 on d<2, where n is the unit normal vector on
the domain boundary. With an initial condition ¢(x), we apply a
linear interpolation between two consecutive slices as

°(x.y.2) =0V (%Y, Z1,1) + A =Y (X, 1.Z), z €2, Z1,4], (4)

Here, 0 = (z—-2))/(Zj;1 - Z) for I=1,..., N; — 1. The surface of
the volume is represented by the half-level set of ¢. See Fig. 1(b)
for the reconstructed surface. If A% = 0, then Eqs. (1) and (2) be-
come the classical CH equation [12], which was proposed as
a mathematical equation representing the phase separation, and
has been widely employed to model many scientific phenomena,
such as image inpainting, spinodal decomposition, tumor growth,
multi-phase fluid flows, topology optimization, and microstructure
formations. See [25,26] and references therein for fundamental
principles, useful applications, and physical, mathematical, and nu-
merical derivations of the CH equation. Egs. (1) and (2) in the two-
dimensional space have been applied to the image inpainting prob-
lem [13], and here we apply this approach to the 3D volume recon-
struction problem.

3. Multicomponent 3D reconstruction

We propose a robust and efficient numerical method for mul-
ticomponent volume reconstruction using a set of slice data. We
consider an N-component mixture in a domain Q2 cR3. Let ¢; =
¢i(x,t) fori=1,...,N be the concentration of each component in
the system. Here, x and t are the space and time variables, re-
spectively. The total sum of the components must be equal to 1,
ie., Zfil ¢i=1.Let ¢ = (P1, 0>, ..., dn) be a vector-valued phase
field. The total free energy is given as

e2 )
@)= [ (F@)+ 5 Y IVaP Jax (5)
i=1

where F(¢) = Y1 ¢?(¢; — 1)2/4 is the free-energy. The temporal
evolution of ¢ is governed by the following multicomponent CH
system [25,27,28]:

00— A(f(@) + Bi$) - AB). i=1....N (6)
where
160 = S5 = 1@ 05 @i~ 1) and fi(@)
1 N
=~y @) (7)
j=1

This variable Lagrangian multiplier enforces that the constraint
SN, ¢;=1 is satisfied for both space and time. An alternative
choice for the Lagrangian multiplier is B;($) = —¢; >, f(;).
which has the desirable property of preserving small features
[29,30]. The Lagrangian multiplier satisfies the following proper-
ties:

P N o, N N N
atz‘pi:Zatl:A(Zf(¢i)+2ﬁi(¢)_62AZ¢i>
i=1 i

i=1 i=1 i=1 i=1

i=1 i=1

N N
= A(Zf(dn) +ZB,-(¢>> =0. (8)

Fig. 4 illustrates the evolution of the multicomponent CH equa-
tion for two overlapping circles in two-dimensional space. From
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Fig. 4. The evolution of the multicomponent CH equation for two overlapping circles in two-dimensional space. From left to right, the snapshots are from t = 0, 1000, 2000,
and 3000. The green and red lines represent the interface of the two phases. The blue region represents 8 > 0.05. For interpretation of the references to color in this figure,
the reader is referred to the web version of this article. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

left to right, the snapshots represent t = 0, 1000, 2000, and 3000.
The green and red lines represent the interface of the two phases.
The blue region represents 8 > 0.05. We can see that the variable
Lagrangian multiplier B prevents the occurrence of self intersec-
tions. Furthermore, when the overlapping region is separated, 8
becomes smaller than 0.05. Finally, we propose the following mod-
ified multicomponent CH equation for multicomponent volume re-
construction:

3¢,

s = A[f(¢1) +/31(¢) - €2A¢1] +)‘ (% ¢1) for i= 1, ...,N‘ (9)

where

(%) = k?, if X is in the given slice data for ith component,
)0, otherwise.

Here, A? is a positive constant for the ith component. The zero
Neumann boundary conditions are applied: V¢;-n=0 on 9%,
where n is the unit normal vector to d€2. In the cross sections, the
different regions are classified as having different labels 1;, where
these labels represent the concentration of each component in the
system and satisfies

N
d =1
i—1

The fidelity term X;(y; —¢;) in Eq. (9) can be obtained by
a gradient flow under an [%-inner product for the energy,
Ja 21N=1 0.5 (¥; — ¢p;)%dx [31]. Taking a summation on both sides
of Eq. (9), we obtain

(10)

0= Zcza ¥ (A[£@0 +Bi@) - 2]+ 1t - )

i=1
AO( Y V- Y ).

0,

if X is in the given slice
data for ith component,
otherwise.

Here, we have applied Egs. (8) and (10), A? = A°, and the property

YN ¢i=1.
4. Numerical method

We employ the linearly stabilized splitting scheme introduced
by Eyre [32] with the Fourier-spectral method [33], which al-
lows for large time steps. We assume that there are N; slices
with Ny x Ny pixels on the 3D space 2 = (0, Ly) x (0,Ly) x (0, L;),
where Ny and Ny are even integers. Let N; = N; + (N; — 1)I, where
I is the number of slices inserted between consecutive slice data
sets. Note that if N;+ (N, —1)I is odd, then we set N, = (N, —

1)(I+1), which implies that we use I slices between any two
given successive slice data sets except for I — 1 slices for the first
two sets. Let xpm = (2m — 1)L/ (2Ny), yn= 2n—1)Ly/(2Ny), z, =
(2k—1)L;/(2N;), for T<=m=<Ny, 1<n<Ny, and 1<k<N,;, where
N; is an even integer. Furthermore, let ¢imnk be an approximation
of @i(xm, yn, 2, SAt), where At is the time step. The discrete cosine
transform d)s for p=1,....Nx, q=1,...,Ny,and r=1,...,N;

1,pqr
is defined as

X y Z
B pr = %pBaYr DD D D i COS(XmTT Ep) €OS (YT 1g) COS (2T Vr),

m=1n=1 k=1
where
- JINe, p=1 o= JIN,, q=1 '
v/ 2/Ny, 2 <p<Ny v 2/Ny, 2<q=<N
”y = JUN, =1
"T1J2/N,, 2<r<N,

The variables &, nq, and v, are defined as &, = (p —
(q—1)/Ly, and v, =
cosine transform is

/Ly, ng =
(r—1)/L;, respectively. The inverse discrete

N NN,

=33 ap By pgr COS(EpTxm) COS(NgTTYn) cOS (i ). (11)

p=1q=1r=1

i, mnk

We apply the linearly stabilized splitting scheme [32] to Eq. (9):

s+1
¢1 mnk

k
At lmn = (f(d)z mnk) 2d)is,mnk +2 is,:—n]rllc
+ /31 mnk 2A¢1§Tn11k)
+ )\-i,mnk(w‘i.mnk - ¢is,mnk)' (12)

Thus, Eq. (12) can be transformed into the discrete cosine space as
follows:

¢s+1
% = —[m)? + (gm)? + (i1 )?]
( i,pqr 2¢z pqr +2 f;:}r + 131 .pqr

+ )+ ) + ) IFE ) + B

Here, we have employed the discrete cosine transform for the
Laplacian operator, which is defined as

A por = —1EpT)? + (1g7)? + (170?195 -

Furthermore, fqur, ﬁqur, and g denote the discrete cosine

l pqr
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transforms of f(&7 ). B e @A Aj ok (Vi mnke — B5 ) TESPEC
tively. Therefore, we obtain the following discrete cosine transform

Fig. 6(a)-(c) show the slice data with 5% salt and pepper noise,
the initial shape with the interpolation, and the exact solution,

. B par + A& o — G2 + (1g7)% + (7 PIAL (g + Bior — 2655,)

PP 14 2[(6pm)? + (1g70)% + (1702 ] AL+ €2[(5,7)2 + (1g70)? + (vr70) 2P AL

The corresponding function ¢fjn1nk can be computed using Eq. (11).
The main contributions of the proposed method include the fol-
lowing. (i) The proposed method can construct 3D volumes with-
out artificial gaps and noises because it uses the multicomponent
CH system,; (ii) the proposed method can obtain 3D volumes with-
out overlapping regions and mismatched interfaces, because the
different regions are classified as having different labels, and our
method satisfies ZL ¢; = 1; (iii) the proposed numerical method
in Eq. (12) can achieve fast convergence; and (iv) the proposed al-
gorithm is simple to implement.

5. Numerical results

In this section, we present numerical examples that demon-
strate the efficiency and quality of our proposed multicomponent
volume reconstruction algorithm. In particular, we show that our
method easily handles topological changes, and performs quickly
with non-uniform and noisy data. We regard a numerical result
as a steady state solution if the relative error for every component,
ie., ||qi)iS+1 =& l2/1147 112 fori=1,...,N, is less than a tolerance tol.
Here, || - ||, denotes the discrete I,-norm. Unless otherwise speci-
fied, we set € = €y = m/[4v2tanh™'(0.9)]) [26], Ly = Ny, Ly = N,
and L, = N,. The last term in Eq. (9) is a fidelity term that enforces
that the updated value (¢) is equal to the given value (). Further-
more, X; balances the diffusion and fidelity terms. By ignoring the
effect of diffusion in Eq. (9), we obtain

b,
B i, (13)

Because Eq. (13) is a separable ordinary differential equation, i.e.,
Aidt + —L—d¢; = 0, we obtain the following solution with the ini-

P~
tial condition ¢;:
Gt = Wi+ e MG — ). (14)

As shown in Fig. 5, if A0 is larger than 5/At, then ¢St ~ ¢ for any
time, which implies that even smaller noises will remain present.
We can also derive that if A9 <0.1/At, then ¢**! differs more from
Y, which implies that the numerical solution obtained by our
proposed method cannot preserve the original topological shape.
Therefore, we suggest setting 0.1/At <0 <5/At.

10°

107" F

exp(—AoAt)

0 1 2 3 4 5
AoAt

Fig. 5. Logplot of e~*"Af via A0At.

respectively. By setting A9 =10 and € = €5, we can remove the
noise from the original volume and reconstruct a good volume
(see Fig. 6(d)). If A? is too large, then the fitting term is domi-
nant, and the restored volume tends to become the original one
with noise (see Fig. 6(e)). As shown in Fig. 6(f), if A9 is too small,
then the motion by diffusion is dominant, and the reconstructed
volume is overly smooth. For a fixed A0 = 10, we take the same
initial condition except for different € = €; and € = €59. From the
results shown in Fig. 6(g) and (h), we can observe that when € is
too small, the interfacial transition is too sharp. On the other hand,
if € is too large, then the details of the volume are lost. Therefore,
we set the time step At =0.1, A% =10, and tol = 0.001. For sim-
plicity, we define the volume of each component as {¢; > 1/2}. The
proposed algorithm is implemented in MATLAB and tested on a
3.4 GHz PC with 16GB main memory. The CPU time is measured in
seconds. Table 1 presents the information on the numbers of data
points, iteration numbers, and CPU times. We can observe that the
proposed method achieves fast convergence.

Fig. 7 shows the average CPU times (in seconds) against
NxNyN_log (NxNyN;). Here, the average CPU time is defined as the
total CPU time over all time iterations and the number of com-
ponents. To demonstrate the convergence rate, we present the fit-
ting plots together. The result suggests that our proposed method
achieves O(NxNyN_log (NxNyN,)) efficiency owing to the fast Fourier
transform solver.

The following numerical example is performed to demonstrate
the quality of our proposed method. Here, three synthetic func-
tions are implicitly defined, for which we can actually compute the
errors using a theoretical analysis:

¥ () = @nhl(25 — /(x— 40)2 1 (y - 90)2)/(VZe)]
¥ (%) = tanh[(12 — v/(x — 40)2 + (y — 40)2 + 0.12)/ (v2¢)],
¥ (%) = tanh[(32 —/(x— 90)2 + (y ~ 64)% + (2 -~ 64)2)/ (v/2¢)].

The domain 2 = (0, 128) x (0, 128) x (0, 130) is utilized. We take
26 slices obtained using the given synthetic function ¥ (x). We in-
sert four slices between any two consecutive slice data sets. The
simulation is run up to 11 iterations and takes 36.41 s, which im-
plies that our method achieves the reconstruction very quickly.
From left to right, the first two figures in Fig. 8 show the zero-
isosurfaces of the numerical solution from different views. The
second two figures present a comparison between the reference

Table 1

List of data information, iterations, numbers of components, and CPU times (sec-
ond). ‘CPU’ is the time required to process the volume reconstruction, I is the num-
ber of inserted slices between consecutive slice data sets, and ‘NC’ is the number of
components.

Case (Nx x Ny, Np) I Used Grid size Iteration NC CPU
Fig. 8 (128 x 128,26) 4 128x128x126 11 3 36.41
Fig. 10 (256 x 256,26) 4 256 x256x 126 8 5 108.72
Fig. 11(b) (164 x178,105) 1 164x178x208 15 2 103.18
Fig. 11(c) (164 x 178,53) 3 164x178x208 14 2 98.52
Fig. 11(d) (164 x 178,35) 5 164x178x204 17 2 129.85
Fig. 12(b) (236 x 342,28) 1  236x342x54 5 2 28.12
Fig. 12(c) (236x342,28) 5 236x342x162 20 2 117.45
Fig. 13 (168 x 210, 43) 4 168x210x210 6 2 92.13
Fig. 14 (128 x 128,33) 3 128x128x128 12 2 30.898
Fig. 15 (196 x 416,54) 3 196 x 416 x 212 18 3 234.80
Fig. 16 (370 x 270, 70) 2 370x270x208 10 5 353.85
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(e) \° = 50,

€ = €g

(f) \° = 0.01,

€ = €q

“

(2) \° = 10,

€ = €9

(h) A% = 10,

€ = €90

Fig. 6. Parameter sensitivity analysis for A? and €. (a) slice data with 5% salt and pepper noises. (b) initial shape with the interpolation. (c) exact solution. (d-h) reconstructed
volumes with different parameters. The adopted parameters are shown below each figure.
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Fig. 7. The average CPU time (seconds) vs NyN,N;log (NxNyN;).

(circle) and the numerical (solid) solutions in different planes. We
can see that the numerical results agree with the theoretical val-
ues.

Second, we consider the multicomponent volume reconstruc-
tion from two slice data sets (as shown in Fig. 9(a)), which is a
similar test presented in [17]. In [17], Huang et al. compared their
results with related multi-labeled methods [15,16], with which it
is difficult to create a single connected green structure that tun-
nels through the yellow structure. Huang's method [17] created a

geometrically valid material interface with the desired genus for
both labels. Our method also simultaneously satisfies the topolog-
ical requirements as shown in Fig. 9(b)-(d). The comparison with
Huang’s method [17] is in some way unfair because the algorithm
in [17] allows the human-computer interaction, such as by scrib-
bling. On the other hand, our approach can obtain the similar
results with simply solving the governing partial differential equa-
tions. Furthermore, the advantage of this approach is easy to im-
plementation and is guaranteed to produce well volume, because
only a partial differential equation should be solved. As a result,
our method can be incorporated into other processing, for exam-
ple volume segmentation and object recognition. A Fourier-spectral
method is performed for the discrete equation, therefore higher
computational efficiency can be obtained as shown in Table 1 and
Fig. 7. Our method is also compatibility with other numerical
methods such as finite difference method, finite element method,
finite volume method, etc.

Next, we consider five 3D linked tori, which are labeled with
different colors. Twenty-six slice data sets are used, and we insert
five slices between any two consecutive slice data sets. The results
are shown in Fig. 10. From left to right, the first and second two
figures show the initial shapes obtained by linear interpolation and
the final result for our proposed method, respectively. As can be
obtained in Fig. 10, we obtain a smoothly linked volume.

Next, we consider the effect of the number of slice data sets.
From the exact solution defined on the uniform domain and shown
in Fig. 11(a), we can choose different numbers of slice data sets as
the initial shape. We can fill the missing slices and reconstruct the
volume using the proposed method. Fig. 11(b)—(d) show the nu-
merical solutions with 105, 53, and 35 slice data sets, respectively.
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Fig. 8. Accuracy test for our method. From left to right, the first two figures show the zero-isosurface of the numerical solution from different views. The second two figures
present a comparison between the reference (circle) and numerical (solid) solutions in different planes.

(c)

(d)

Fig. 9. Comparison of a related multi-labeled method. (a) input two given slices. (b-d) volume reconstructed with our method in the whole domain and divided domain.

Note that a similar test was performed in [17].

o

Fig. 10. Volume reconstruction for five 3D linked tori. From left to right, the first and second figures show the initial shapes obtained by linear interpolation and the final

result for our proposed method, respectively.

Fig. 11. Comparison results with different numbers of slice data sets. (a) the exact solution on the uniform domain. (b), (c), and (d) show the reconstructed volumes with

105, 53, and 35 slice data sets, respectively.

For a small number of slice data sets, the solution is not of a high
quality. However, its qualitative correctness demonstrates the ro-
bustness and efficiency of our proposed method. Furthermore, we
can observe that as the number of slice data sets increases, the
structure of the armadillo becomes more sharply pronounced, and
is much closer to the exact solution.

Fig. 12 presents our reconstruction results for the dragon model.
Beginning with the same slice data as shown in Fig. 12(a), we can
reconstruct the volume on different mesh grids. The mesh grids in
Fig. 12(b) and (c) are of size 236 x 342 x 54 and 236 x 342 x 162,
respectively. The results suggest that even with a coarse grid we
can obtain a reasonably good reconstructed volume.
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Fig. 12. Reconstruction results for the dragon model. (a) slice data. (b) recon-
structed volume on a 236 x 342 x 54 mesh grid. (c) reconstructed volume on a
236 x 342 x 162 mesh grid.

In Fig. 13, we illustrate the volume reconstruction for slice
data with 10% random noise. Fig. 13(a) and (b) display the ex-
act solution and slice data with 10% random noise, respectively.
Fig. 13(c) and (d) show the initial shape with interpolation and the

I

(b)

reconstructed volume, respectively. We observe that the noise in
the bunny is effectively removed, and the resulting volumes are
smooth.

Fig. 14 shows the reconstructed volumes of triply-periodic
minimal surfaces, which have constant constant mean curvature
everywhere on the surface. Because the geometry of a triply
periodic minimal surface strongly influences the physical proper-
ties of the material, the triply-periodic minimal surface has been
widely employed for natural or man-made structures [34]. We gen-
erated initial configurations with the desired topology and 0.5 vol-
ume fraction using a modified Allen-Cahn equation [35]. Let ¢
and qﬁz denote the volume of the Schwarz diamond and Schoen’s
F-RD minimal surface, respectively. Then, we define the concentra-
tions of the two components ¢ and ¢, as follows:

_[1—¢,, ifdy >0.05and ¢+ > 1,
= {431 otherwise. (15)
¢2 = (ﬁz. (]6)

We choose 33 slices as the given slice data. There are three slices
between any two consecutive slices except for the first two sets,
between which we use two slices. The results in Fig. 14 suggest
that our proposed method can perform well for triply-periodic
minimal surfaces. The green and yellow regions represent the
Schwarz diamond and Schoen’s F-RD minimal surface, respectively.

The volume reconstruction results for a dragon model, which
has complex topology structures, are presented in Fig. 15. We ob-
serve that our proposed method can easily handle the complex ge-
ometric shapes, and the reconstructed volume is smooth.

Finally, we demonstrate the performance of our algorithm on
the thoracic organ data set. As shown in Fig. 16(a), the input slice
data are not well defined as some labels are created in image seg-
mentation processing. As shown in Fig. 16(b), the result demon-
strates the ability of our algorithm to smoothly reconstruct a com-
plex anatomical shape with real data sets.

(d)

Fig. 13. Volume reconstruction for the slice data with 10% random noise. (a) exact solution. (b) slice data with 10% random noises. (c) initial shape with interpolation. (d)

reconstructed volume.

Fig. 14. Volume reconstruction results of triply-periodic minimal surfaces. From left to right, we present the multicomponent volumes in the whole domain and divided
domain, respectively. The green and yellow regions represent the Schwarz diamond and Schoen’s F-RD minimal surface, respectively. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)



132 Y. Li, ]. Wang and B. Lu et al./Pattern Recognition 93 (2019) 124-133

(@)

(b)

Fig. 16. The thoracic organ data set. (a) initial shape with interpolated volume. (b) reconstruction.

6. Conclusion

We have proposed an efficient and robust algorithm to re-
construct the volumes of multi-labeled objects from sets of cross
sections. The proposed algorithm can handle cross sections in
which different regions are classified as having different labels. The
present study represents an extension of our previous work [11],
in which we modified the original CH equation by adding a fidelity
term to keep the solution close to the single-labeled slice data. The
CH equation is defined on R3, and achieves a smoothing effect so
that we obtain a smooth interpolating volume. The key idea of the
present work is to reconstruct multicomponent volumes without
self-intersections or gaps. The proposed numerical method, based
on operator splitting techniques, can employ a large time-step size.
Our algorithm is simple to implement. Many experimental results
have demonstrated the effectiveness of the proposed method. In
its current form, the algorithm creates a smooth surface and re-
duces outliers or noise, but it is difficult to achieve a high accu-
racy on a sharp surface. It should be noted that the solution to
the CH equation is in [0 —§,1+ 8], where § is a small value re-
lated to the thickness € [27,28]. As € — 0, § will become zero. In
practical simulations, € should not be too small. In future work,
we will present a modified multiphase CH equation that is strictly
contained in the interval [0, 1]. Furthermore, to speed up the com-
putation and improve the accuracy of the numerical solution, we
will investigate a GPU implementation, develop an adaptive mesh
refinement solver for the current algorithm, and apply the four-
color labeling method [36]. Another interesting direction for future
research would be to reconstruct multicomponent volumes from
unorganized planar cross sections.
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