
Physica A 387 (2008) 4787–4799

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A second-order accurate non-linear difference scheme for the
N-component Cahn–Hilliard system
Hyun Geun Lee, Junseok Kim ∗

Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 10 January 2008
Received in revised form 17 March 2008
Available online 28 March 2008

Keywords:
N-component Cahn–Hilliard
Nonlinear multigrid
Phase separation
Finite difference

a b s t r a c t

We consider a second-order conservative nonlinear numerical scheme for the N-
component Cahn–Hilliard system modeling the phase separation of a N-component
mixture. The scheme is based on a Crank–Nicolson finite-difference method and is solved
by an efficient and accurate nonlinear multigrid method. We numerically demonstrate
the second-order accuracy of the numerical scheme. We observe that our numerical
solutions are consistent with the exact solutions of linear stability analysis results. We also
describe numerical experiments such as the evolution of triple junctions and the spinodal
decomposition in a quaternary mixture. We investigate the effects of a concentration
dependent mobility on phase separation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider an efficient and accurate numerical method of a model for phase separation in a N-
component mixture. When a homogeneous system composed of N-components, at high temperature, is rapidly cooled
to a uniform temperature below a critical temperature, where it is unstable with respect to concentration fluctuations,
spinodal decomposition [7] takes place: The system separates into spatial regions rich in one component and poor in the
other components. It evolves into an equilibrium state with lower overall free energy [9].

Spinodal decomposition is of interest on two counts. First, it is one of the few solid-state transformations for which there
is any plausible quantitative theory. Second, from a practical viewpoint, spinodal decomposition is of interest because it
affords a means of producing a very finely dispersed structure that can enhance the properties of a material [22].

Most of the technologically important alloys are multi-component systems exhibiting multiple phases in their
microstructures. Moreover, one or more of these phases are formed as a result of phase transformations induced during
processing. Since the performance of these multi-component alloys depends crucially on the morphology of the phase, a
fundamental understanding of the kinetics of phase transformations is important for controlling the microstructures of
these multi-phase alloys [1].

Cahn [6] extended the van derWaals model [31] to time-dependent problems by approximating the interfacial diffusion
as being proportional to chemical potential gradients. Generalization of the Cahn–Hilliard (CH) equations to multi-
component systems appeared with de Fontaine [17] and Morral and Cahn [26]. Elliott and Luckhaus [15] gave a global
existence result under constant mobility and specific assumptions on the form of the free energy. Elliott and Garcke [13]
developed an existence theory for multi-component diffusion when the mobility matrix depends on the order parameters.
Differences betweenbinary andmulti-component alloyswere identified and the equilibriumanddynamic behavior ofmulti-
component systems were studied by Eyre [16].
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Although there are many numerical studies (see Refs. [2,10–12,14,18–20,29] and references therein) with binary CH
equation and ternary CH equation [4,9,16,25,28], much less has been conducted on the quaternary CH system. In Ref. [24],
vector-valued Allen-Cahn equations were considered. In Ref. [27], multi-component fluid mixtures were studied using
molecular dynamics. In Ref. [25], a finite difference method is used for the constant mobility. In Ref. [3], a finite element
approximation is used for the ternary CH system with a degenerate mobility matrix.

The purpose of this work is to consider a conservative second-order accurate nonlinear numerical method for the N-
component CH system with concentration dependent mobility for a N-component mixture.

The contents of this paper are as follows. In Section 2 we briefly review governing equations for phase separation in
a N-component system which takes a concentration dependence of the mobility. In Section 3 we consider a fully discrete
semi-implicit finite difference scheme and describe an efficient and accurate nonlinear multigrid V-cycle algorithm for the
N-component CH system. We present numerical experiments such as a second-order convergence test, comparison with a
linear stability analysis of the equations, the evolution of triple junctions, and phase separation in a quaternary mixture in
Section 4. Finally, in Section 5 we conclude.

2. Governing equations

We consider a system of a N-component mixture. Let ci = ci(x, t) for i = 1, . . . ,N be the mole fraction of the ith
component in the mixture as a function of space and time. Clearly the total mole fractions must sum to 1, i.e.,

c1 + c2 + · · · + cN = 1, (1)

so that, admissible states belong to the Gibbs N-simplex

GS :=

{
(c1, c2, . . . , cN) ∈ RN

∣∣∣∣∣ N∑
i=1

ci = 1, 0 ≤ ci ≤ 1 for i = 1, . . . ,N
}

.

Let c = (c1, c2, . . . , cN) be a vector valued phase field. Without loss of generality, we choose a Helmholtz free energy
functional F of a generalized Ginzburg-Landau form

F (t) = F (c(x, t)) =

∫
Ω

(
F(c) +

ε2

2

N∑
i=1

|∇ci|
2

)
dx, (2)

where Ω is an open domain in Rd (d ∈ N). The homogenous free energy is defined as F(c) =
1
4
∑N

i=1 c
2
i (1 − ci)2 and ε is the

gradient energy coefficient. The natural boundary condition for the N-component CH system is the zero Neumann boundary
condition:

∇ci · n = 0 on ∂Ω, (3)

where n is the unit normal vector to ∂Ω .
The time evolution of c is governed by the gradient of the energy with respect to the H−1

o inner product under the
additional constraint (1), which has to hold everywhere at any time. In order to ensure this last constraint, we use a variable
Lagrangemultiplierβ(c) [21] and set ∂F

∂c =

(
∂F
∂c1

, ∂F
∂c2

, . . . , ∂F
∂cN

)
= f(c) = (f (c1), f (c2), . . . , f (cN)), where f (c) = c(c−0.5)(c−1).

Let 1 = (1, . . . , 1) ∈ RN and ei be the vector of length N, which has a 1 only in the ith coordinate and zeros elsewhere. Using
a general smooth vector valued function ζ , we set

d = (d1, d2, . . . , dN) = ζ −
1
N

N∑
i=1
ζi1, then

N∑
i=1

di = 0.

Let

β(c) = −
1
N

N∑
i=1

f (ci). (4)

Then, we have the following

d
dη

F (c + ηd)|η=0 =
d
dη

∫
Ω

N∑
i=1

(
1
4
(ci + ηdi)

2(1 − (ci + ηdi))
2
+
ε2

2
|∇(ci + ηdi)|

2

)
dx

∣∣∣∣∣
η=0

=

∫
Ω

N∑
i=1

(
dif (ci) + ε2∇di · ∇ci

)
dx

=

∫
Ω

[
f(c) · ζ − f(c) ·

1
N

N∑
i=1
ζi1 + ε2

N∑
i=1

∇

(
ζi −

1
N

N∑
j=1
ζj

)
· ∇ci

]
dx

=

∫
Ω

[
f(c) · ζ + β(c)1 · ζ + ε2

N∑
i=1

(
∇ζi · ∇ci −

1
N

∇

N∑
j=1
ζj · ∇ci

)]
dx
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=

∫
Ω

(f(c) + β(c)1) · ζdx

+ ε2
N∑

i=1

[∫
∂Ω

(
ζi∇ci −

1
N

N∑
j=1
ζj∇ci

)
· nds −

∫
Ω

(
ζi∆ci −

1
N

N∑
j=1
ζj∆ci

)
dx
]

=

∫
Ω

(f(c) + β(c)1) · ζdx − ε2
∫
Ω

N∑
i=1

(
ζi∆ci −

1
N

N∑
j=1
ζj∆ci

)
dx

=

∫
Ω

(
f(c) − ε2∆c + β(c)1

)
· ζdx =

∫
Ω

(µ1,µ2, . . . ,µN) · ζdx,

where we have used the boundary condition (3). Nowwe get the chemical potential µ = (µ1,µ2, . . . ,µN) = f(c)− ε2∆c+

β(c)1 as the variational derivative of F with respect to c. The governing equations for the phase fields describe the rate
of each phase change in the system. Ensuring that the total free energy F decreases monotonically and the total mass is
conserved in time, these evolution equations can be derived from the gradient flow of F .

∂ci
∂t

= ∇ · (M(c)∇µi), (5)

µi = f (ci) − ε2∆ci + β(c), for i = 1, 2, . . . ,N, (6)

where

M(c) =

N∑
i<j

cicj

is the concentration dependent mobility. The mass conserving boundary condition for the system is

∇µi · n = 0 on ∂Ω . (7)

We differentiate the energy F and the total mass of each phase,
∫
Ω
cidx, to get

d
dt

F (t) =

∫
Ω

N∑
i=1

(
∂F(c)
∂ci

∂ci
∂t

+ ε2∇ci · ∇
∂ci
∂t

)
dx

=

∫
Ω

N∑
i=1

∂F(c)
∂ci

∂ci
∂t

dx +

∫
∂Ω

N∑
i=1
ε2∇ci · n

∂ci
∂t

ds −

∫
Ω

N∑
i=1
ε2∆ci

∂ci
∂t

dx

=

∫
Ω

N∑
i=1

(
∂F(c)
∂ci

− ε2∆ci

)
∂ci
∂t

dx =

∫
Ω

N∑
i=1

(µi − β(c))
∂ci
∂t

dx

=

∫
Ω

N∑
i=1
µi∇ · (M(c)∇µi)dx − β(c)

∫
Ω

N∑
i=1

∂ci
∂t

dx = −

∫
Ω

M(c)
N∑

i=1
|∇µi|

2dx ≤ 0

and
d
dt

∫
Ω

cidx =

∫
Ω

∂ci
∂t

dx =

∫
Ω

∇ · (M(c)∇µi) dx =

∫
∂Ω

M(c)∇µi · nds = 0,

where we used the mass conserving boundary condition (7). Therefore, the total energy is non-increasing in time (F (t) is a
Lyapunov functional of the N-component CH system) and the total mass of each phase is conserved. That is

F (t) ≤ F (0) and
∫
Ω

ci(x, t)dx =

∫
Ω

ci(x, 0)dx for i = 1, . . . ,N.

3. Numerical solution

Since cN = 1 − c1 − c2 − · · · − cN−1 for N-component systems, we only need to solve the equations with c1, c2, . . ., and
cN−1. Let c = (c1, c2, . . . , cN−1) and µ = (µ1,µ2, . . . ,µN−1). In the following numerical scheme and solution algorithm, we
restrict space dimensions to two for simplicity. The three-dimensional extension is straightforward.

3.1. Discretization

Let Ω = [a, b] × [c, d] ⊂ R2 be partitioned by

a = x 1
2

< x1+
1
2

< · · · < xNx−1+
1
2

< xNx+
1
2

= b,

c = y 1
2

< y1+
1
2

< · · · < yNy−1+
1
2

< yNy+
1
2

= d.
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For simplicity, we assume the above partitions are uniform in both directions and the grid size is h. We denote by Ωh =

{(xi, yj) : 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} a set of cell centered points (xi, yj) = ((xi− 1
2

+ xi+ 1
2
)/2, (yj− 1

2
+ yj+ 1

2
)/2).

Let cij and µij be approximations of c(xi, yj) and µ(xi, yj). We first implement the zero Neumann boundary condition (3)
by requiring that

Dxc 1
2 ,j = DxcNx+

1
2 ,j = Dyci, 12 = Dyci,Ny+

1
2

= 0,

Dxµ 1
2 ,j = DxµNx+

1
2 ,j = Dyµi, 12

= Dyµi,Ny+
1
2

= 0,

where the discrete differentiation operators are

Dxci+ 1
2 ,j = (ci+1,j − cij)/h and Dyci,j+ 1

2
= (ci,j+1 − cij)/h.

We then define the discrete Laplacian by

∆dcij = (Dxci+ 1
2 ,j − Dxci− 1

2 ,j + Dyci,j+ 1
2

− Dyci,j− 1
2
)/h

and the discrete l2 inner product by

(c,d)h = h2
Nx∑
i=1

Ny∑
j=1

(c1 ijd1 ij + c2 ijd2 ij + · · · + cN−1 ijdN−1 ij). (8)

We also define a discrete norm associated with (8) as

‖c‖2
= (c, c)h.

We redefine f(c) and 1 to f(c) = (f (c1), f (c2), . . . , f (cN−1)) and 1 = (1, . . . , 1) ∈ RN−1. We discretize Eqs. (5) and (6) in
time by the Crank–Nicolson algorithm:

cn+1
ij − cnij

∆t
= ∇d · (Mn+ 1

2 ∇dµ
n+ 1

2
ij ), (9)

µ
n+ 1

2
ij =

1
2
(ϕ(cn+1

ij ) + ϕ(cnij)) −
ε2

2
∆d(cn+1

ij + cnij), (10)

where the nonlinear function ϕ(c) = (ϕ1(c),ϕ2(c), . . . ,ϕN−1(c)) = f(c) + β(c)1.

3.2. The N-component Cahn–Hilliard system — a nonlinear multigrid method

In this section, we develop a nonlinear Full Approximation Storage (FAS)multigridmethod to solve the nonlinear discrete
system at the implicit time level. The nonlinearity, ϕ(c), is treated using one step of Newton’s iteration and a pointwise
Gauss-Seidel relaxation scheme is used as the smoother in the multigrid method. See the reference text [30] for additional
details. We use the same notations as this reference text.

Let us rewrite Eqs. (9) and (10) as follows.

N(cn, cn+1,µn+ 1
2 ) = (φn,ψn),

where the nonlinear system operator (N) is defined as

N(cn, cn+1,µn+ 1
2 ) =

(
cn+1

∆t
− ∇d · (Mn+ 1

2 ∇dµ
n+ 1

2 ),µn+ 1
2 −

1
2
ϕ(cn+1) +

ε2

2
∆dcn+1

)
and the source term is

(φn,ψn) =

(
cn

∆t
,
1
2
ϕ(cn) −

ε2

2
∆dcn

)
.

In the following description of one FAS cycle, we assume a sequence of grids Ωk (Ωk−1 is coarser than Ωk by a factor of 2).
Given the number ν of pre- and post- smoothing relaxation sweeps, an iteration step for the nonlinear multigrid method
using the V-cycle is formally written as follows:

FAS multigrid cycle

{cm+1
k ,µ

m+
1
2

k } = FAScycle(k, cnk, c
m
k ,µ

m−
1
2

k ,Nk,φ
n
k,ψ

n
k, ν) on Ωk grid.

That is, {cmk ,µ
m−

1
2

k } and {cm+1
k ,µ

m+
1
2

k } are the approximations of {cn+1
k (xi, yj),µ

n+ 1
2

k (xi, yj)} before and after an FAScycle. We

set the initial guess, c0k = cnk and µ
−

1
2

k = µ
n− 1

2
k . Now, we define the FAScycle.

Step 1 — Presmoothing:

{c̄mk , µ̄
m−

1
2

k } = SMOOTHν(cmk ,µ
m−

1
2

k ,Nk,φ
n
k,ψ

n
k) on Ωk grid.
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This means performing ν smoothing steps with initial approximations cmk and µm−
1
2

k to get the approximation {c̄mk , µ̄
m−

1
2

k }.
First, let us discretize Eq. (9) as a Gauss-Seidel type.

c̄mij
∆t

+

Mi+ 1
2 ,j + Mi− 1

2 ,j + Mi,j+ 1
2

+ Mi,j− 1
2

h2
µ̄

m−
1
2

ij = φn
ij +

Mi+ 1
2 ,jµ

m−
1
2

i+1,j + Mi− 1
2 ,jµ̄

m−
1
2

i−1,j + Mi,j+ 1
2
µ

m−
1
2

i,j+1 + Mi,j− 1
2
µ̄

m−
1
2

i,j−1

h2
, (11)

whereMi+ 1
2 ,j = M((cmij +cmi+1,j +cnij +cni+1,j)/4) and the other terms are similarly defined. Next, let us discretize Eq. (10). Since

ϕ(cn+1
ij ) is nonlinear with respect to cn+1

ij , we linearize ϕ(cn+1
ij ) at cmij , i.e.,

ϕ(cn+1
ij ) ≈ ϕ(cmij ) + (c̄mij − cmij )

∂ϕ(cmij )
∂c

, (12)

where

∂ϕ(cmij )
∂c

=



∂ϕ1

∂c1
(cmij )

∂ϕ2

∂c1
(cmij ) · · ·

∂ϕN−1

∂c1
(cmij )

∂ϕ1

∂c2
(cmij )

∂ϕ2

∂c2
(cmij ) · · ·

∂ϕN−1

∂c2
(cmij )

...
...

. . .
...

∂ϕ1

∂cN−1
(cmij )

∂ϕ2

∂cN−1
(cmij ) · · ·

∂ϕN−1

∂cN−1
(cmij )


.

Then, putting Eq. (12) in Eq. (10) results in

−c̄mij

(
∂ϕ(cmij )
2∂c

+
2ε2

h2

)
+ µ̄

m−
1
2

ij = ψn
ij +

1
2
ϕ(cmij ) − cmij

∂ϕ(cmij )
2∂c

−
ε2

2h2
(cmi+1,j + c̄mi−1,j + cmi,j+1 + c̄mi,j−1). (13)

One SMOOTH relaxation operator step consists of solving the system (11) and (13) by a 2(N − 1) × 2(N − 1) matrix
inversion for each ij. For example, as in our numerical tests in Section 4, for N = 4 case, we can rewrite Eqs. (11) and (13) as
a matrix form:



a11 0 0 a14 0 0
0 a22 0 0 a25 0
0 0 a33 0 0 a36
a41 a42 a43 a44 0 0
a51 a52 a53 0 a55 0
a61 a62 a63 0 0 a66





c̄1
m
ij

c̄2
m
ij

c̄3
m
ij

µ̄1
m−

1
2

ij

µ̄2
m−

1
2

ij

µ̄3
m−

1
2

ij


=



φ̄1
n

ij

φ̄2
n

ij

φ̄3
n

ij

ψ̄1
n

ij

ψ̄2
n

ij

ψ̄3
n

ij


, (14)

where

a11 = 1/∆t,

a14 = (Mi+ 1
2 ,j + Mi− 1

2 ,j + Mi,j+ 1
2

+ Mi,j− 1
2
)/h2,

a41 = −0.5∂ϕ(cmij )/∂c1 − 2ε2/h2,
a42 = −0.5∂ϕ(cmij )/∂c2,
a43 = −0.5∂ϕ(cmij )/∂c3,
a44 = 1,

and the other terms are similarly defined. Also, the right hand side of Eq. (14) is the right hand side terms in Eqs. (11) and
(13). Next, we will show that Eq. (14) is always invertible. An n × n matrix A is strictly diagonally dominant when

|aii| >
n∑

j=1,
j6=i

|aij| (15)

holds for each i = 1, 2, . . . , n. And a strictly diagonally dominantmatrix A is nonsingular [5]. By using themethod of Lagrange
multipliers, we can easily find the maximum value of M(c) =

∑4
i<j cicj subject to the constraint,

∑4
i=1 ci = 1. That is, when

c1 = c2 = c3 = c4 = 1/4, the maximum value of M(c) is 3/8. Therefore, |a11| > |0| + |0| + |a14| + |0| + |0| for ∆t < 2h2/3.
The maximum values of |0.5∂ϕ(cmij )/∂c1|, |0.5∂ϕ(cmij )/∂c2|, and |0.5∂ϕ(cmij )/∂c3| are 1/4, 3/32, and 3/32, respectively. An
equilibrium solution [23] of Eq. (6) in the infinite domain is

c1eq(x) =
1
2

(
1 + tanh

(
x

2
√
2ε

))
.
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We define the interface thickness to be the distance from c1eq = 0.05 to c1eq = 0.95 so that the equilibrium interface
thickness is 4

√
2ε tanh−1(0.9). Numerically, we want to have four or five grid points across the interface transition. Let

4
√
2ε tanh−1(0.9) ≈ 4h, then ε ≈ h/(

√
2 tanh−1(0.9)) ≈ h/2.08203. Therefore, the maximum value of |2ε2/h2| is less than

1/2 for ε ≤ h/2. Therefore, |a44| = 1 > 15/16 ≥ |a41| + |a42| + |a43| + |0| + |0|. In the same way, the inequality Eq. (15) is
satisfied for i = 2, 3, 5, and 6. Therefore, the matrix (14) is strictly diagonally dominant, i.e., nonsingular.

Step 2 — Compute the defect: (def
m

1 k,def
m

2 k) = (φn
k,ψ

n
k) − Nk(cnk, c̄

m
k , µ̄

m−
1
2

k ).

Step 3 — Restrict the defect and {c̄mk , µ̄
m−

1
2

k }:

(def
m

1 k−1,def
m

2 k−1, c̄
m
k−1, µ̄

m−
1
2

k−1 ) = Ik−1
k (def

m

1 k,def
m

2 k, c̄
m
k , µ̄

m−
1
2

k ).

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions. That is, coarse grid values are obtained by

averaging the four nearby fine grid values.
Step 4 — Compute the right-hand side:

(φn
k−1,ψ

n
k−1) = (def

m

1 k−1,def
m

2 k−1) + Nk−1(cnk−1, c̄
m
k−1, µ̄

m−
1
2

k−1 ).

Step 5 — Compute an approximate solution {ĉmk−1, µ̂
m−

1
2

k−1 } of the coarse grid equation on Ωk−1:

Nk−1(cnk−1, c
m
k−1,µ

m−
1
2

k−1 ) = (φn
k−1,ψ

n
k−1). (16)

If k = 1,we apply the smoothing procedure in Step 1 to obtain the approximate solution. If k > 1,we solve (16) by performing

a FASk-grid cycle using {c̄mk−1, µ̄
m−

1
2

k−1 } as an initial approximation:

{ĉmk−1, µ̂
m−

1
2

k−1 } = FAScycle(k − 1, cnk−1, c̄
m
k−1, µ̄

m−
1
2

k−1 ,Nk−1,φ
n
k−1,ψ

n
k−1, ν).

Step 6 — Compute the coarse grid correction (CGC):

v̂m
k−1 = ĉmk−1 − c̄mk−1, ŵm−

1
2

k−1 = µ̂
m−

1
2

k−1 − µ̄
m−

1
2

k−1 .

Step 7 — Interpolate the correction: (v̂m
k , ŵm−

1
2

k ) = Ikk−1(v̂
m
k−1, ŵ

m−
1
2

k−1 ).
The interpolation operator Ikk−1 maps (k − 1)-level functions to k-level functions. Here, the coarse values are simply

transferred to the four nearby fine grid points.
Step 8 — Compute the corrected approximation on Ωk:

cm, after CGC
k = c̄mk + v̂m

k , µ
m−

1
2 , after CGC

k = µ̄
m−

1
2

k + ŵm−
1
2

k .

Step 9 — Postsmoothing:

{cm+1
k ,µ

m+
1
2

k } = SMOOTHν(cnk, c
m, after CGC
k ,µ

m−
1
2 , after CGC

k ,Nk,φ
n
k,ψ

n
k) on Ωk grid.

This completes the description of a nonlinear FAScycle.

4. Numerical experiments — the quaternary Cahn–Hilliard system

In this section, we perform numerical experiments such as a convergence test, a linear stability analysis, the evolution
of triple junctions, and phase separation in a four component mixture. The extensions to higher systems than a quaternary
system are algebraically complex but conceptually straightforward.

The composition of a quaternary mixture (A, B, C, and D) can be mapped onto an equilateral tetrahedron whose corners
represent a 100% concentration of A, B, C or D as shown in Fig. 1(a). Mixtures with components lying on planes parallel
to the triangle, ∆BCD contain the same percentage of A: those with planes parallel to the triangle, ∆CDA have the same
percentage of B concentration: and analogously for the C and the D concentrations. In Fig. 1(a) and (b), the mixture at the
position marked ‘◦’ contains 20% A, 0.8 × 30% B, 0.8 × 60% C, and 0.8 × 10% D.

4.1. Convergence test

To obtain an estimate of the convergence rate, we perform a number of simulations for a sample initial problem on a set
of increasingly finer grids. The initial conditions are

c1(x, 0) = 0.25 + 0.01 cos(3πx) + 0.04 cos(5πx),
c2(x, 0) = 0.25 − 0.02 cos(2πx) + 0.01 cos(4πx),
c3(x, 0) = 0.25 + 0.03 cos(5πx) + 0.015 cos(3πx)
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Fig. 1. Gibbs tetrahedron.

Table 1
l2 convergence result

32–64 Rate 64–128 Rate 128–256 Rate 256–512

2.7910e−2 2.1412 6.3270e−3 2.0393 1.5393e−3 2.0103 3.8206e−4

on a domain, Ω = [0, 1]. The numerical solutions are computed on the uniform grids, h = 1/2n, and with corresponding
time steps, ∆t = 0.1 h for n = 5, 6, 7, 8, and 9. The calculations are run up to time T = 0.1 and ε = 0.005 is used.

We define the error to be the discrete l2-norm of the difference between that grid and the average of the next finer grid
cells covering it: eh/ h

2 i
:= chi − (c h

2 2i
+ c h

2 2i−1
)/2. The rate of convergence is defined as: log2(‖eh/ h

2
‖/‖e h

2 /
h
4
‖).

The errors and rates of convergence are given in Table 1. The results suggest that the scheme is indeed second order
accurate.

4.2. Linear stability analysis

In this section, we study the short-time behavior of a quaternarymixture. The partial differential Eqs. (5) and (6) wewish
to solve may be written as

∂c(x, t)
∂t

= ∆
(
ϕ(c) − ε2∆c

)
, where (x, t) ∈ Ω × (0, T]. (17)

Let the mean concentration take the formm = (m1,m2,m3). We seek a solution of the form

c(x, t) = m +

∞∑
k=1

cos(kπx)(αk(t),βk(t), γk(t)), (18)

where |αk(t)|, |βk(t)|, and |γk(t)| � 1. After linearizing ϕ(c) aboutm, we have

ϕ(c) ≈ ϕ(m) + (c − m)

∂c1ϕ1(m) ∂c1ϕ2(m) ∂c1ϕ3(m)
∂c2ϕ1(m) ∂c2ϕ2(m) ∂c2ϕ3(m)
∂c3ϕ1(m) ∂c3ϕ2(m) ∂c3ϕ3(m)

 . (19)

Substituting (19) into (17) and letting m1 = m2 = m3 = m for simplicity, then, up to first order, we have

∂c
∂t

= ∆c



18m2
− 9m + 1
2

3m(4m − 1)
2

3m(4m − 1)
2

3m(4m − 1)
2

18m2
− 9m + 1
2

3m(4m − 1)
2

3m(4m − 1)
2

3m(4m − 1)
2

18m2
− 9m + 1
2

− ε2∆2c. (20)

After substituting c(x, t) from Eq. (18) into (20), we getαk(t)
βk(t)
γk(t)

′

= A

αk(t)
βk(t)
γk(t)

 , A =

a b b
b a b
b b a

 , (21)

where ′ indicates the time derivative and

a =
−k2π2

2
(18m2

− 9m + 1) − ε2k4π4, b =
−3k2π2m(4m − 1)

2
.
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Fig. 2. The symbols ‘-o-’, ‘-�-’, and ‘-M-’ are numerical results that we are compared with the theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus),
respectively, with the initial conditions of Eqs. (22)–(24).

The eigenvalues of A are

λ1 = −
k2π2

2
(42m2

− 15m + 1 + 2ε2k2π2),

λ2 = λ3 = −
k2π2

2
(6m2

− 6m + 1 + 2ε2k2π2).

The solution to the system of ODEs (21) is given byαk(t)
βk(t)
γk(t)

 =
αk(0) + βk(0) + γk(0)

3

11
1

 eλ1t +
−αk(0) − βk(0) + 2γk(0)

3

−1
0
1

 eλ2t

+
−αk(0) + 2βk(0) − γk(0)

3

−1
1
0

 eλ2t.

In Fig. 2, we plot the evolution of the amplitudes as a function of time. The symbols ‘-o-’, ‘-�-’, and ‘-M-’ are numerical
results that we are compared with the theoretical values αk(t) (point), βk(t) (star), and γk(t) (plus), respectively, with the
initial conditions:

c1(x, 0) = 0.25 + 0.001 cos(3πx), (22)
c2(x, 0) = 0.25 + 0.002 cos(3πx), (23)
c3(x, 0) = 0.25 + 0.003 cos(3πx). (24)

Here, we used k = 3,m = 0.25, ε = 0.005, h = 1/256, ∆t = 0.1 h, and T = 200∆t. The numerical amplitudes are defined by

αn
k =

(
max
1≤i≤Nx

cn1(xi) − min
1≤i≤Nx

cn1(xi)
)/

2,

βn
k =

(
max
1≤i≤Nx

cn2(xi) − min
1≤i≤Nx

cn2(xi)
)/

2,

γn
k =

(
max
1≤i≤Nx

cn3(xi) − min
1≤i≤Nx

cn3(xi)
)/

2.

The results in Fig. 2 show that the linear stability analysis and numerical solutions are in good agreement in a linear
regime.

4.3. Triple junctions in a quaternary system

For a quaternary system, we calculate the evolution of triple junctions. In the first experiment for triple junctions, see
Fig. 3(a), we simulate how two T-shaped triple junctions approach a local equilibrium state. The initial angles at the triple
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Fig. 3. Temporal evolution of triple junctions. The times are t = 0, 15.63, and 390.63 (from left to right). Phase A is represented by the white region, phase
B by the gray region, phase C by the dark gray region, and phase D by the black region.

points are 90◦ and 180◦. A 128× 128 grid is used on the interval Ω = [0, 4] × [0, 4]. We choose h = 4/128,∆t = 0.4 h, and
ε = 0.01. We compute until the solution becomes numerically stationary. In Fig. 3 we display the evolution of the interface
at different times. The times are t = 0, 15.63, and 390.63 (from left to right). Phase A is represented by the white region,
phase B by the gray region, phase C by the dark gray region, and phase D by the black region. The second experiment starts
with three equal rectangular areas (Fig. 3(b)). In the third experiment, we simulate a non equal area case (Fig. 3(c)).

We note that for the three cases’ experiments, we observe that the triple junction angles approach the true value 120◦

as they approach local equilibrium states. This is due to the fact that in the total energy functional equation (2), F (c(x, t))
is symmetric and the interaction parameter ε is constant.

4.4. One dimensional spinodal decomposition — the phase separation of a four-component mixture

We perform a spinodal decomposition with the initial conditions:

c1(x, 0) = m1 + 0.01rand(x),
c2(x, 0) = m2 + 0.01rand(x),
c3(x, 0) = m3 + 0.01rand(x),
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Fig. 4. Time evolution of a quaternary system with average concentrations m = (m1,m2,m3) = ( 14 , 1
4 , 1

4 ) at time t = 0.0, 0.08, and 39.06 (from top to
bottom). The solid, dashed, dotted, and dash-dot lines are c1 , c2 , c3 , and c4 = 1 − c1 − c2 − c3 , respectively.

where themean concentration,m = (m1,m2,m3) = (1/4, 1/4, 1/4). The random number rand(x) is in [−1, 1] and has zero
mean. Some disturbance to the initially uniform concentrations is needed since c = m satisfies a local equilibrium solution
to Eqs. (9) and (10). The random disturbance is believed to be a physically reasonable approximation to thermal noise. A
256 grid is used on the interval Ω = [0, 2]. We choose h = 2/256,∆t = 0.1 h, and ε = 0.005. We arranged the pictures
in Fig. 4 with time increasing from the top to the bottom (t = 0.0, 0.08, and 39.06). The solid, dashed, dotted, and dash-dot
lines are c1, c2, c3, and c4 = 1− c1 − c2 − c3, respectively. The variable Lagrange multiplier β(c), Eq. (4), ensures that there is
no presence of the third phase at a two phase boundary when the mixture is close to an equilibrium state (Fig. 4(c)).

4.5. Two dimensional spinodal decomposition — the phase separation of a four-component mixture

Next, we study a phase separation via a spinodal decomposition of a quaternary mixture. In the simulations, the initial
conditions were random perturbations of maximum amplitude 0.05 of the uniform state c = m. The average compositions
of the first three phases were equal and the average composition of the fourth phase was varied. A 128 × 128 mesh was
used on the square domain Ω = [0, 4] × [0, 4] for the spatial discretization and a time step, ∆t = 1/128 was employed for
the time integration. We took ε = 0.015.

In the first experiment, the initial conditions were random perturbations of the uniform state m = (1/4, 1/4, 1/4). The
results are presented in Fig. 5(a). The area shown in white indicates the A phase region, while the gray, dark gray, and black
color regions stand for the B-rich, C-rich and D-rich domains, respectively. Since the composition is completely symmetric
with respect to the four components, all four phases have similar morphologies and evolution dynamics [8].
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Fig. 5. The temporal evolution of morphologies during a spinodal phase separation of a quaternary system with average composition (a) m =

(1/4, 1/4, 1/4), (b) m = (1/5, 1/5, 1/5), and (c) m = (1/6, 1/6, 1/6), respectively. Times are t = 4.69, 11.72, 39.84, and 117.19 (from left to right).
Phase A is represented by the white region, phase B by the gray region, phase C by the dark gray region, and phase D by the black region.

In the second experiment with m = (1/5, 1/5, 1/5), Fig. 5(b) shows the time evolution of the quaternary system. We
observe four phases in the early stages of spinodal decomposition. As shown for time t = 4.69, the c1 + c2 + c3 and c4 phases
appear as interconnected at the initial stages of decomposition, which is very similar to what is observed in binary systems.

In the third experiment with m = (1/6, 1/6, 1/6) (Fig. 5(c)), initially, we see four phases, one of them dominated by c4.
The evolution of the system is in the direction of c1 + c2 + c3 and c4.

4.6. Two dimensional spinodal decomposition — the phase separation of a four-component mixture with a variable mobility

The numerical test in this section highlights the effect of a concentration dependentmobility. To account for the different
mobilities between different components, we consider a mobility M(c) associated with all possible pairs of phases.

M(c) = c1c2 +
1
3
c1c3 +

1
9
c1c4 +

1
27

c2c3 +
1
81

c2c4 +
1

243
c3c4. (25)

A 256 × 256 mesh was used on the square domain Ω = [0, 8] × [0, 8] for the spatial discretization and a time step,
∆t = 0.1/256 was employed for the time integration. We took ε = 0.015.

For the initial data, we used are shown in Fig. 6(a). Here, ci and cj mean that on that region, ci = 0.5 + 0.01rand(x, y)
and cj = 1 − ci. In Fig. 6(b), the mobility M(c), Eq. (25), is given at the initial time. Fig. 7 shows the temporal evolution of
morphologies during a spinodal phase separation of a quaternary system with a concentration dependent mobility ((a) c1,
(b) c2, (c) c3, and (d) c4). Rows 1 and 2 correspond to t = 0.0977 and 1.9531, respectively. As we expect from the form of the
mobility M(c), we find the morphology transitions in Fig. 7.

5. Conclusions

We considered a fully discrete semi-implicit finite difference scheme for the N-component CH system with a
concentration dependentmobility and solved the resulting scheme by an efficient and accurate nonlinearmultigridmethod.
We carried out numerical experiments such as a second-order convergence test, comparison with linear stability analysis,
and evolution of triple junctions. We have also investigated phase separation via spinodal decomposition with a constant
and degenerate concentration dependent mobilities in a quaternary system.
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Fig. 6. (a) Initial configuration. (b) Mobility, M(c) at time zero.

Fig. 7. The temporal evolution of morphologies during a spinodal phase separation of a quaternary system with a concentration dependent mobility ((a)
c1 , (b) c2 , (c) c3 , and (d) c4). Rows 1 and 2 correspond to t = 0.0977 and 1.9531, respectively.
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