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a b s t r a c t 

In this article, we propose a new landscape fitted domain construction and its boundary treatment of 

periodic travelling wave solutions for a diffusive predator-prey system with landscape features. The pro- 

posed method uses the distance function based on an obstacle. The landscape fitted domain is defined as 

a region whose distance from the obstacle is positive and less than a pre-defined distance. At the exterior 

boundary of the domain, we use the zero-Neumann boundary condition and define the boundary value 

from the bilinearly interpolated value in the normal direction of the distance function. At the interior 

boundary, we use the homogeneous Dirichlet boundary condition. Typically, reaction-diffusion systems 

are numerically solved on rectangular domains. However, in the case of periodic travelling wave solu- 

tions, the boundary treatment is critical because it may result in unexpected chaotic pattern. To avoid 

this unwanted chaotic behavior, we need to use sufficiently large computational domain to minimize the 

boundary treatment effect. Using the proposed method, we can get accurate results even though we use 

relatively small domain sizes. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many mathematical models for spatial dynamics of predator- 

rey populations have considered that populations are distributed 

n uniform environments. However, landscape features can signif- 

cantly inhibit the migration of the populations [1] . The authors 

n Sherratt et al. [2] studied the effects of the size and shape 

f landscape features on the standard predator-prey dynamics us- 

ng periodic travelling waves. They showed that the size rather 

han the shape of an obstacle determines the property of wave- 

orming. Babloyantz and Sepulchre [3] studied wave propagation 

n oscillatory media with obstacles. They showed that waves can 

nly propagate to windows if the windows’ width exceeds the 

ritical width, and waves that propagate to two neighboring win- 

ows of different width can affect each other. In [4] , the au- 

hors performed systematic studies on how obstacle size affects 

he wavelength and amplitude of the selected waves. They de- 

ived a leading order approximation to the wave generated by the 

andscape feature, using perturbation theory. As a result, the au- 
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hors showed that on a flat boundary, the limit values of ampli- 

ude and wavelength are not exponentially approaching, however 

ather algebraically approaching with distance from the edge of an 

bstacle. In [5] , the authors studied the travelling wave solution 

or a reaction-diffusion system. For the regular periodic travelling 

ave solutions in spatio-temporal oscillations, a numerical algo- 

ithm was proposed to detect one-period of travelling wave solu- 

ions. Garvie et al. [6] studied with spatially extended predator- 

rey dynamics using the finite element method (FEM) on two- 

imensional arbitrarily shaped domains and presented ecologically 

elevant experiments to investigate the effects of habitat shapes, 

oundary conditions, and initial conditions determining the spatio- 

emporal dynamics. In [7] , a reaction-diffusion model was investi- 

ated for the condition which has a unique positive constant solu- 

ion, the property of the equation for the large time behaviors of 

he nonconstant solutions, and asymptotic stability of the positive 

onstant solution. In [8] , reaction-diffusion equations were cho- 

en to mathematically describe the spread of alien species. Here, 

he authors noted the study of patterns and proportions of in- 

asive species in complex domains rather than in open domains. 

pecifically, an H-shaped domain with two rectangular habitats 

onnected by a narrow passage was considered. Through numer- 

cal simulations with various initial conditions and parameters, it 
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110300&domain=pdf
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/~cfdkim/
https://doi.org/10.1016/j.chaos.2020.110300


S. Kim, J. Park, C. Lee et al. Chaos, Solitons and Fractals 139 (2020) 110300 

w

r

u

f

t

o

i

i

l

r

w

e

m

t

i

t

t

e

t

r

i

b  

c

p

c

t

s

(

i

o

u

w

m

s

i

b

c

f

l

r

b

d

f

a

a

u

a

r

 

p

m

t

2

e

 , 

 

w

p

v

n  

r  

E

a

 

3

 

d

t

(

g  

(  

c  

y  

v  

t

F

φ

T

F

�

W

w

u

c

e

b

v  

w

n

w

 

l  

H  

d  

l

s  

b  

t

b

N

as found that the complex domain produced important pattern 

esults of spreading species. Yue et al. [9] considered a new irreg- 

lar domain, using a new space-time radial basis function method, 

or a nonhomogenous convection-diffusion model. The authors in- 

roduced the new space-time method from distance perspective on 

bjects and presented the numerical results showing its efficiency 

n solving long-time and large-scale problems. Sherratt [10] stud- 

ed the numerical continuation methods for the periodic travel- 

ing waves. Sherratt described the calculation of boundaries in pa- 

ameter space for the existence and stability of periodic travelling 

aves in the Klausmeier model for banded vegetation in semi-arid 

nvironments. In [11,12] , the authors studied a reaction-diffusion 

odel of cardiac excitation that exhibits spiral wave instability in 

he two-dimensional spatial domains. To describe the spiral wave 

nstability, they presented numerically the existence of periodic 

ravelling wave solution and the emergence of a stable spiral pat- 

ern before the bifurcation point. A recent discovery of the veg- 

tation in the form of a spiral in arid dryland is drawing atten- 

ion. Interpretation of phenomena appearing in the vegetation spi- 

al and numerical modeling regarding the observation was stud- 

ed [13] . However, the vegetation spiral is not only not a wave, 

ut it also does not rotate. According to Bordeu et al. [14] , the

urvature instability which affects the circular-shaped vegetation 

atch leads to the elliptical-shaped of the vegetation patch. Re- 

ently, Smith et al. [15] investigated the damage and recovery of 

wo-dimensional reaction-diffusion wavefronts with obstacles. By 

olving the Tyson–Fife model with the finite difference method 

FDM), they presented the numerical simulation results with var- 

ous obstacles and their conditions (shape, size, aspect ratio, and 

rientation). They found that the recovery of the wave could be 

tilized to explain the effect of imbalance on the recovery of the 

avefront in cardiac tissue. 

Commonly, chaotic dynamics can occur with some range of 

odel parameter values [16–19] . However, when predator-prey 

ystems are numerically solved on rectangular domains, especially 

n the case of periodic travelling wave solutions, the appropriate 

oundary treatment is critical because it may result in unexpected 

haotic patterns that are not from the governing equations but 

rom the numerical errors. To resolve the reflective boundary prob- 

ems, in this paper, we propose a novel numerical method for pe- 

iodic travelling wave solutions for predator-prey systems on ar- 

itrarily shaped landscape domains. In the proposed method, we 

efine a distance function based on an obstacle. Using the distance 

unction, the landscape fitted computational domain is defined as 

 region whose distance from the obstacle is positive and less than 

 pre-defined distance. At the exterior boundary of the domain, we 

se the zero-Neumann boundary condition and define the bound- 

ry value from the bilinearly interpolated value in the normal di- 

ection of the distance function. 

The rest of the paper is structured as follows. In Section 2 , the

redator-prey system is presented. In Section 3 , the proposed nu- 

erical method is described in detail. In Section 4 , several compu- 

ational results are presented. Conclusions are given in Section 5 . 

. The governing system 

In this article, we consider the following reaction-diffusion 

quations [1] : 

∂u 

∂t 
( x , t) = D u �u (x , t) + 

aku (x , t) v (x , t) 

1 + k v (x , t) 
− bu ( x , t) , x ∈ �, t > 0

(1) 

∂v 
∂t 

(x , t) = D v �v (x , t) + rv (x , t) 

(
1 − v (x , t) 

v 0 

)
− cku (x , t) v (x , t) 

1 + k v (x , t) 
,

(2) 
2 
here � ⊂ R 

2 is a domain, u and v are predator and prey 

opulations, respectively. This model is based on the field 

ole (prey)–weasel (predator) interaction. Let us define the 

on-dimensional parameters as u ∗ = uc/ (rh 0 ) , v ∗ = v / v 0 , t ∗ =
 t, x ∗ = 

√ 

r /D v x , δ∗ = D u /D v , A 

∗ = a/b, B ∗ = r/a, C ∗ = k v 0 . Then,

qs. (1) and (2) become the following non-dimensional equations 

fter dropping the asterisks: 

∂u 

∂t 
(x , t) = δ�u (x , t) + 

u (x , t) 

AB 

(
ACv (x , t) 

1 + Cv (x , t) 
− 1 

)
, (3) 

∂v 
∂t 

(x , t) = �v (x , t) + v (x , t) ( 1 − v (x , t) ) − Cu (x , t) v (x , t) 

1 + Cv (x , t) 
. (4)

. Numerical method 

We define a rectangular domain � = (L x , R x ) × (L y , R y ) embed-

ing an obstacle region, �o , see Fig. 1 (a). Let us discretize the 

wo-dimensional domain � using a uniform spatial step size h = 

R x − L x ) /N x = (R y − L y ) /N y , where N x and N y are positive inte- 

ers. Let �h = { (x i , y j ) | x i = L x + (i − 1) h, 1 ≤ i ≤ N x and y j = L y +
j − 1) h, 1 ≤ j ≤ N y } be a discrete domain and �h 

o be the dis-

rete obstacle domain. The numerical solutions to u ( x, y, t ) and v ( x,

, t ) are approximated at cell-corners by u n 
i j 

≡ u (x i , y j , n �t) and

 

n 
i j 

≡ v (x i , y j , n �t) , where �t is the temporal step size. We define

he unsigned discrete distance function φij on �h from �h 
o (see 

ig. 1 (c)), i.e., 

i j = min 

(x p , y q ) ∈ �h 
o 

√ 

(x i − x p ) 2 + (y j − y q ) 2 , 1 ≤ i ≤ N x and 1 ≤ j ≤ N y . 

hen, we define the discrete computational domain �h 
c (see 

ig. 1 (d)) as 

h 
c = ∪ 

0 <φi j <d 
{ (x i , y j ) } , for some d > 0 . (5) 

e solve the following discrete Eqs. (6) and (7) on �h 
c : 

u 

n +1 
i j 

− u 

n 
i j 

�t 
= δ�d u 

n 
i j + 

u 

n 
i j 

AB 

(
ACv n 

i j 

1 + Cv n 
i j 

− 1 

)
, (6) 

v n +1 
i j 

− v n 
i j 

�t 
= �d v n i j + v n i j 

(
1 − v n i j 

)
−

Cu 

n 
i j 
v n 

i j 

1 + Cv n 
i j 

, (7) 

here the discrete Laplacian is defined as �d u 
n 
i j 

= (u n 
i +1 , j 

+ u n 
i −1 , j 

+ 

 

n 
i, j+1 

+ u n 
i, j−1 

− 4 u n 
i j 
) /h 2 . The computational domain boundary ∂�h 

c 

onsists of two types of boundaries: obstacle boundary ∂�h 
o and 

xterior boundary ∂�h 
e , i.e., ∂�h 

c = ∂�h 
o ∪ ∂�h 

e . At the obstacle 

oundary, we set the zero Dirichlet boundary condition as u n 
i j 

= 

 

n 
i j 

= 0 for (x i , y j ) ∈ ∂�h 
o . On the exterior boundary (x i , y j ) ∈ ∂�h 

e ,

e compute the inward unit normal vector 

 = − ∇ d φi j 

|∇ d φi j | , (8) 

here ∇ d φi j = 

(
(φx ) i j , (φy ) i j 

)
= 

(
φi +1 , j −φi −1 , j 

2 h 
, 

φi, j+1 −φi, j−1 

2 h 

)
. 

We define u n 
i j 

= u n ((x i , y j ) + Hn ) , where H is an interpolation

ength and should be greater than 

√ 

2 h to make sure that (x i , y j ) +
n is surrounded by four interior points of a unit cell in �h 

c . To

efine the value of u n ((x i , y j ) + Hn ) , we use the bilinear interpo-

ation from the values at the four points of the unit cell. Using the 

ame procedure, we compute v n 
i j 

= v n ((x i , y j ) + Hn ) at the exterior

oundary (x i , y j ) ∈ ∂�h 
e , see Fig. 1 (e). In previous studies [1,2,4] ,

he boundary conditions are chosen as zero densities (Dirichlet 

oundary condition) at the edge of the obstacle and zero flux (zero 

eumann boundary condition) at the edge of the whole domain. 
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Fig. 1. Schematic of (a) whole domain embedding the given obstacle region, (b) discretization of the whole domain which has the obstacle region, (c) mesh plot of distance 

function from the given obstacle region, (d) computational domain, and (e) normal vector from the ghost point. 
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. Numerical experiments 

In this section, we demonstrate the robustness and accuracy of 

he proposed method through several numerical experiments. The 

uthors in Sherratt et al. [1] showed that the generation of regu- 

ar and irregular periodic waves by obstacles according to model 

arameters. First, we perform the same experiments presented in 

herratt et al. [1] . We use the spatial step size h = 0 . 5 and tempo-

al step size �t = 0 . 01 on the domain � = (0 , 400) × (0 , 400) . We

ake a square obstacle with an edge length of 20 and is located in

he center of the computational domain �. The parameter values 

 = 1 . 8 , B = 1 . 2 , and δ = 2 are used. In this paper, unless other-

ise stated, the initial condition is given as 

 (x, y, 0) = rand (x, y ) and v (x, y, 0) = rand (x, y ) for (x, y ) ∈ �h 
c , (9) 

here rand( x, y ) is a uniform random number between 0 and 1. 

ig. 2 (a) and (b) show the distributions of prey ( v ) and predator
ig. 2. Travelling wave solutions with an obstacle at time t = 10 0 0 : (a) and (b) are dis

istributions of prey ( v ) and predator ( u ), respectively, with C = 6 . Here, A = 1 . 8 , B = 1 . 2 ,

3 
 u ), respectively, at time t = 10 0 0 with C = 4 . 9 . Fig. 2 (c) and (d)

how the distributions of prey ( v ) and predator ( u ), respectively, 

t time t = 10 0 0 with C = 6 . We obtain the qualitatively similar

esults, i.e., regular and irregular patterns, to those previously re- 

orted in Sherratt et al. [1] . 

.1. Effect of domain 

In this section, we check the domain size effect for the 

ame obstacle. We use the spatial step size h = 0 . 5 and tempo-

al step size �t = 0 . 01 on the domain � = (0 , 400) × (0 , 400) , (0,

0 0) × (0, 80 0), and (0, 160 0) × (0, 160 0). We take a square ob-

tacle with an edge length of 20. The parameter values used are 

 = 1 . 8 , B = 1 . 2 , δ = 2 , C = 6 . Fig. 3 (a)–(c) show the numerical

esults on the computational domain � = (0 , 400) × (0 , 400) , (0, 

00) × (0, 800), and (0, 1600) × (0, 1600), respectively. From top 

o bottom, each row is the simulation results at t = 30 0 , 80 0 ,
tributions of prey ( v ) and predator ( u ), respectively, with C = 4 . 9 ; (c) and (d) are 

 and δ = 2 are used. 
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Fig. 3. Temporal evolution of reaction-diffusion system. From top to bottom, each row is the simulation results at t = 30 0 , 80 0 , and 130 0, respectively. (a), (b), and (c) are 

the results on the computational domain � = (0 , 400) × (0 , 400) , (0, 800) × (0, 800), and (0, 1600) × (0, 1600), respectively. 
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nd 1300, respectively. We can observe that the chaotic pattern 

nly occurs on the smallest domain � = (0 , 400) × (0 , 400) at t =
00 . Furthermore, at later time t = 1300 , the chaotic pattern is 

bserved in both the domains � = (0 , 400) × (0 , 400) and � = 

0 , 800) × (0 , 800) . These results suggest that the chaotic pattern 

an be generated from the numerical treatment of the exterior 

oundary condition. 

.2. Numerical experiments with the proposed method 

In this section, we perform several numerical experiments to 

emonstrate the proposed method can produce a regular periodic 

ave pattern on a relatively small computational domain. Unless 

therwise stated, we use the spatial step size h = 0 . 5 on the do-

ain � = (0 , 400) × (0 , 400) , temporal step size �t = 0 . 01 , and

odel parameters A = 1 . 8 , B = 1 . 2 , δ = 2 , C = 6 . 

The first example is the square obstacle with an edge length 

f 20. Fig. 4 (a)–(c) show the temporal evolution of the solutions of 

rey ( v ) at t = 30 0 , 90 0, and 150 0, respectively. We can clearly ob-

erve the periodic travelling wave solutions for a reaction-diffusion 

ystem on the square fitted domain. 
4 
The regular and irregular periodic waves are generated by an 

bstacle according to model parameters. The proposed method is 

esigned to avoid unwanted chaotic behavior caused by domain 

oundary effects. Therefore, there are a set of parameters that gen- 

rate irregular patterns according to model parameters. Fig. 5 (a)–

c) show the temporal evolution of the solutions of prey ( v ) at 

 = 30 0 , 90 0, and 150 0, respectively. Here, A = 3 . 1 , B = 1 . 2 , δ = 2 ,

nd C = 6 are used. We can observe the chaotic wave solutions for 

 reaction-diffusion system on the square fitted domain. 

The second example is the large scale landscape obstacles such 

s the Kielder Water in northern Britain and the Lake Inari in 

ennoscandia. This computational experiment demonstrates that 

he proposed numerical method produces the regular periodic dy- 

amics for a reaction-diffusion system with complex geometric 

andscapes. The Kielder Forest is located on the border between 

ngland and Scotland and surrounds the Kielder Water. The Kielder 

orest is a representative example of a study of periodic waves 

n a population. Spatio-temporal patterns, similar to periodic trav- 

lling waves, were observed in natural populations such as field 

ole living in the Kielder Forest [20] . The pattern moves in a line

bout 72 ◦ from the north and its direction is almost orthogonal 
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Fig. 4. Temporal evolution of reaction-diffusion system with a square obstacle. (a), (b), and (c) are the solutions of prey ( v ) at t = 300 , 900, and 1500, respectively. 

Fig. 5. Temporal evolution of reaction-diffusion system with a square obstacle. (a), (b), and (c) are the solutions of prey ( v ) at t = 30 0 , 90 0, and 150 0, respectively. Here, 

A = 3 . 1 , B = 1 . 2 , C = 6 , and δ = 2 are used. 
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o the Kielder Water. Meanwhile, the lake Inari is located on the 

orthern part of Lapland and surrounded by forests mostly com- 

osed of pine. The lake Inari has received attention for the cycle in 

he population of microtine rodents. The population of rodents in 

ake Inari was observed like periodic travelling waves [16] . There- 

ore, the above two examples can be thought of as obstacles in 

n environment in which natural periodic waves are observed. As- 

uming that these patterns were caused by predator-prey relation- 

hips, studies for periodic travelling waves were conducted based 

n the predator-prey models [5,21] . The first and second rows in 

ig. 6 are the experimental results for the Kielder Water and the 

ake Inari, respectively. Fig. 6 (a)–(c) show the temporal evolution 

f the solutions of prey ( v ) at t = 300 , 800, and 1300, respectively.

e can clearly observe the periodic travelling wave solutions for a 

eaction-diffusion system on the complicated geometric landscape 

tted domain. 

The third example is the travelling wave solution for three ob- 

tacles of different shapes. The obstacles are triangle, square, and 

isk of different sizes. Depending on the size of the obstacle, dif- 

erent waves are generated, and the periodic travelling wave solu- 

ion with three obstacles is dominated by waves generated by the 

argest obstacle. Fig. 7 (a)–(c) show the temporal evolution of the 

olutions of prey ( v ) at t = 300 , 800, and 1300, respectively. We

an clearly observe that the periodic travelling wave solutions for 

 reaction-diffusion system on the fitted domain for the obstacles 

f various shapes. 

Finally, we consider the spatially varying parameters in 

eaction-diffusion system. We used diffusion coefficient δ(x, y ) = 

 . 2 on 0 ≤ y < 200 and δ(x, y ) = 2 on 200 ≤ y ≤ 400 to con-

ider spatial inhomogeneity, as illustrated in Fig. 8 (a). Fig. 8 (b) 

hows the snapshot of the solutions of prey ( v ) at t = 1300 . We
5 
an clearly observe the different solution patterns for a reaction- 

iffusion system on the fitted domain for the obstacles with inho- 

ogeneity. 

We have used the FDM to solve the reaction-diffusion equa- 

ions. Furthermore, we can also use the FEM and perform the same 

umerical tests. Fig. 9 shows the solutions that are patterns of prey 

 v ) using Freefem++ which is the free software package to solve 

artial differential equations in FEM. We can clearly observe that 

he periodic travelling wave solutions for a reaction-diffusion sys- 

em on the fitted domain for the obstacles of various shapes using 

EM. 

.3. Comparison circular domain with the proposed method 

In this section, we perform numerical experiments to compare 

he solution pattern of the reaction-diffusion system on landscape 

tted domain and on the simple domain as a circular exterior 

oundary. We use the spatial step size h = 0 . 5 on the domain

= (0 , 400) × (0 , 400) , temporal step size �t = 0 . 01 , and model

arameters A = 1 . 8 , B = 1 . 2 , δ = 2 , C = 6 . 

The first example is the square obstacle with an edge length of 

0. Fig. 10 (a) and (b) show the snapshots of the solutions of prey 

 v ) at t = 1500 on the circular domain and the landscape fitted do-

ain, respectively. We can clearly observe the periodic travelling 

ave solutions for a reaction-diffusion system on the two domains. 

The second example is the triangle obstacle. Fig. 11 (a) and (b) 

how the snapshots of the solutions of prey ( v ) at t = 1400 on

he circular domain and the landscape fitted domain, respectively. 

 regular wave pattern is generated with the square obstacle on 

he circular domain in Fig. 10 (a) while an irregular wave pattern 

s generated with the triangular obstacle on the circular domain 
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Fig. 6. Temporal evolutions of reaction-diffusion system with the Kielder Water in northern Britain (top row) and the Lake Inari in Fennoscandia (bottom row). (a), (b), and 

(c) are the solutions of prey ( v ) at t = 300 , 800, and 1300, respectively. 

Fig. 7. Temporal evolutions of reaction-diffusion system with three obstacles of different shapes. (a), (b), and (c) are the solutions of prey ( v ) at t = 30 0 , 80 0, and 130 0, 

respectively. 

Fig. 8. (a) Illustration of spatially varying diffusion coefficient δ and (b) snapshot of the numerical solutions of prey ( v ) with inhomogeneous diffusion coefficient on the 

fitted domain for the Kielder water at t = 1300 . 

6 
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Fig. 9. Using Freefem++, snapshots of the solutions with obstacles, a square and the Kielder Water. 

Fig. 10. Snapshots of the solutions of prey ( v ) with the square obstacle at t = 1500 on (a) the circular domain and (b) the landscape fitted domain. 

Fig. 11. Snapshots of the solutions of prey ( v ) with the triangle obstacle at t = 1400 on (a) the circular domain and (b) the landscape fitted domain. 
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n Fig. 11 (a). However, we can observe the regular periodic trav- 

lling wave solutions for a reaction-diffusion system on the pro- 

osed method, i.e., on the landscape fitted domain in Figs. 10 (b) 

nd 11 (b). If the pattern shape formed by the obstacle is similar to 

 circle, the patterns on the circular domain and landscape fitted 

omain are generated a regular wave pattern, but if not, an irregu- 

ar wave pattern is generated on the circular domain. The proposed 

ethod generated the periodic travelling wave pattern on the arbi- 

rary obstacle with model parameter A = 1 . 8 , B = 1 . 2 , δ = 2 , C = 6 . 
7 
.4. Vegetation model 

In this section, we consider the Klausmeier model [17] on a do- 

ain �: 

∂w 

∂t 
(x , t) = A − Lw (x , t) − Rw (x , t) u 

2 (x , t) + V 

∂w 

∂x 
(x , t) , (10)

∂u 

(x , t) = RJw (x , t) u 

2 (x , t) − Mu (x , t) + D �u (x , t) , (11)
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Fig. 12. Vegetation patterns on the landscape with and without an obstacle: (a) and (b) are distributions of vegetation biomass ( u ) without an obstacle at t = 100 and 

t = 10 0 0 , respectively; (c) and (d) are distributions of vegetation biomass ( u ) with an obstacle at t = 100 and t = 10 0 0 , respectively. Here, �t = 1 , h = 4 , A = 2 , M = 

0 . 45 , V 0 = 182 . 5 and N x = N y = 50 are used. 
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here x = (x, y ) ∈ � ⊂ R 

2 , t > 0, and w and u are water resource

nd vegetation biomass, respectively. Let us define the non- 

imensional parameters as w 

∗ = R 1 / 2 L −1 / 2 Jw , u ∗ = R 1 / 2 L −1 / 2 u, t ∗ =
t, x ∗ = L 1 / 2 D 

−1 / 2 x , A 

∗ = AR 1 / 2 L −3 / 2 J, M 

∗ = ML −1 , V ∗
0 

= V L −1 / 2 D 

−1 / 2 . 

hen, Eqs. (10) and (11) become the following non-dimensional 

quations after dropping the asterisks: 

∂w 

∂t 
(x , t) = A − w (x , t) − w (x , t) u 

2 (x , t) + V 0 
∂w 

∂x 
(x , t) , 

∂u 

∂t 
(x , t) = w (x , t) u 

2 (x , t) − Mu (x , t) + �u (x , t) . 

he authors in Zhang et al. [22] showed that the generation of reg- 

lar and irregular vegetation patterns in semiarid regions. We per- 

orm the same experiments presented in Zhang et al. [22] on a 

omain embedding an obstacle region. We solve the following dis- 

rete Eqs. (12) and (13) on �h 
c : 

w 

n +1 
i j 

− w 

n 
i j 

�t 
= A − w 

n 
i j − w 

n 
i j (u 

n 
i j ) 

2 + V 0 (w 

n 
x ) i j , (12) 

u 

n +1 
i j 

− v n 
i j 

�t 
= w 

n 
i j (u 

n 
i j ) 

2 − Mu 

n 
i j + �d u 

n 
i j . (13) 

et us discretize the rectangular domain � = (L x , R x ) × (L y , R y )

sing a uniform spatial step size h = (R x − L x ) /N x = (R y − L y ) /N y ,

here N x and N y are positive integers. Let �h = { (x i , y j ) | x i = L x +
i − 1) h, 1 ≤ i ≤ N x and y j = L y + ( j − 1) h, 1 ≤ j ≤ N y } be a dis-

rete domain, �h 
o be the discrete obstacle domain and compu- 

ational domain �h 
c = �h \ �h 

o . The numerical solutions to w ( x, 

, t ) and u ( x, y, t ) are approximated at cell-corners by w 

n 
i j 

≡
 (x i , y j , n �t) and u n 

i j 
≡ u (x i , y j , n �t) , where �t is the tempo-

al step size. The Dirichlet boundary condition and the periodic 

oundary condition are applied on the obstacle boundary and the 

xterior boundary, respectively. To validate for solving the solution 

attern of vegetation model, we use same model parameter values 

n Zhang et al. [22] . Fig. 12 (a) and (b) show the biomass density ( u )

t time t = 100 and t = 10 0 0 , respectively. Fig. 12 (c) and (d) show

he biomass density ( u ) on the landscape with the square obstacle 

t time t = 100 and t = 10 0 0 , respectively. We obtain the qualita-

ively similar results, i.e., striped vegetation patterns, to those pre- 

iously reported in Zhang et al. [22] . 

. Conclusion 

In this paper, we presented a novel landscape fitted domain 

onstruction and its boundary treatment of periodic travelling 

ave solutions for a diffusive predator-prey system with land- 

cape features. In the case of periodic travelling wave solutions, 

he boundary treatment is critical because it may result in unex- 

ected chaotic pattern. To avoid this unwanted chaotic behavior, 
8 
e need to use sufficiently large computational domain to mini- 

ize the boundary treatment effect. However, a large domain has 

igh computational costs for getting a solution. Hence, in the pro- 

osed method, we defined the landscape fitted domain using the 

istance function based on the obstacle. Using the level set func- 

ion and interpolations, the values at the ghost points were inter- 

olated in the normal direction of the exterior boundary. At the 

nterior boundary, we used homogeneous Dirichlet boundary con- 

ition. We can observe that a regular periodic wave pattern on a 

elatively small computational domain by applying the proposed 

ethod through several numerical experiments. We demonstrated 

he robustness and accuracy of the proposed method through the 

eal complicated landscape such as the Kielder Water and the Lake 

nari. 
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