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a b s t r a c t 

In this paper, we present pinning boundary conditions for two- (2D) and three- 

dimensional (3D) phase-field models. For the 2D and axisymmetric domains in the neigh- 

borhood of the pinning boundaries, we apply an odd-function-type treatment and use a 

local gradient of the phase-field for points away from the pinning boundaries. For the 3D 

domain, we propose a simple treatment that fixes the values on the ghost grid points be- 

yond the discrete computational domain. As examples of the phase-field models, we con- 

sider the Allen–Cahn and conservative Allen–Cahn equations with the pinning boundary 

conditions. We present various numerical experiments to demonstrate the performance 

of the proposed pinning boundary treatment. The computational results confirm the effi- 

ciency of the proposed method. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

We consider the Allen–Cahn (AC) and conservative Allen–Cahn (CAC) equations with the pinning boundary condition 

∂φ

∂t 
= −F ′ (φ) 

ε2 
+ �φ, (1)

∂φ

∂t 
= −F ′ (φ) 

ε2 
+ �φ + β(t) 

√ 

F (φ) , (2)

where φ( x , t ) is an order parameter, F (φ) = 0 . 25(φ2 − 1) 2 , ε > 0 is constant, and β(t) 
√ 

F (φ) is a space-time dependent

Lagrange multiplier [1] . The AC equation was originally proposed by Allen and Cahn [2] for antiphase domain coarsening.

It was later applied to various fields such as image segmentation, dendritic growth, topology optimization, and motion

by mean curvature [3] . By contrast, the CAC equation was applied to simulations of mass conservation systems such as

multiphase flow [4,5] . For these types of equations, Neumann [6,7] , Dirichlet [8,9] , periodic [10] , and contact angle boundary

[11,12] conditions have been widely used. 

However, when the phase-field method is used to simulate some specific problems such as droplet evaporation or coffee

drying on a solid substrate, a particular boundary condition (i.e., pinning condition) must be considered. For the pinning

effect, Peng et al. [13] proposed a theoretical model and conducted molecular dynamics simulations for the grain boundary

of a moving particle. Zhou et al. [14] conducted molecular dynamics simulations to investigate the maximum pinning force.
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Fig. 1. Experiments of droplet drying on a solid substrate with a pinned boundary. Adapted from Mamalis et al. [16] with permission from ACS Publications. 

Fig. 2. (a) Constant contact angle. (b) Pinning boundary. 

Fig. 3. Temporal evolution of experimental snapshots during evaporation of a drop of particle suspension from left to right. Adapted from Yunker et al. 

[18] with permission from the Nature Publishing Group. 

 

 

 

 

 

 

 

 

 

 

 

 

Du et al. [15] performed numerical and analytical studies on the pinning effect on different shaped particles. To the best

of our knowledge, few detailed numerical investigations of the pinning boundary condition on a flat substrate have been

conducted using the phase-field method. The pinning effect on a flat substrate has been observed in many natural and

scientific fields. These include droplet drying on a solid substrate with a pinned boundary [16] (see Fig. 1 ). 

Fig. 2 (a) and (b) show a schematic illustration for the evolution processes of a droplet with constant contact angle and

pinning boundary conditions, respectively, as the liquid evaporates with time. 

The pinning boundary condition is one of the necessary conditions for the formation of a coffee stain [17,18] , as shown

in Fig. 3 . 

This study proposes an accurate and robust numerical method for the pinning boundary condition for two- (2D) and

three-dimensional (3D) phase-field models. In particular, we focus on the AC and CAC equations as examples. In phase-

field models, the Cahn–Hilliard (CH) equation is also widely used and has been studied by many researchers [19–21] ; the

proposed pinning boundary method can be applied to the CH equation. 

The remainder of this paper is structured as follows. In Section 2 , we describe the numerical solution algorithm. In

Section 3 , we present various numerical results to demonstrate the performance of the proposed model. A conclusion is

given in Section 4 . 

2. Numerical solutions 

We consider a 2D numerical solution and later extend it to a 3D space. We define the computational domain � =
(a, b) × (c, d) and grid size h = (b − a ) /N x = (d − c) /N y , where N x and N y are integers. For i = 1 , . . . , N x and j = 1 , . . . , N y ,
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Fig. 4. Zero Neumann boundary condition for left, right, and top boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

let (x i , y j ) = ( a + (i − 0 . 5) h, c + ( j − 0 . 5) h ) . Let φn 
i j 

be approximations of φ( x i , y j , n �t ), where �t is the temporal step size.

An operator splitting method is adopted to solve Eq. (2) : 

∂φ

∂t 
= −F ′ (φ) 

ε2 
+ �φ, (3)

∂φ

∂t 
= β(t) 

√ 

F (φ) . (4)

First, Eq. (3) is solved using an explicit scheme: 

φ∗
i j 

− φn 
i j 

�t 
= −

F ′ (φn 
i j 
) 

ε2 
+ �h φ

n 
i j , (5)

where �h φ
n 
i j 

= (φn 
i, j+1 

+ φn 
i +1 , j 

+ φn 
i, j−1 

+ φn 
i −1 , j 

− 4 φn 
i j 
) /h 2 . Second, Eq. (4) is discretized as 

φn +1 
i j 

− φ∗
i j 

�t 
= β∗

√ 

F (φ∗
i j 
) . (6)

Using the mass conservation and Eq. (6) , we get 

N x ∑ 

i =1 

N y ∑ 

j=1 

φ0 
i j h 

2 = 

N x ∑ 

i =1 

N y ∑ 

j=1 

φn +1 
i j 

h 

2 = 

N x ∑ 

i =1 

N y ∑ 

j=1 

(
φ∗

i j + �tβ∗
√ 

F (φ∗
i j 
) 
)

h 

2 . (7)

Thus, 

β∗ = 

1 

�t 

N x ∑ 

i =1 

N y ∑ 

j=1 

(φ0 
i j − φ∗

i j ) 
/ N x ∑ 

i =1 

N y ∑ 

j=1 

√ 

F (φ∗
i j 
) . (8)

Finally, we obtain φn +1 from Eq. (6) , i.e., φn +1 
i j 

= φ∗
i j 

+ �tβ∗
√ 

F (φ∗
i j 
) . We note that Eq. (5) is a numerical solution of Eq. (1) .

Next, we describe the boundary conditions. The zero Neumann boundary condition is used for φ on the left, right, and

top boundaries of the computational domain, i.e., φx (a, y, t) = φx (b, y, t) = φy (x, d, t) = 0 . Fig. 4 illustrates the zero Neumann

boundary condition for left, right, and top boundaries. 

φ0 , j = φ1 , j and φN x +1 , j = φN x , j for 1 ≤ j ≤ N y , 

φi,N y +1 = φi,N y for 1 ≤ i ≤ N x . 

For the bottom boundary, we set the proposed pinning boundary condition, which is described next. For the boundary

points located on the interfacial transition layer, the boundary values are obtained by φi, 0 = tanh 

(
l 1 + l 2 √ 

2 ε

)
, 1 ≤ i ≤ N x , where

l 1 + l 2 is the distance from the point ( x i , y 0 ) to the interface of the droplet, i.e., to the zero-level contour of φ; see Fig. 5 (a).

Here, l 1 is the distance from point ( x i , y 1 ) to the interface of the droplet, i.e., l 1 = 

√ 

2 ε tanh 

−1 
(
φi, 1 

)
. We then calculate l 2 =

h cos (θ1 ) and θ1 = θ2 from a geometry relation, that is l 2 = h cos (θ2 ) , where θ2 is an angle between the normal vector m

to the interface of the droplet having an initial point as point ( x i , y 1 ) and the y axis (see Fig. 5 (b)). The x and y components

of the normal vector m are m 1 = φx and m 2 = φy , respectively, and we approximate m 1 and m 2 using the four values

φi −1 , 1 , φi ,1 , φi +1 , 1 , and φi ,2 as follows: m 1 ≈ φi +1 , 1 −φi −1 , 1 

2 h 
and m 2 ≈ φi, 2 −φi, 1 

h 
. Then, the angle θ2 is calculated as follows:
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Fig. 5. Schematics of bottom boundary conditions. (a) Boundary condition for the points in the diffusive region at the left side. (b) Enlarged view of the 

red box region in (a). (c) Zero Neumann boundary condition for the points in the bulk phase. (d) Pinning boundary condition. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

θ2 = tan 

−1 
(

φi +1 , 1 −φi −1 , 1 

2(φi, 2 −φi, 1 ) 

)
. Finally, we obtain the boundary values in the diffusive region: 

φi, 0 = tanh 

⎛ 

⎝ 

√ 

2 ε tanh 

−1 
( φi, 1 ) + h cos 

(
tan 

−1 

(
φi +1 , 1 −φi −1 , 1 

2(φi, 2 −φi, 1 ) 

))
√ 

2 ε

⎞ 

⎠ . (9) 

A schematic for the boundary values in the diffusive region located at the left of the droplet is shown in Fig. 5 (a) and

(b). For the diffusive region located at the right of the droplet, we calculate the boundary values in a similar manner. For

the boundary points located far from the diffusive region (i.e., in the bulk phase), the zero Neumann boundary condition

φi, 0 = φi, 1 is used, which is shown in Fig. 5 (c). 

To achieve the pinning effect, we set the pinning boundary condition for the boundary points near the left and right

endpoints located on the zero level set using the following odd function: 

φ(−x, −y ) = tanh 

sin (α)(−x ) − cos (α)(−y ) √ 

2 ε
(10) 

= − tanh 

sin (α) x − cos (α) y √ 

2 ε
= −φ(x, y ) , (11) 
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Fig. 6. Interface profiles at (a) t = 0 and (b) t = 60 0 0�t . (c) Locally enlarged view of the box region in (b). Arrows represent the convergence direction. 

 

 

 

 

 

 

 

 

 

 

where α is an arbitrary angle between the interface of the droplet and a solid substrate. Thus, we set 

φi + k −M p , 0 = −φi −k +1+ M p , 1 for k = 1 , . . . , 2 M p . (12)

Taking the left endpoint φi ,1 as an example, the pinning point locates in (x i +1 / 2 , y 1 / 2 ) . We find M p (integer number) positions

located on the left and right sides of the pinning point, respectively. For instance, when M p = 5 , the pinning boundary

condition (12) is 

φi, 0 = −φi +1 , 1 , φi +1 , 0 = −φi, 1 , 

φi −1 , 0 = −φi +2 , 1 , φi +2 , 0 = −φi −1 , 1 , 

φi −2 , 0 = −φi +3 , 1 , φi +3 , 0 = −φi −2 , 1 , 

φi −3 , 0 = −φi +4 , 1 , φi +4 , 0 = −φi −3 , 1 , 

φi −4 , 0 = −φi +5 , 1 , φi +5 , 0 = −φi −4 , 1 . 

A schematic of the pinning boundary condition is shown in Fig. 5 (d). 

3. Numerical experiment 

3.1. Mesh convergence test 

We investigate the convergence with respect to mesh size h . We use four different mesh sizes:

64 × 32, 128 × 64, 256 × 128, and 512 × 256. The other numerical parameters are: �t = 0 . 05 / 32 2 , ε = 0 . 06 , and M p = 11 . We

define the following initial condition 

φ(x, y, 0) = 

{
1 if − 1 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , 

−1 otherwise 
(13)

on � = (−2 , 2) × (0 , 2) , which is shown in Fig. 6 (a). 

Fig. 6 (b) shows snapshots of the interfaces of the AC equation with different mesh sizes at t = 60 0 0�t . Fig. 6 (c) shows

the corresponding locally enlarged view in the box region shown in Fig. 6 (b). As can be seen, the interface converges as the

mesh size becomes increasingly finer. When mesh size 256 × 128 is used, we find that the interface nearly converged to the

result with a finer mesh size (i.e., 512 × 256). Unless otherwise mentioned, we will use mesh size 256 × 128 in the following

tests for an accurate and fast computation. 
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Fig. 7. Temporal evolution of the AC equation with (a) pinning boundary condition and (b) zero Neumann boundary condition. The computational times 

from top to bottom in each column are t = 0 , 10 0 0 0�t, and 20 0 0 0 �t . 

Fig. 8. Temporal evolutions of (a) total area A ( φ) and (b) interfacial length L ( φ). 

 

 

 

 

 

 

3.2. Comparison between pinning and zero Neumann boundary conditions 

We focus on the effect of the pinning boundary condition on the dynamics of the AC equation. For comparison, the zero

Neumann boundary condition is also considered. We use the initial condition on � = (−2 , 2) × (0 , 2) 

φ(x, y, 0) = tanh 

( 

1 −
√ 

x 2 + y 2 √ 

2 ε

) 

. (14) 

The numerical parameters are set to h = 1 / 64 , �t = 0 . 1 h 2 , ε = ε16 , and M p = 11 . Here, ε = εm 

= hm/ [2 
√ 

2 tanh 

−1 (0 . 9)]

indicates that the interfacial transition layer has an approximate thickness of hm [4] . 

Fig. 7 (a) and (b) show the temporal evolutions of the AC equation with the same initial condition (13) for the pinning

and zero Neumann boundary conditions, respectively. The total mass is defined as M(φ) = 

∫ 
� 0 . 5 ( φ( x , t) + 1 ) dx and the in-

terfacial length is defined as L (φ) = 0 . 75 
√ 

2 ε
∫ 
� |∇φ(x , t) | 2 dx [22] . The temporal evolutions of total area A ( φ) and interfacial

length L ( φ) with two different boundary conditions are shown in Fig. 8 (a) and (b). Because of the effect of mean curvature
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Fig. 9. Temporal evolutions of the interfacial profile for (a) case 1 and (b) case 2, where the arrows represent the evolution directions. (c) Final interfacial 

profiles, where the circle and star markers represent cases 1 and 2, respectively. 

 

 

 

 

 

 

 

 

 

 

flow, the AC equation with zero Neumann boundary condition evolves faster. However, the dynamics of the AC equation

with the pinning boundary condition are delayed. 

3.3. Evolution of the CAC equation with different initial conditions 

We next investigate the temporal evolution of the CAC equation with two different initial conditions. The two cases are

computed using the same numerical parameters: h = 1 / 64 , �t = 0 . 1 h 2 , ε = ε16 , and M p = 11 . We stop the computation

when the numerical solution reaches a numerical equilibrium state (i.e., ‖ φn +1 − φn ‖ 2 ≤ 10 −6 ). The initial conditions for

cases 1 and 2 have different shapes with the same area. The initial condition for case 1 is 

φ1 (x, y, 0) = 

{
1 if − 1 < x < 1 , y < 1 . 5 , 

−1 otherwise , 
(15)

The initial condition for case 2 is 

φ2 (x, y, 0) = 

{ 

1 if − 1 < x < 1 , 0 < y < 0 . 61 or 
−1 . 5 < x < 1 . 5 , 0 . 61 ≤ y < 1 . 2 , 

−1 otherwise . 
(16)

The temporal evolutions for the two cases are shown in Fig. 9 (a) and (b), where the arrows denote the evolution directions.

Fig. 9 (c) shows the final interfacial profiles for the two cases. The temporal evolutions of polygonal length 

L p = 

N−1 ∑ 

n =1 

√ 

(X n +1 − X n ) 2 + (Y n +1 − Y n ) 2 

for the two cases are illustrated in Fig. 10 . Here, N is the total number of points ( X n , Y n ) on the interface. We observe that

those two cases evolve to nearly the same shape at the numerical equilibrium state. 

3.4. Axisymmetric case 

We next consider the axisymmetric AC and axisymmetric CAC equations with a pinning boundary condition of 

∂φ

∂t 
= −F ′ (φ) 

ε2 
+ 

1 

r 
(rφr ) r + φzz , (17)

∂φ = −F ′ (φ) 
2 

+ 

1 

(rφr ) r + φzz + β(t) 
√ 

F (φ) , (18)

∂t ε r 
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Fig. 10. Temporal evolution of polygonal length L p for the two cases. 

 

 

 

 

 

where φ( r, z, t ) is the order parameter in the axisymmetric space. Let the computational domain be � = (0 , a ) × (0 , b) . Let

�h = { (r i , z k ) : r i = (i − 0 . 5) h, 1 ≤ i ≤ N r , z k = (k − 0 . 5) h, 1 ≤ k ≤ N z } be the discrete domain, where N r and N z are inte-

gers and h = a/N r = b/N z . Let φn 
ik 

be the numerical approximation of φ( r i , z k , t n ). We describe the numerical solution for

Eq. (18) because a similar manner can be used for Eq. (17) . Using the operator splitting method, we can divide Eq. (18) into

two parts: 

∂φ

∂t 
= −F ′ (φ) 

ε2 
+ 

1 

r 
(rφr ) r + φzz , (19) 

∂φ

∂t 
= β(t) 

√ 

F (φ) . (20) 

We first solve Eq. (19) using an explicit scheme of 

φ∗
ik 

− φn 
ik 

�t 
= −F ′ (φn 

ik 
) 

ε2 
+ 

r i + 1 2 
(φn 

i +1 ,k 
− φn 

ik 
) − r i − 1 

2 
(φn 

ik 
− φn 

i −1 ,k 
) 

r i h 

2 
(21) 

+ 

φn 
i,k +1 

− 2 φn 
ik 

+ φn 
i,k −1 

h 

2 
, (22) 

where r 
i + 1 

2 
= 0 . 5(r i +1 + r i ) and r 

i − 1 
2 

= 0 . 5(r i + r i −1 ) . Second, Eq. (20) is discretized as 

φn +1 
ik 

− φ∗
ik 

�t 
= β∗√ 

F (φ∗
ik 
) . (23) 

Using the mass conservation and Eq. (23) , we have 

N r ∑ 

i =1 

N z ∑ 

k =1 

2 π r i φ
0 
ik h 

2 = 

N r ∑ 

i =1 

N z ∑ 

k =1 

2 π r i φ
n +1 
ik 

h 

2 = 

N r ∑ 

i =1 

N z ∑ 

k =1 

2 π r i 

(
φ∗

ik + �tβ∗√ 

F (φ∗
ik 
) 
)

h 

2 . (24) 

Thus, 

β∗ = 

1 

�t 

N r ∑ 

i =1 

N z ∑ 

k =1 

r i (φ
0 
ik − φ∗

ik ) 
/ N r ∑ 

i =1 

N z ∑ 

k =1 

r i 
√ 

F (φ∗
ik 
) . (25) 

Finally, we have φn +1 from Eq. (23) , that is φn +1 
ik 

= φ∗
ik 

+ �tβ∗√ 

F (φ∗
ik 
) . 

3.5. Effect of pinning boundary condition 

To study the effect of the pinning boundary condition on the axisymmetric AC equation, we conduct a comparison study

with a zero Neumann boundary condition. We define the initial condition 

φ(r, z, 0) = tanh 

(
1 − √ 

r 2 + z 2 √ 

2 ε

)
(26) 
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Fig. 11. Temporal evolutions of the axisymmetric AC equation with (a) pinning boundary condition and (b) zero Neumann boundary condition. The com- 

putational times from top to bottom in each column are t = 0 , 20 0 0�t, 60 0 0�t, 10 0 0 0�t . 

 

 

 

 

 

 

 

on � = (0 , 2) × (0 , 2) . The numerical parameters are taken to be the same as described in Section 3.2 . The temporal evolu-

tions of the AC equation with two different boundary conditions are shown in Fig. 11 (a) and (b). The 3D views are obtained

by an interpolation from r − z domain. We define the discrete total volume V ( φ) and surface area S as: 

V (φ) = h 

2 
N r ∑ 

i =1 

Nz ∑ 

k =1 

π r i ( φik + 1 ) , (27)

S = 

N−1 ∑ 

n =1 

2 πR n + 1 2 

√ 

(R n +1 − R n ) 2 + (Z n +1 − Z n ) 2 , (28)

where N is the total number of points on the interface, R 
n + 1 

2 
= 0 . 5(R n +1 + R n ) , and R n and Z n represent the r and z coor-

dinates of the n th point, respectively. The temporal evolutions of discrete total volume V ( φ) and surface area S are shown

in Fig. 12 (a) and (b), respectively. As it can be seen, the dynamics of the axisymmetric AC equation are delayed with the

pinning boundary condition. 
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Fig. 12. Temporal evolutions of (a) total volume V ( φ) and (b) surface area S . 

 

 

 

 

 

 

 

 

 

 

 

3.6. Temporal evolution of the CAC equation with pinning boundary condition 

We investigate the temporal evolution of the CAC equation with a pinning boundary condition. We use two initial con-

ditions with different shapes and the same volume. Case 1 is 

φ1 (r, z, 0) = 

{
1 if r < 1 , z < 1 , 

−1 otherwise . 
(29) 

The case 2 is 

φ2 (r, z, 0) = 

{
1 if r < 0 . 6 , z < 1 . 35 or 0 . 6 ≤ r < 1 , z < 0 . 8 , 

−1 otherwise . 
(30) 

The simulation is performed on an axisymmetric domain � = (0 , 2) × (0 , 2) . Here, we use h = 1 / 32 , �t = 0 . 1 h 2 , ε = 0 . 03 ,

and M p = 11 . The computation stops when the numerical equilibrium state is reached. Fig. 13 illustrates the temporal evolu-

tions of the CAC equation with two cases 1 and 2. The evolutions of surface area S for the two cases are shown in Fig. 14 (a).

Fig. 14 (b) shows the final interfacial profiles, where the star and circle markers represent the results for cases 1 and 2,

respectively. We find that those two cases evolve to nearly the same final result. 

3.7. Pinning boundary condition in 3D space 

The previous sections described how we investigated the pinning boundary condition for 2D and axisymmetric cases.

Although the proposed method works well for both cases, applying it to the fully 3D space is quite difficult and complex.

In this section, we present a new simple and robust treatment of the pinning boundary condition in 3D space and that

can be used for nonaxisymmetric objects. We first briefly introduce the numerical solution for the governing equation in

a 3D discrete domain. We define the computational domain � = (a, b) × (c, d) × (e, f ) and grid size h = (b − a ) /N x = (d −
c) /N y = ( f − e ) /N z , where N x , N y , and N z are integers. For i = 1 , . . . , N x , j = 1 , . . . , N y , and k = 1 , . . . , N z , let (x i , y j , z k ) = (a +
(i − 0 . 5) h, c + ( j − 0 . 5) h, e + (k − 0 . 5) h ) . Let φn 

i jk 
be approximations of φ( x i , y j , z k , n �t ). First, Eq. (1) is solved using an

explicit scheme: 

φ∗
i jk 

− φn 
i jk 

�t 
= −

F ′ (φn 
i jk 

) 

ε2 
+ �h φ

n 
i jk , (31) 

where �h φ
n 
i j 

= (φn 
i −1 , j,k 

+ φn 
i, j−1 ,k 

+ φn 
i, j,k −1 

+ φn 
i +1 , j,k 

+ φn 
i, j+1 ,k 

+ φn 
i, j,k +1 

− 6 φn 
i jk 

) /h 2 . Second, Eq. (2) is discretized as 

φn +1 
i j,k 

− φ∗
i j,k 

�t 
= β∗

√ 

F (φ∗
i j,k 

) . (32) 

Using the mass conservation and Eq. (32) , we get 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

φ0 
i jk h 

3 = 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

φn +1 
i jk 

h 

3 

= 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

(
φ∗

i jk + �tβ∗
√ 

F (φ∗
i jk 

) 
)

h 

3 . 
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Fig. 13. Temporal evolutions of the axisymmetric CAC equation with two different initial conditions. (a) Case 1. (b) Case 2. The computational times from 

top to bottom in each column are t = 0 , 10 0 0�t, 150 0�t, 80 0 0�t . 

 

 

 

Thus, 

β∗ = 

1 

�t 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

(φ0 
i jk − φ∗

i jk ) 
/ N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

√ 

F (φ∗
i jk 

) . (33)

Finally, we obtain φn +1 from Eq. (32) , i.e., φn +1 
i jk 

= φ∗
i jk 

+ �tβ∗
√ 

F (φ∗
i jk 

) . Next, we describe the boundary conditions. The zero

Neumann boundary condition is used for all boundaries except the bottom, i.e., φx (a, y, z, t) = φx (b, y, z, t) = φy (x, c, z, t) =
φy (x, d, z, t) = φz (x, y, f, t) = 0 . 

φ0 jk = φ1 jk , φN x +1 , jk = φN x , jk for 1 ≤ j ≤ N y , 1 ≤ k ≤ N z , 

φi 0 k = φi 1 k , φi,N y +1 ,k = φi,N y ,k for 1 ≤ i ≤ N x , 1 ≤ k ≤ N z , 

φi j,N z +1 = φi j,N z for 1 ≤ i ≤ N x , 1 ≤ j ≤ N y . 

For the bottom boundary, we set the proposed pinning boundary condition, which is defined as 

φn 
i j0 = φp 

i j0 
for 1 ≤ i ≤ N x , 1 ≤ j ≤ N y , n ≥ p, 
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Fig. 14. (a) Temporal evolutions of surface area S with cases 1 and 2. (b) Equilibrium interfacial profiles for case 1 (star markers) and case 2 (circle 

markers). 

Fig. 15. Schematic of the pinning boundary condition in 3D space. 

 

 

 

 

 

 

 

 

 

 

 

 

where φp 
i j0 

= φp 
i j1 

for the some starting pinning time t = p�t . A schematic is shown in Fig. 15 . The pinning effect starts from

a specific time t = p�t and lasts until the final time. 

To show the efficiency of the proposed pinning boundary condition for nonaxisymmetric 3D objects (e.g., Fig. 16 (a)), we

numerically investigate the evolution of nonaxisymmetric initial conditions using the following parameters: � = (0 , 2) ×
(0 , 2) × (0 , 1) , h = 1 / 128 , �t = 0 . 1 h 2 , and ε = ε4 . The pinning effect starts at t = 20 0 0�t . We consider a “Y”-shaped initial

condition as shown in Fig. 16 (b). Fig. 16 (c) shows the temporal evolutions of the scaled total volume V (φn ) = V (φn ) /V (φ0 )

for the AC and CAC equations, where V (φn ) = 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

0 . 5(φn 
i jk 

+ 1) h 3 . We note that the nonaxisymmetric pinning phe-

nomenon, such as the nonaxisymmetric stain formation [23] as shown in Fig. 16 (a), occurs in many natural and engineering

fields. 

3.8. Effect of M p number on the efficiency and accuracy 

Here, we investigate the effect of the M p number on the efficiency and accuracy of the proposed pinning boundary

condition. For the AC equation, the computational domain is set to � = (−2 , 2) × (0 , 2) with mesh size h = 1 / 64 . In the

simulation, we use �t = 0 . 1 h 2 , ε = 0 . 06 , and different M p numbers: M p = 5 , 6 , . . . , 11 . The initial condition is: 

φ(x, y, 0) = 

{
1 if − 1 . 5 < x < 1 . 5 , y < 0 . 3 , 

−1 otherwise . 
(34) 

For the CAC equation, we use various M p numbers M p = 1 , 2 , . . . , 5 . The other numerical parameters are the same as

before. The initial condition on the domain � = (−1 , 1) × (0 , 4) is: 

φ(x, y, 0) = 

{
1 if − 0 . 2 < x < 0 . 2 , y < 1 . 8 , 

−1 otherwise . 
(35) 

Figs. 17 (a) and 18 (a) illustrate the initial conditions for the AC and CAC equations, respectively. Fig. 17 (b)–(d) show snapshots

of the filled contours at the zero level of the numerical solutions of the AC equation at t = 850 0 0�t with different M p 

numbers M p = 5 , 8 , and 11, respectively. We find that the pinning condition does not work well with M p = 5 . Fig. 18 (b)

and (c) show snapshots for the case of the CAC equation at an equilibrium state (i.e., ‖ φn +1 − φn ‖ 2 ≤ 10 −6 ) with M p = 1
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Fig. 16. (a) Nonaxisymmetric stain. Adapted from Deegan et al. [23] with permission from the Nature Publishing Group. (b) Initial condition. (c) Temporal 

evolutions of total volume for AC and CAC, where the small figures are the evolutions at the corresponding time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 5, respectively. We find that the pinning condition does not work well with M p = 1 in the case of the CAC equation.

In general, the CAC equation requires fewer M p numbers to achieve the pinning condition as compared to the AC equation

in 2D space. The CPU times for the AC and CAC equations with respect to different M p numbers are shown in Fig. 19 (a)

and (b), respectively. From the results shown in Figs. 17–19 , we observe that an increase in the number of M p improved the

accuracy and reduced the efficiency of the scheme. 

3.9. Comparison of the results in 2D and 3D spaces 

Finally, we compare the different dynamics of the AC and CAC equations in 2D and 3D spaces. For 3D space, the cube

with length L x , width L y , height L z , and center (0,0,0.5) is chosen as the initial shape. The values of φ are set to 1 inside and

−1 outside the cube. For 2D space, we consider its corresponding 3D shape with an imaginary width L y , which is shown

in Fig. 20 , where L y is the imaginary width and s represents the arc length. In this simulation, the computational domains

are � = (−1 , 1) × (−1 , 1) × (0 , 2) and � = (−1 , 1) × (0 , 2) for the 2D and 3D cases, respectively. The other parameters are

h = 1 / 64 , �t = 0 . 1 h 2 , and ε = ε4 . Fig. 21 (a) and (b) show the temporal evolutions of the AC equation in 2D and 3D spaces,

respectively. The temporal evolutions of total volume V ( φ) and surface area S are illustrated in Fig. 22 (a) and (b). We can

observe that the evolutions of the AC equation in 3D space are faster than those in 2D space because of the stronger

effect of curvature in 3D space. Fig. 23 (a) and (b) show the temporal evolutions of the CAC equation in 2D and 3D spaces,

respectively. Note that because the total volume is constant for the CAC equation, we show only the temporal evolutions of

surface area for the CAC equation in Fig. 24 . 
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Fig. 17. Snapshots of the numerical solutions from the AC equation with respect to different M p numbers: (b) M p = 5 , (c) M p = 8 , and (d) M p = 11 at 

t = 850 0 0�t . 

Fig. 18. Snapshots of the numerical solutions from the CAC equation with respect to different M p numbers: (b) M p = 1 and (c) M p = 5 at equilibrium state. 

Fig. 19. CPU times with respect to different M p numbers for the (a) AC and (b) CAC equations. The embedded figures represent the snapshots at specific 

time steps. 
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Fig. 20. Schematic illustrations of the evolution in (a) 2D and its (b) 3D image. 

Fig. 21. Temporal evolutions of the AC equation in (a) 2D and (b) 3D spaces. Computational times from left to right in each row are �t = 0 , 2750�t, and 

5500 �t . 

Fig. 22. Temporal evolutions of (a) total volume and (b) surface area of the AC equation in 2D and 3D spaces. 
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Fig. 23. Temporal evolutions of the CAC equation in (a) 2D and (b) 3D spaces. Computational times from left to right are �t = 0 , 2750�t, and 5500 �t . 

Fig. 24. Temporal evolutions of surface area of the CAC equation in 2D and 3D spaces. 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

In this study, we proposed pinning boundary conditions for 2D and 3D phase-field models. For the 2D and axisymmet-

ric domains, in the neighborhood of the pinning boundaries, we applied an odd-function-type treatment and used a local

gradient of the phase-field for points away from the pinning boundaries. For the 3D domain, we proposed a very simple

scheme that fixes the values at the ghost grid points beyond the discrete computational domain. We presented various

numerical experiments to demonstrate the performance of the proposed pinning boundary treatment for the AC and CAC

equations. The computational results confirmed the good performance of the proposed method. Future research will include

evaporation of liquid drops on a substrate to enable us to model the coffee-ring effect. 
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