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We propose a simple and robust numerical algorithm to estimate a time-dependent volatility function from a set of market
observations, using the Black–Scholes (BS) model. We employ a fully implicit finite difference method to solve the BS equation
numerically. To define the time-dependent volatility function, we define a cost function that is the sumof the squared errors between
the market values and the theoretical values obtained by the BS model using the time-dependent volatility function. To minimize
the cost function, we employ the steepest descentmethod. However, in general, volatility functions forminimizing the cost function
are nonunique. To resolve this problem, we propose a predictor-corrector technique. As the first step, we construct the volatility
function as a constant. Then, in the next step, our algorithm follows the prediction step and correction step at half-backward time
level. The constructed volatility function is continuous and piecewise linear with respect to the time variable. We demonstrate the
ability of the proposed algorithm to reconstruct time-dependent volatility functions using manufactured volatility functions. We
also present some numerical results for real market data using the proposed volatility function reconstruction algorithm.

1. Introduction

The accurate calibration of models using market option data
is one of the most important problems in finance [1]. The
reason is for accurate pricing and accordingly hedging strat-
egy [2]. According to [3], the authors proposed the accurate
computations for Greeks using the numerical solutions of
the Black–Scholes partial differential equation. The well-
known standard Black–Scholes (BS) model is not adequate
for calibrating the market option data because it uses the
constant volatility [4–6]. As an alternative to the BS equation
with constant volatility [7], local volatility models were
introduced to explain the volatility smiles or skews observed
in the market. There has been much research carried out
regarding the reconstruction of local volatility functions
from market data [8, 9]. For example, in [10], radial basis
functions were used to construct local volatility surfaces.

In [1], the authors proposed a regularized optimization
formulation, using spline kernels to ensure both accuracy and
stability in the local volatility function calibration. In [9], the
authors mentioned the calibration of a local volatility surface
for European options using a nonparametric approach by
employing a second-order Tikhonov regularization.

The main goal of this study is to propose a new simple
and robust numerical method for the construction of a time-
dependent volatility function, using the BS partial differential
equation with nonconstant volatility [11, 12]:

𝜕𝑢 (𝑆, 𝑡)
𝜕𝑡 + 12 [𝜎 (𝑡) 𝑆]

2 𝜕2𝑢 (𝑆, 𝑡)
𝜕𝑆2 + 𝑟𝑆𝜕𝑢 (𝑆, 𝑡)𝜕𝑆

= 𝑟𝑢 (𝑆, 𝑡) ,
(1)

for (𝑆, 𝑡) ∈ R+ × [0, 𝑇), where 𝑢(𝑆, 𝑡) is the option value of the
underlying price 𝑆 and time 𝑡, 𝜎(𝑡) is the volatility function of
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Figure 1: Uniform grid with a spatial step size ℎ.

time 𝑡, and 𝑟 is the riskless interest rate. The final condition is
the payoff function 𝑢(𝑆, 𝑇) = Λ(𝑆) at expiry 𝑇. Typically, the
local volatility function is given as a function of an underlying
asset and time, that is, 𝜎(𝑆, 𝑡) [13, 14]. However, for simplicity
and robustness of the solution algorithm, we assume that the
local volatility function only depends on the time and is a
piecewise linear function with respect to the time variable.

The outline of this paper is as follows. In Section 2,
we describe our numerical algorithm for constructing the
time-dependent volatility function. In Section 3, numerical
experiments are presented. Finally, conclusions are drawn in
Section 4.

2. Numerical Algorithm

In this section, we present a new numerical algorithm for
constructing the time-varying volatility function.

2.1. Numerical Solution. Let 𝑆 be the value of the underlying
asset price and 𝜏 = 𝑇− 𝑡 be the time to expiry, then (1) can be
given as the following initial-value problem:

𝜕𝑢 (𝑆, 𝜏)
𝜕𝜏 = 12 [𝜎 (𝜏) 𝑆]

2 𝜕2𝑢 (𝑆, 𝜏)
𝜕𝑆2 + 𝑟𝑆𝜕𝑢 (𝑆, 𝜏)𝜕𝑆

− 𝑟𝑢 (𝑆, 𝜏) ,
(2)

for (𝑆, 𝜏) ∈ Ω × (0, 𝑇] with an initial condition 𝑢(𝑆, 0) =
Λ(𝑆) for 𝑆 ∈ Ω = (0, 𝐿), where the infinite domain is
truncated to a finite computational domain [15]. Now, to solve
(2) numerically, we apply a finite difference method (FDM).
Let us denote the numerical approximation of the solution of
(2) by 𝑢𝑛𝑖 ≡ 𝑢(𝑆𝑖, 𝜏𝑛) = 𝑢(𝑖ℎ, 𝑛Δ𝜏), for 𝑖 = 1, 2, . . . , 𝑁𝑆 and𝑛 = 0, 1, . . . , 𝑁𝜏. Here, ℎ = 𝐿/(𝑁𝑆 − 1) and Δ𝜏 = 𝑇/𝑁𝜏 are
uniform spatial and temporal step sizes, respectively.𝑁𝑆 is the
number of grid points and 𝑁𝜏 is the number of time steps.
Figure 1 illustrates the uniform grid with a spatial step size ℎ.
Furthermore, the variable volatility 𝜎𝑛 is defined similarly as
𝜎𝑛 ≡ 𝜎(𝜏𝑛).

By applying the fully implicit-in-time and space-centered
difference scheme to (2), we obtain that

𝑢𝑛+1𝑖 − 𝑢𝑛𝑖
Δ𝜏 = (𝜎

𝑛+1𝑆𝑖)
2

2
𝑢𝑛+1𝑖−1 − 2𝑢𝑛+1𝑖 + 𝑢𝑛+1𝑖+1

ℎ2

+ 𝑟𝑆𝑖
𝑢𝑛+1𝑖+1 − 𝑢𝑛+1𝑖−1
2ℎ − 𝑟𝑢𝑛+1𝑖 .

(3)

We can rewrite (3) as

𝛼𝑖𝑢𝑛+1𝑖−1 + 𝛽𝑖𝑢𝑛+1𝑖 + 𝛾𝑖𝑢𝑛+1𝑖+1 = 𝑏𝑖, for 𝑖 = 2, . . . , 𝑁𝑆, (4)

where𝛼𝑖 = 𝑟𝑆𝑖/2ℎ−(𝜎𝑛+1𝑆𝑖)2/2ℎ2,𝛽𝑖 = 1/Δ𝜏+(𝜎𝑛+1𝑆𝑖)2/ℎ2+𝑟,
𝛾𝑖 = −𝑟𝑆𝑖/2ℎ − (𝜎𝑛+1𝑆𝑖)2/2ℎ2, and 𝑏𝑖 = 𝑢𝑛𝑖 /Δ𝜏. For boundary

conditions, we use the zero Dirichlet condition at 𝑆1, that is,
𝑢𝑛1 = 0, and the linear condition at 𝑆𝑁𝑆 , that is, 𝑢𝑛𝑁𝑆+1 = 2𝑢

𝑛
𝑁𝑆
−

𝑢𝑛𝑁𝑆−1, for all 𝑛 [16]. To solve the resulting discrete system (4),
we apply the Thomas algorithm [17].

2.2. Algorithm of Volatility Construction. Next, we describe
the proposed algorithm for constructing the time-dependent
volatility using option prices. Suppose that we have a set
of measurements {𝜔𝛼𝛽}, where 𝜔𝛼𝛽 is the market price of the
options with the exercise time 𝑇𝛼 for 𝛼 = 1, . . . ,𝑀𝑡 and the
exercise price 𝐾𝛽 for 𝛽 = 1, . . . ,𝑀𝑘. Here, we assume that
𝑇1 ≤ ⋅ ⋅ ⋅ ≤ 𝑇𝑀𝑡 and 𝐾1 ≤ ⋅ ⋅ ⋅ ≤ 𝐾𝑀𝑘 . Using the given data, we
determine a volatility function 𝜎(𝑡) in the least-squares sense.
That is, we minimize the following mean-square error:

Γ𝛼 (𝜎) =
1
𝑀𝑘
𝑀𝑘

∑
𝛽=1

[𝑢𝐾𝛽 (𝜎; 𝑆0, 𝑇𝛼) − 𝜔
𝛼
𝛽]
2 𝜒𝛼𝛽

for 𝛼 = 1, . . . ,𝑀𝑡,
(5)

where 𝑢𝐾𝛽(𝜎; 𝑆0, 𝑇𝛼) is the numerical solution at 𝑆 = 𝑆0 of 2
with the strike price𝐾𝛽 at time𝑇𝛼. Here, 𝜒𝛼𝛽 is a characteristic
function, which is equal to one if𝜔𝛼𝛽 is available and otherwise
zero. In this paper, we use the steepest descent method [18]
to find the optimal value 𝜎 that minimizes the cost function
Γ𝛼(𝜎). Now, we present the detailed process of the proposed
algorithm. We use the notation 𝑇𝛼+1/2 = (𝑇𝛼 + 𝑇𝛼+1)/2 for
𝛼 = 0, 1, . . ., where 𝑇0 = 0.
Step 1 (find the constant volatility function on [0, 𝑇1]). By
assuming 𝜎(𝑡) = 𝑦1 on [0, 𝑇1], we find that 𝑦1 minimizes the
following cost function:

Γ1 (𝜎) =
1
𝑀𝑘
𝑀𝑘

∑
𝛽=1

[𝑢𝐾𝛽 (𝜎; 𝑆0, 𝑇1) − 𝜔
1
𝛽]
2 𝜒1𝛽. (6)

After determining the volatility function, we denote
𝜎1(𝑡) fl 𝜎(𝑡). Figure 2(a) illustrates the constant volatility
function at this step.

Step 2 (find the linear volatility function on [0, 𝑇2]). With 𝑦1
obtained in Step 1, we define the linear volatility function 𝜎(𝑡)
on [0, 𝑇2] as

𝜎 (𝑡) = 𝑦2 − 𝑦1
𝑇2 − 0.5𝑇1

(𝑡 − 𝑇2) + 𝑦2. (7)

Here, (7) represents a linear function passing through the
point (𝑇1/2, 𝑦1) and having the optimal value 𝑦2 that mini-
mizes the following cost function:

Γ2 (𝜎) =
1
𝑀𝑘
𝑀𝑘

∑
𝛽=1

[𝑢𝐾𝛽 (𝜎; 𝑆0, 𝑇2) − 𝜔
2
𝛽]
2 𝜒2𝛽. (8)

Note that, by setting (7), we only estimate a single parameter
𝑦2 using the given value for 𝑦1. After determining the
volatility function, we denote 𝜎2(𝑡) := 𝜎(𝑡). Figure 2(b)
illustrates the linear volatility function 𝜎(𝑡) on [0, 𝑇2].
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Figure 2: Schematic of procedure for time-dependent volatility function.

Step 3 (find the piecewise linear volatility function on [0, 𝑇3]).
First, we assume that the linear volatility function 𝜎3(𝑡) on
[𝑇3/2, 𝑇3] is given by

𝜎3 (𝑡) =
𝑦3 − 𝜎2 (𝑇3/2)
𝑇3 − 𝑇3/2

(𝑡 − 𝑇3) + 𝑦3, (9)

where the linear equation passes through the given point
(𝑇3/2, 𝜎2(𝑇3/2)) and unknown point (𝑇3, 𝑦3) as shown in

Figure 2(c). From the linear function 𝜎3, we define the
following piecewise linear volatility function on [0, 𝑇3]:

𝜎 (𝑡) = {{
{

𝜎2 (𝑡) , if 𝑡 ∈ [0, 𝑇3/2] ,
𝜎3 (𝑡) , if 𝑡 ∈ [𝑇3/2, 𝑇3] .

(10)

Then, we estimate the optimal value of 𝑦3 that minimizes the
cost function as
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Γ3 (𝜎) =
1
𝑀𝑘
𝑀𝑘

∑
𝛽=1

[𝑢𝐾𝛽 (𝜎; 𝑆0, 𝑇3) − 𝜔
3
𝛽]
2 𝜒3𝛽. (11)

Figure 2(d) presents a schematic of the piecewise linear
volatility function on [0, 𝑇3].
Step 4 (find the linear volatility function on [0, 𝑇𝑀𝑡]). The
following process is repeated from 𝛼 = 4 to 𝛼 = 𝑀𝑡. By using
𝑦𝛼−1 as obtained in previous step, we set the linear volatility
function 𝜎𝛼(𝑡) on [𝑇𝛼−3/2, 𝑇𝛼] as

𝜎𝛼 (𝑡) =
𝑦𝛼 − 𝜎𝛼−1 (𝑇𝛼−3/2)
𝑇𝛼 − 𝑇𝛼−3/2

(𝑡 − 𝑇𝛼) + 𝑦𝛼. (12)

In general, by using the volatility function

𝜎 (𝑡)

=
{{{{
{{{{
{

𝜎2 (𝑡) if 𝑡 ∈ [0, 𝑇3/2] ,
𝜎𝑗 (𝑡) if 𝑡 ∈ [𝑇𝑗−3/2, 𝑇𝑗−1/2] for 2 < 𝑗 < 𝛼,
𝜎𝛼 (𝑡) if 𝑡 ∈ [𝑇𝛼−3/2, 𝑇𝛼] ,

(13)

we determine the optimal parameter 𝑦𝛼 that minimizes the
cost function as

Γ𝛼 (𝜎) =
1
𝑀𝑘
𝑀𝑘

∑
𝛽=1

[𝑢𝐾𝛽 (𝜎; 𝑆0, 𝑇𝛼) − 𝜔
𝛼
𝛽]
2 𝜒𝛼𝛽 . (14)

Note that in the proposed algorithm we do not compute
the implied volatility and do not use Dupire’s formula [12,
19–21]. Instead, we directly compute the time-dependent
volatility function from option prices and the BS equation.
Our reconstructed volatility function is piecewise linear. It is
very robust to compute the volatility because we only need to
find a single parameter at each steepest descent algorithm.

3. Numerical Experiments

In this section, we demonstrate the performance of the
proposed time-dependent volatility construction algorithm
by numerical experiments withmanufactured volatility func-
tions and option data from a real market. All computations
were performed on a 2.7GHz Intel PC with 8GB of RAM
loaded with MATLAB 2016a [22].

3.1. Convergence Test. As the first numerical test, we perform
a convergence test for the numerical scheme (4) with respect
to ℎ andΔ𝜏. Let us consider a payoff functionΛ(𝑆) = max(𝑆−
100, 0) with 𝑟 = 0.015, 𝑆0 = 100, 𝑇 = 1, and 𝐿 = 400. We set
a complicated volatility function, 𝜎(𝑡) = 0.1 cos(4𝜋𝑡) − 0.1𝑡 +
0.2 (see Figure 3), to check the convergence of the employed
numerical scheme.

Table 1 shows the convergence of European call option
prices at (𝑆0, 𝑇) as we refine ℎ and Δ𝜏. From this point on,
we will use ℎ = 1 and Δ𝜏 = 1/360, because these values
are sufficiently accurate for the present work, and we will use
𝑟 = 0.015 and 𝐿 = 400 unless otherwise specified.

Table 1: Convergence test for European call option values.

Case ℎ = 4 ℎ = 2 ℎ = 1 ℎ = 0.5
Δ𝜏 = 1/90 7.397038 7.432546 7.441332 7.443523
Δ𝜏 = 1/180 7.389061 7.424523 7.433299 7.435488
Δ𝜏 = 1/360 7.385044 7.420485 7.429255 7.431443
Δ𝜏 = 1/720 7.383028 7.418458 7.427226 7.429413

0.25 0.50 0.75 10
t

0

0.1

0.2

0.3


(t
)

Figure 3: Volatility function, 𝜎(𝑡) = 0.1 cos(4𝜋𝑡) − 0.1𝑡 + 0.2.

3.2. Nonuniqueness of the Volatility Function. We consider a
numerical test to demonstrate the nonuniqueness of a linear
volatility function. Let 𝜎(𝑡) = −0.2𝑡 + 0.3 be a given volatility
function on a time interval [0, 1]. Using this given volatility
function, we generate European call prices by solving (4).The
other parameters used are 𝑆0 = 100 and 𝐾𝛽 = 92 + 2𝛽 for
𝛽 = 1, . . . , 8. The payoff functions are set as Λ 𝛽(𝑆) = max(𝑆 −
𝐾𝛽, 0) for 𝛽 = 1, . . . , 8. Table 2 presents the European call
option prices that are generated using the given conditions.

Now, we will determine the following linear volatility
function which minimizes the cost function:

𝜎 (𝑡) = (𝜎1 − 𝜎0) 𝑡 + 𝜎0, (15)

where 𝜎0 = 𝜎(0) and 𝜎1 = 𝜎(1) are constants to be
computed. Figure 4(a) shows the cost function Γ(𝜎) =
∑8𝛽=1[𝑢𝐾𝛽(𝜎; 100, 1) − 𝜔𝛽]2/8 on a parameter domain, 0.1 ≤
𝜎0, 𝜎1 ≤ 0.3. Figure 4(b) shows contour lines of the cost
function Γ(𝜎). As shown in Figure 4(b), we obtain the
different points (star markers) having the local minimum
of the cost function Γ(𝜎) by applying the steepest descent
method with different initial guesses (from A to G). In
Figure 4(c), we represent these estimated linear volatility
functions (15), satisfying Γ(𝜎) ≈ 0. This means that the
optimal parameter values for (15) are nonunique. Therefore,
in the first step of the construction of the volatility function,
it is reasonable to assume a constant volatility function.

3.3. Volatility Construction Using Manufactured Data. Next,
we consider the following nonlinear manufactured volatility
function:
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Figure 4: (a) Cost function Γ(𝜎) = ∑8𝛽=1[𝑢𝐾𝛽 (𝜎; 100, 1) − 𝜔𝛽]2/8 on a parameter domain, 0.1 ≤ 𝜎0, 𝜎1 ≤ 0.3. (b) Contour lines of the cost
function and behavior of eight different points. (c) Estimated volatility functions for corresponding points.

Table 2: Generated European call option prices for different strike
prices 𝐾𝛽.

𝛽 1 2 3 4 5 6 7 8
𝐾𝛽 94 96 98 100 102 104 106 108
𝜔𝛽 12.22 11.07 10.00 9.00 8.08 7.23 6.45 5.74

𝜎 (𝑡) = 0.33𝑡 . (16)

First, we obtain reference values for the call option that is
based on the given volatility function (16) by solving (4)
with 𝑇𝛼 = 90𝛼/360 for 𝛼 = 1, 2, 3, 4 and 𝐾𝛽 = 92 +
2𝛽 for 𝛽 = 1, 2, . . . , 8. The European call option prices
generated by the volatility function (16) are represented in
Table 3.

In Figure 5, we see the procedure for constructing the
volatility function up until 𝑡 = 𝑇4. Here, we denote the
temporal volatility function 𝜎(𝑡) at each time level 𝑡 = 𝑇𝑖

Table 3: European call option prices generated by the volatility
function 𝜎(𝑡) = 0.3/3𝑡.
𝐾𝛽 94 96 98 100 102 104 106 108
𝑇1 = 90/360 8.87 7.60 6.45 5.42 4.51 3.72 3.05 2.47
𝑇2 = 180/360 10.27 9.06 7.95 6.94 6.03 5.20 4.47 3.82
𝑇3 = 270/360 11.08 9.89 8.79 7.78 6.86 6.02 5.26 4.58
𝑇4 = 360/360 11.61 10.43 9.33 8.32 7.39 6.54 5.76 5.06

by solid lines and star markers. Also, we have inserted small
figures to illustrate the cost function Γ(𝜎) against the volatility
and highlighted the optimal point that minimizes Γ(𝜎) at
𝑡 = 𝑇𝑖 for 𝑖 = 1, 2, 3, 4. From this figure, we can see that our
proposed method satisfactorily recovers the exact volatility
function.

3.4. Basic Mechanism of the Proposed Algorithm. In this
section, we introduce the basic mechanism of the proposed
algorithm. For comparison, we consider a simple piecewise
linear (SPL) volatility function:

𝜎SPL (𝑡) =
{{
{{
{

𝜎1 (𝑡) = 𝑦1 if 𝑡 ∈ [0, 𝑇1] ,
𝜎𝛼 (𝑡) =

𝑦𝛼 − 𝑦𝛼−1
𝑇𝛼 − 𝑇𝛼−1

(𝑡 − 𝑇𝛼) + 𝑦𝛼 if 𝑡 ∈ [𝑇𝛼−1, 𝑇𝛼] for 𝛼 = 2, . . . ,𝑀𝑡.
(17)

If we apply the SPL volatility function (17) to approximate
the two exact volatility functions 𝜎(𝑡) = 0.3/3𝑡 and 𝜎(𝑡) =
0.1 cos(4𝜋𝑡) − 0.1𝑡 + 0.2, then we obtain the results (dashed
lines) illustrated in Figure 6. In Figure 6(a), the volatility
is constant in the first interval, and in the second interval
the value of 𝑦2 should be smaller than the exact value
𝜎(𝑇2) to minimize the cost function. Likewise, 𝑦3 is larger
than 𝜎(𝑇3) and 𝑦4 is again smaller than 𝜎(𝑇4). Figure 6(b)
shows similar behavior; that is, an oscillatory solution is

generated. However, the proposed algorithm for constructing
the volatility function is essentially a predictor-corrector
technique. It dampens spurious oscillations and generates
satisfactory results. As shown in Figure 6, the results (thin
solid lines) using the proposed algorithm are accurate and
robust.

3.5. Calculate for theWhole Time at Once. Until now, we have
found an optimized volatility for each section of time. But
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Figure 5: Estimated time-dependent volatility by our algorithm and the exact volatility function (16). Here, each small figure shows the cost
function Γ(𝜎) as a function of 𝜎 and highlights the optimal value that minimizes Γ(𝜎) at time level 𝑡 = 𝑇𝛼 for 𝛼 = 1, 2, 3, 4.
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Figure 6: Construction of volatility by the SPL and proposed algorithms when the exact volatility is (a) 𝜎(𝑡) = 0.3/3𝑡 and (b) 𝜎(𝑡) =
0.1 cos(4𝜋𝑡) − 0.1𝑡 + 0.2.

from now on, we will not calculate the time for each section
but the volatility for all of the time. The comparison between
the two results is shown in Figure 7. Table 4 shows the value
of Γ(𝜎).

3.6. Volatility Construction from KOSPI 200 Data. Now, we
construct the volatility function by the proposed algorithm
with the KOSPI 200 index call option data [23, 24] on 29 July
2016. Table 5 shows real market data for the KOSPI 200 index
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Figure 7: Construction of volatility by proposed algorithm and new proposed algorithm when the exact volatility is 𝜎(𝑡) = 0.3/3𝑡.

Table 4: The value of Γ(𝜎).
Proposed volatility New proposed volatility

Γ(𝜎) 1.4796𝑒 − 04 6.1036𝑒 − 06

Table 5: KOSPI 200 index call option price on 29 July 2016 with
respect to the strike and maturity.

𝐾𝛽 245.0 247.5 250.0 252.5 255.0 257.5 260.0 262.5
𝑇1 = 13Δ𝜏 7.34 5.29 3.39 1.93 0.92 0.37 0.11 0.04
𝑇2 = 41Δ𝜏 8.85 6.90 5.28 3.82 2.56 1.70 1.05 0.62
𝑇3 = 76Δ𝜏 9.34 8.41 6.95 4.72 4.24 3.21 2.36 1.74

call option price with respect to the strike andmaturity. Here,
the strike indices are𝐾𝛽 = 245 + 2.5(𝛽 − 1) for 𝛽 = 1, 2, . . . , 8
and the maturity times are Δ𝜏 = 1/365, 𝑇1 = 13Δ𝜏, 𝑇2 =
41Δ𝜏, and 𝑇3 = 76Δ𝜏. At this time, the current value of the
KOSPI 200 index was 𝑆0 = 251.48 and interest rate was 𝑟 =
0.0136.

By the proposed algorithm, we construct the time-
dependent volatility function 𝜎(𝑡) from the KOSPI 200
market data as shown in Figure 8(d). Figures 8(a)–8(c)
represent the numerical option values given by the proposed
volatility function and the real market data for the KOSPI 200
index at 𝑡 = 𝑇1, 𝑇2, and 𝑇3.

4. Conclusions

In this paper, we considered a simple and robust numerical
algorithm for the construction of a time-dependent volatility
function from a finite set of market observations by the

Black–Scholes model. In order to numerically solve the BS
equation, we applied a fully implicit finite difference method.
By assuming a continuous and piecewise linear function with
respect to time, we constructed a volatility function at each
time level. The construction algorithm for the volatility func-
tion is based on the minimization of a cost function, defined
by the sum of the squared errors between market values
and theoretical values obtained from the BS model using the
time-dependent volatility function. Here, we used a steepest
descent method to minimize the cost function. However, in
general, volatility functions for minimizing the cost function
are nonunique. To resolve this problem, we proposed a
predictor-corrector technique. As the first step, we construct
the volatility function as a constant. Then, in the next step,
our algorithm follows the prediction step and correction
step at half-backward time level. Using several examples, we
demonstrated the accuracy and robustness of our proposed
algorithm.
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