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In this paper, we present a novel fast and accurate numerical method for the surface embedding narrow
volume reconstruction from unorganized points in R3. Though the level set method prevails in the image
processing, it requires a redistancing procedure to maintain a desired shape of the level set function. On
the other hand, our method is based on the Allen–Cahn equation, which has been applied in image seg-
mentation due to its motion by mean curvature property. We modify the original Allen–Cahn equation by
multiplying a control function to restrict the evolution within a narrow band around the given surface
data set. To improve the numerical stability of our proposed model, we split the governing equation into
linear and nonlinear terms and use an operator splitting technique. The linear equation is solved by the
multigrid method which is a fast solver and the nonlinear equation is solved analytically. The uncondi-
tional stability of the proposed scheme is also proved. Various numerical results are presented to dem-
onstrate the robustness and accuracy of the proposed method.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The industry of rapid prototyping and 3D printing has emerged
in past years, and the 3D printing technology to visualize objects in
space is now one of the issues in mathematics [1] and computer
science [2]. This work has been motivated by the need for 3D print-
ing [3,4] from surface data. The basic mechanism of the 3D printer
is that it builds up the object layer by layer. However, a surface is
two-dimensional (see Fig. 1(a)) and its slices are in general one-
dimensional, which 3D printer cannot build up a three-dimen-
sional object. Hence, to print the surface with a 3D printer, we need
to thicken up the surface and make a surface embedding narrow
volume (Fig. 1(b)). Fig. 1(c) shows a physical model manufactured
from the proposing mathematical model. Even though we were
motivated by 3D surface printing, our proposing algorithm is gen-
eral so that the algorithm can be applied to other applications such
as geometry processing [5], tolerance analysis in machine process-
ing [6], and collision detection [7,8].
Up to now, a great number of algorithms have been proposed to
solve the offset surface reconstruction problems. In [9], Liu and
Wang approximated both the zero-level surface and its offset sur-
face using an implicit function. They also developed a fast offset
surface generation method via a narrow band signed distance-field
[10]. In addition, Chen and Wang proposed thickening operations
to convert a surface to a solid [11] and introduced a uniform offset-
ting model [12]. It enables to generate both grown and shrunk
models from arbitrary offset distance. Curless and Levoy developed
two important techniques for reconstructing complex and accurate
models from scanned objects: spacetime analysis, d based on ana-
lyzing the time evolution of the structured light reflections [13],
and a volumetric space carving technique for integrating several
data into a single geometric model [14]. Lien [15] and Varadhan
and Manocha [16] demonstrated representations of the Minkowski
sum boundary. To get high-quality offsets, an adaptive octree-
structure was used for distance bounds in [17]. Small and thin fea-
tures were detected by subdivisional methods [18,19]. For some
other considerations of offset surface reconstruction, we also refer
to [20,21]. Recently, Wang and Manocha [22] presented a highly
parallel method to compute the approximate offsetting on models
represented by structured points in layered depth images (LDIs).
The main idea is to compute the super-union of all the balls
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Fig. 1. (a) Surface, (b) reconstructed volume, and (c) a physical model manufactured from the proposing mathematical model.
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centered at the sample points, which can be conducted efficiently
on the graphics processing unit with LDI representation. As com-
pared to prior CPU-based approximation offsetting algorithms,
their approach results in more than 100 times speedups.

Our approach is basically an implicit representation of interface
as an isosurface of the level set function [23–25]. The level set
method for numerical interface evolution has been successfully
used for surface reconstruction, including texture objects
[26–31]. Zhao et al. solved shape reconstruction problems by using
a minimal-surface-like model and the level set method [30,31].
However, for offset surface reconstruction problem, the calculation
of unsigned distance function is a challenging problem because the
offset distance is generally small and the given surface is not
closed. To solve these problems, we present a novel fast and accu-
rate numerical method for surface embedding narrow volume
reconstruction from an unorganized surface data set. Our method
is based on the Allen–Cahn (AC) equation [32], which has been
applied to image processing problems such as segmentation, deno-
ising, and inpainting [33–39]. We choose the AC equation because
it has intrinsic smoothing effect on interfacial transition layers and
its fast and accurate hybrid numerical solver is available [40]. We
modify the original AC equation by multiplying a control function
to restrict the evolution within a narrow band around the given
surface data set. The stability of numerical schemes for equations
is very important. Explicit time integration schemes are generally
only conditionally stable and require small time steps to insure
numerical stability. Using an operator splitting technique, we pro-
pose the scheme that allows the use of a sufficiently large time step
without the technical limitations. We also prove the unconditional
stability of the proposed scheme.

This paper is organized as follows. In Section 2, we briefly
describe the main governing equation and we describe the numer-
ical solution and prove its unconditional stability. In Section 3, we
perform some characteristic numerical experiments for volume
reconstruction. Finally, our conclusion is given in Section 4.
2. Proposed method and numerical solution

2.1. Proposed method

For a given set of unorganized surface data points
S ¼ fXm ¼ ðXm; Ym; ZmÞ 2 R3jm ¼ 1; . . . ;Mg, we want to reconstruct
a narrow volume which embeds S. Here we mean by a volume the
enclosed volume by the isosurface of a scalar-valued function.
Without loss of generality we can assume S � X ¼ ð0; LxÞ�
ð0; LyÞ � ð0; LzÞ. Let h ¼ Lx=Nx ¼ Ly=Ny ¼ Lz=Nz be the uniform grid
size and Xh ¼ fxijk ¼ ðxi; yj; zkÞjxi ¼ ði� 0:5Þh; yj ¼ ðj� 0:5Þh;
zk ¼ ðk� 0:5Þh;1 6 i 6 Nx;1 6 j 6 Ny;1 6 k 6 Nzg be the set of cell
centers, where Nx;Ny, and Nz are power of two.

A simplest method for the volume reconstruction is to find an
unsigned distance function from S, and then we define the volume
bounded by the isosurface of the function at an order of h value. For
better visualization, let us consider the simplest method in two-
dimensional space. Fig. 2(a) shows S. Include S by a domain X
and discretize the domain with Xh (open circles in Fig. 2(b)). Then
define the unsigned discrete distance function on Xh as

dðxijkÞ ¼ min
16m6M

jxijk � Xmj: ð1Þ

In Fig. 2(b), the dash-dot line segment is jxijk � Xmj. Fig. 2(c)
shows the mesh plot of the unsigned distance function. However
the isosurface of Eq. (1) is generally not smooth as shown in
Fig. 2(d).

To overcome this non-smoothness of the isosurface and get a
smooth narrow volume embedding unorganized point data set,
we propose the following modified Allen–Cahn model with Neu-
mann boundary condition:

@/ðx; tÞ
@t

¼ gðxÞ � F 0ð/ðx; tÞÞ
�2 þ D/ðx; tÞ

� �
in X; ð2Þ

n � r/ðx; tÞ ¼ 0 on @X; ð3Þ

where Fð/Þ ¼ 0:25ð1� /2Þ2, � is a positive constant, and n is the
outward normal vector at the domain boundary. If gðxÞ � 1, then
Eq. (2) is the classical AC equation, which was proposed to model
the motion of antiphase domain coarsening in a binary alloy and
was applied to segmentation, denoising and inpainting [33–39]
due to its motion by mean curvature. / is called as a phase field.
In our approach, we define the initial profile as

/ðx;0Þ ¼ tanh
l� dðxÞffiffiffi

2
p

n

� �
: ð4Þ

Here l is the offset distance and n is related to the interface
transition thickness. We choose n smaller than �, which means
the initial profile has sharper interfacial transition than locally
well-relaxed interfacial profiles. Then using Eq. (4), we define the
non-constant function, gðxÞ:

gðxÞ ¼ 1� /2ðx;0Þ; ð5Þ

which restricts the evolution of the governing Eq. (2) within a
narrow band around the given surface data set. Let us take a two-
dimensional example. Assume that we are given point data of a
circle with a radius 0:25. Then, Fig. 3(a)–(c) show the unsigned dis-

tance function dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:25

��� ���, the initial order parame-

ter /ðx; y;0Þ, and gðx; yÞ, respectively. Fig. 3(d) shows the slice plots
of dðx;0:5Þ; /ðx;0:5;0Þ, and gðx; 0:5Þ at y ¼ 0:5. The function gðx; yÞ
is positive on the transition layers of /ðx; y; 0Þ and zero elsewhere.

2.2. Numerical solution

Next, we present an operator splitting-based hybrid numerical
scheme for Eq. (2) in a three-dimensional domain
X ¼ ð0; LxÞ � ð0; LyÞ � ð0; LzÞ. Let /n

ijk be approximations of
/ðxi; yj; zk;nDtÞ, where Dt ¼ T=Nt is the time step, T is the final time,



(a) (b)

(c) (d)
Fig. 2. (a) Schematic illustration of data set S, (b) definition of unsigned discrete distance function, (c) mesh plot of unsigned distance function, and (d) contouring a level of
distance function.

(a) (b) (c)

(d)
Fig. 3. (a)–(c) are the unsigned distance function dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:25

��� ���, the initial order parameter /ðx; y;0Þ, and gðx; yÞ, respectively. (d) the slice plots of
dðx;0:5Þ; /ðx;0:5;0Þ, and gðx;0:5Þ at y ¼ 0:5.
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and Nt is the total number of time steps. We split the original
problem (2) into a sequence of simpler problems as

@/ðx; tÞ
@t

¼ gðxÞD/ðx; tÞ; ð6Þ

@/ðx; tÞ
@t

¼ � gðxÞF 0ð/ðx; tÞÞ
�2 : ð7Þ

As the first step, we solve Eq. (6) by applying an implicit method
with /n and homogeneous Neumann boundary condition, that is,

/
nþ1

2
ijk � /n

ijk

Dt
¼ gijkDd/

nþ1
2

ijk

¼
gijk

h2 /
nþ1

2
i�1;jk þ /

nþ1
2

iþ1;jk þ /
nþ1

2
i;j�1;k þ /

nþ1
2

i;jþ1;k þ /
nþ1

2
ij;k�1 þ /

nþ1
2

ij;kþ1

�
�6/

nþ1
2

ijk

�
: ð8Þ
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Fig. 5. Top row: the evolution of zero level set of /. Middle row: zero contours of / at th
y ¼ 0:5 plane.

(a)
Fig. 4. (a) Equilibrium phase field profile, tanh x

ffiffiffi
2
p
�

� �.� �
. (b) For a po
The linear system of Eq. (8) is solved using a multigrid method
[41], specifically, V-cycles using the Gauss–Seidel relaxation with a
tolerance 1e�7. The Gauss–Seidel iteration for Eq. (8) is given as

/
nþ1

2;mþ1
ijk ¼ /n

ijk þ
Dtgijk

h2 /
nþ1

2;mþ1
i�1;jk þ /

nþ1
2;m

iþ1;jk þ /
nþ1

2;mþ1
i;j�1;k þ /

nþ1
2;m

i;jþ1;k

��

þ/
nþ1

2;mþ1
ij;k�1 þ /

nþ1
2;m

ij;kþ1

�i
1þ

6Dtgijk

h2

� �	
; ð9Þ

where mþ 1 denotes the new approximation and m the old approx-
imation of the iteration. In the coarse grid, gijk is evaluated using the
average of the closest eight neighborhood points /0

ijk value. For
example, in X2h grid,

gijk ¼ 1� /0
2i;2j;2k þ /0

2i�1;2j;2k þ /0
2i;2j�1;2k þ /0

2i�1;2j�1;2k þ /0
2i;2j;2k�1

�
þ/0

2i�1;2j;2k�1 þ /0
2i;2j�1;2k�1 þ /0

2i�1;2j�1;2k�1

�2
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e y ¼ 0:5 plane with surface data set (circles). Bottom row: �gF 0ð/Þ=�2 þ gD/ at the

(b)
int data at the origin, dðxÞ;/ðx;0Þ, and gðxÞ. Here we used � ¼ 0:1.



Fig. 6. From left to right: conical surface with 4270 data set points, initial reconstruction, final reconstruction, and cut off view of final reconstruction with data points.
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for i ¼ 1; . . . ; Nx=2; j ¼ 1; . . . ; Ny=2, and k ¼ 1; . . . ; Nz=2. The
rest of the multigrid algorithm is standard [41].

Next, for fixed x, Eq. (7) is a separable ordinary differential
equation [42], i.e.,

g
�2 dt þ 1

/3 � /
d/ ¼ 0: ð10Þ

If we solve Eq. (10) with the initial condition /
nþ1

2
ijk , then we have

the following solution after Dt:

/nþ1
ijk ¼

/
nþ1

2
ijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�
2gijkDt

�2 þ /
nþ1

2
ijk

� �2
1� e�

2gijkDt

�2

� �s : ð11Þ

For more details about the numerical solution algorithm, see
[40] in the case of gðxÞ � 1.

2.3. Stability of the proposed method

Our proposed hybrid splitting method, Eqs. (8) and (11), is an
unconditionally stable scheme. First to prove the stability of Eq.
(8), we consider the von Neumann analysis. We substitute
/n

ijk ¼ dnesðaiþbjþckÞh and /nþ1=2
ijk ¼ dnþ1esðaiþbjþckÞh into Eq. (8). Here

d; a; b; c are real parameters and s ¼
ffiffiffiffiffiffiffi
�1
p

. Eq. (8) is a homoge-
neous heat equation with the variable coefficients gðxÞ. We can
take an arbitrary point ĝ in the domain of Eq. (8) and freeze the
coefficients at this point. Thus if the constant-coefficient heat
equation satisfies the von Neumann spectral stability condition,
the original Eq. (8) will be stable [43]. By substituting these terms
into Eq. (8), we obtain

d ¼ 1

1þ 4ĝDt sin2ða=2Þ þ sin2ðb=2Þ þ sin2ðc=2Þ
� � : ð12Þ
Fig. 7. Reconstructions of (a) Costa–Hoffman–Meeks and (b) engine surfaces. From left to
Since gðxÞ is nonnegative, the arbitrary point ĝ is nonnegative. Thus,
from Eq. (12) d satisfies the property jdj 6 1 for any a; b, and c.
Hence the numerical scheme of the constant-coefficient heat equa-
tion is unconditionally stable and Eq. (8) also holds it. Furthermore,

the inequality minijk /n
ijk

� �
6 /

nþ1
2

ijk 6 maxijk /n
ijk

� �
is satisfied by the

discrete minimum and maximum principles for the heat equation

[44]. Assume j/nj 6 1, we get j/nþ1
2j 6 1. Second, for Eq. (11), it is

obvious that /nþ1 ¼ 0, if /nþ1
2 ¼ 0. Otherwise we get

j/nþ1j ¼
/nþ1

2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
�2gDt
�2 þ /nþ1

2

� �2
1� e

�2gDt
�2

� �r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

/
nþ1

2

 �2 � 1

 !
e
�2gDt
�2

vuut
6 1:

Therefore, if j/nj 6 1, then j/nþ1j 6 1. Hence our proposed
scheme, Eqs. (8) and (11), is unconditionally stable for any time
step.

3. Numerical results

In this section, we present numerical results using the proposed
numerical algorithm on various synthetic and real data sets. For a
good initial guess, let us consider one-dimensional space. For an

equilibrium phase field profile, tanh x
ffiffiffi
2
p
�

� �.� �
, for Eq. (2), the

phase field varies from �0.99 to 0.99 over a distance of approxi-

mately g ¼ 2
ffiffiffi
2
p
�tanh�1ð0:99Þ (refer to Fig. 4(a)). Therefore, if we

want this value to be approximately m grid points, the � value

needs to be taken as �m ¼ mh 2
ffiffiffi
2
p

tanh�1ð0:99Þ
h i.

[45]. The offset

distance l should be set as l P g=2 to make gðxÞ > 0 in the l offset
region from the surface (Fig. 4(b)). Unless otherwise specified,
throughout this paper we will use n ¼ �4 and
right is surface data set, initial reconstruction, and final reconstruction, respectively.



Fig. 8. Reconstructions of (a) happy Buddha, (b) bunny, and (c) oil pump. From left to right: initial reconstruction, final reconstruction, cut view, and cross view.

Fig. 9. Reconstruction of a skeleton hand. (a) initial data, (b) isosurface of distance
function, and (c) final reconstruction.
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l ¼
ffiffiffi
2
p
�5tanh�1ð0:99Þ. We also use � ¼ �12 to get smooth offset sur-

face and take the time step Dt ¼ 5e� 5. For better visualization
purposes, the points in some figures are displayed more sparsely
than the real density.

We start with an example, which shows the basic mechanism of
the algorithm, Eqs. (8) and (11). Let us consider a half sphere
whose center is placed at ð0:5;0:5;0:1Þ on the domain
X ¼ ð0;1Þ � ð0;1Þ � ð0;0:5Þ and has a radius 0:25. The computation
is run up to four iterations with 128� 128� 64 grid points. In the
top row of Fig. 5, we show the evolution of zero level set of /. Col-
umns (a)–(c) are at initial, two iterations, and four iterations,
respectively. In the middle row we show the zero contours of /
in the y ¼ 0:5 plane. To compare with the data set (circles), we
put them together. As can be seen, offset distance is uniform along
the curve of data set. Bottom row shows the right term in Eq. (2),
i.e., �gF 0ð/Þ=�2 þ gD/ in the y ¼ 0:5 plane. From the results in
Fig. 5(c), we observe that the positive and negative values of the
right term in Eq. (2) imply that / increases and decreases until
the interface becomes smooth.

Fig. 6 shows the reconstruction of two headed cone whose input
data size is 4270. From left to right, they are input data set, initial
reconstruction, final reconstruction, and the comparison with ini-
tial data set, respectively. The computation takes eight iterations
on the domain X ¼ ð0;1Þ � ð0;1Þ � ð0;1Þ with 128� 128� 128
grid points. As can be seen, our method achieves the reconstruction
very fast. Comparison with the input data shows the uniform sur-
face embedding volume.



Table 2
Accuracy test for our proposed method. Here we use the offset distance l ¼ 0:05 and
thickness � ¼ 0:005. All tests are performed on the unit cube domain. Here keþk2

means the discrete l2-norm error of grown surface.

Case Grid keþk2 ke�k2

Cube 128� 128� 128 5.652E�3 6.416E�3
256� 256� 256 1.565E�3 1.747E�3

Sphere 128� 128� 128 1.804E�3 2.013E�3
256� 256� 256 4.523E�4 5.243E�4

Cylinder 128� 128� 128 2.264E�3 2.987E�3
256� 256� 256 5.861E�4 7.581E�4

Table 1
List of data information and CPU times.

Case Data points Grid size Iterations CPU (s)

Fig. 5 2476 128� 128� 64 4 5.81
Fig. 6 4270 128� 128� 128 8 25.81
Fig. 7(a) 92,239 128� 128� 128 10 30.02
Fig. 7(b) 22,886 256� 128� 128 6 41.82
Fig. 8(a) 271,826 128� 128� 256 7 50.71
Fig. 8(b) 17,974 256� 256� 256 6 167.32
Fig. 8(c) 30,937 128� 128� 128 6 32.23
Fig. 9 163,662 256� 256� 128 10 114.01
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Fig. 7 shows the reconstruction of Costa–Hoffman–Meeks sur-
face with genus two and engine surfaces. The initial data set is
computed by using Mathematica software, and the other is taken
from [46]. In each row, surface data set, initial reconstruction,
and final reconstructed surface are shown. From the initial recon-
struction result of engine, we can observe wrinkling surface. How-
ever, after eight iterations, we have smooth surface as shown in the
last column of Fig. 7.

Fig. 8(a)–(c) show the reconstruction of happy Buddha, bunny,
and oil pump surfaces, respectively. From left to right, they are ini-
tial data set, final reconstruction, cut and cross views of final offset-
ting surface, respectively. The initial data sets are taken from [46].
As can be seen, our proposed approach reconstructs the offsetting
surface with a uniform distance.
0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.2 0.4
0.1

0.2

0.3

0.4

Fig. 10. Top row: contour plots of initial shape. Middle row: contour plots of final shape
solid lines denote noises and reconstructed surface, respectively.
Fig. 9 shows the reconstruction of a skeleton hand on
X ¼ ð0;2Þ � ð0;2Þ � ð0;1Þ with a 256� 256� 128 grid. Fig. 9(a)–
(c) are the plot of input data set which is taken from [47], isosur-
faces of distance function, and final reconstruction, respectively.
The computation takes 10 iterations. We can see that our proposed
method can handle the complex topology and the reconstructed
surface is very smooth compared to the result obtained by using
an unsigned distance function.

Next, Table 1 gives the information of the number of data
points, the iteration numbers, and the CPU times. The CPU times
(seconds) of our calculations, which are performed in C þþ, are
measured on a 3 GHz with 3G of RAM. As can be seen from Table 1,
the robustness of our proposed method is observed, as expected
from the unconditionally stable discrete schemes.

To test the accuracy of our proposed method, we consider a test
with three synthetic surfaces, which are cube, sphere, and cylinder.
The side length of cube, the radius of sphere, the radius of cylinder,
and the height of cylinder are the same as 0.35. We define the error
eþm :¼ Xn;þ

m � Xe;þ
m , where Xn;þ

m and Xe;þ
m are numerical and exact

grown surface points. Similarly, negative superscript denotes
shrunk surface error. See [12] for more details about grown and
shrunk surfaces. The errors obtained using these definitions are
given in Table 2. Here we use the offset distance l ¼ 0:05 and thick-
ness � ¼ 0:005. The numerical results are qualitatively in good
agreement with the theoretical values.

In practice, there are outliers or conflicting points into an unor-
ganized point cloud. In Fig. 10(a)–(c), we show offset surface
reconstructions with 5%, 10% and 15% random noises. From top
to bottom, they are the contour plots of initial shape, the final
shape, and plane views in the y ¼ 0:5 with data points. These
results suggest that our proposed method can successfully recon-
struct the uniform and smooth offset surface. It should be noted
that the higher noise level leads to thicker embedding volumes.
4. Conclusion

In this article, we proposed a novel fast and accurate numerical
method for the surface embedding narrow volume reconstruction
from unorganized points. The method is based on the Allen–Cahn
equation with a control function, which restricts the evolution to
0.6 0.8 0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

. Bottom row: plane views in the y ¼ 0:5 with data points. Here circle symbols and
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the offset regions. The proposed method can deal with non-closed
surfaces and do not have self-intersection problems. To overcome
the time step restriction, we used an operator splitting technique
and proved its unconditional stability. Various numerical experi-
ments were presented to demonstrate the strengths of the pro-
posed method. In future work, to speed up the computation, we
will investigate GPU implementation of the current algorithm as
done in [22].
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