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Abstract

The primary purpose of this thesis is to study the modeling dendritic growth with convection
in phase-field simulations. To solve the equations for a crystal growth in a flow, we first discuss the
phase-field method, dendritic growth without an external force, and the incompressible viscous fluid
flows. In a phase-field method, preceding researchers have developed several numerical schemes.
We compare performances of the widely used ones and give proofs of some analytical properties;
solvability, stability and boundedness of numerical solutions. A dendritic crystal growth is one of
the practical problems which can be solved by using a phase-field method. Here, we review the
operator splitting method for solving a governing equation of a morphological change in a crystal
growth and give some numerical results to show the robustness of the chosen method. The Navier—
Stokes equation was originated to estimate dynamics of an incompressible viscous fluid flow, which
contains a metallic solution of a crystal. I present the fast, efficient, and robust numerical solver
based on the Chorin’s projection method. By synthesizing the treated methods in a former part
of this dissertation, we finally consider a numerical solution of a dendritic growth with convection.
Applying convection to the crystal equation, there are problems such as deformation of crystal
shape and ambiguity of the crystal orientation for the anisotropy. To resolve these difficulties,
we present a phase-field method by using a moving overset grid for the dendritic growth under a
flow. The numerical results are presented to indicate a usefulness of our proposed method without

depending a condition of a given underlying fluid.
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Chapter 1

Introduction

A dendrite is the growth structure of the solid crystal during solidification, which has a mor-
phological unstable interface with its melt under typical solidification conditions of an alloy [107].
Here, the name “dendrite” is originated from a Greek word “dendron”, which means a tree, because
the structure of the crystal is tree-like. To observe a dendrite, the undercooled (or supercooled), be-
low the freezing point of the solid, liquid and a spherical solid nucleus are required. As the nucleus
grows, the spherical morphology becomes unstable and the growth directions prefers anisotropic
way. The solid generally attempts to minimize the their surface with the highest surface energy in
metallic system; thus the tip of dendrite grows shaper and sharper [34]. In the practical point of
view, the understanding dendritic growth is crucial in metal casting. By quoting a sentence of an
article in Nature, “Worldwide, as many as 10 billion metallic dendrites are produced in industry
every second” [111]. This number has been increasing since last two decades with settling their
good theoretical models and developing numerical tools which make practical engineering problems

be resolved [120].




Moreover, convection of the crystal in the melt is of great interest for the practical processes
to understand the dendritic solidification. The formation of the directional solidification such as
the arm spacing, growth rate, and morphology is largely changed by natural convection due to
gravity [13, 40, 105] and the forced convection due to the melt flow [104, 108]. Especially, the
melt convection effect is never neglected in a dendrite growth whose rate is relatively slow [54].
The convective effects on free dendritic crystal growth have been investigated in many researches
experimentally [59, 68, 105] and numerically [9, 35, 113, 127, 128].

The melt convection has been included as an incompressible fluid flow in numerical approaches.
Therefore, it is required to solve the phase transformation, describe the fluid flow, and incorporate
of solid boundary into the solution of fluid flow at the same time; and solving the system is a quite
challenging problem.

There are two major approaches for simulating multi-phase or multi-component flows to charac-
terize moving interfaces: the interface tracking and interface capture methods. First, the interface
tracking method uses Lagrangian particles to track interfaces and a velocity field is generated by
advection of the particles. Examples of the interface tracking method include the volume of fluid

[56], front tracking [41, 130], and immersed boundary method [91]. In contrast, interface captur-

ing methods implicitly capture an interface by using the contours of particular scalar functiois,

Examples include the level-set [116] and the phase-field methods [75].



Among such various numerical approaches, the phase-field method is considered as the most
powerful and accurate one to model dendritic growth, and there are many review papers regarding
phase-field models and simulations [5, 14, 120, 124].

However, it is difficult to precisely capture an interface of a crystal applying the advection
equation. To resolve the difficulty in a convection problem in dendrite growth, I propose a moving
overset grid method in a phase-field simulation to convect the crystal feature.

In this dissertation, the contents of the following published or working papers are contained:

1. Seunggyu Lee, Chaeyoung Lee, Hyun Geun Lee and Junseok Kim, Comparison of different
numerical schemes for the Cahn—Hilliard equation, Journal of Korean Society for Industrial
and Applied Mathematics 17(3) (2013) 197-207.

2. Seunggyu Lee, Darae Jeong, Wanho Lee and Junseok Kim, An immersed boundary method
for a contractile elastic ring in a three-dimensional Newtonian fluid, Journal of Scientific
Computing, in press, DOI: 10.1007/s10915-015-0110-8.

3. Seunggyu Lee, Dongsun Lee, Yongho Choi, Jaemin Shin and Junseok Kim, Stabilized nu-
merical method for the Cahn—Hilliard equation; unique solvability and gradient stability,

working paper.

4. Seunggyu Lee, Yibao Li, Jaemin shin and Junseok Kim, Phase-fi

growth in a two-dimensional cavity flow, submitted paper.



The outline of this dissertation is as follow: I give an introduction of a phase-field method
which is a useful technique for modeling a dendritic growth in Chapter 2. The crystal growth,
or dendritic solidification process is discussed focusing on a numerical analysis point of view in
Chapter 3. The content of Chapter 4 is the Navier—Stokes (NS) equation, describing the motion of
viscous and incompressible fluid substances. The numerical solver of the convection of the crystal
under a flow, the main achievements of the thesis paper, is presented in Chapter 5. Finally, the

conclusion is drawn in Chapter 6.




Chapter 2

Phase-field method

2.1. Introduction

A phase-field method is a mathematical tool for solving an interfacial dynamics problem. It
is known that the method was first introduced by Fix [51] and Langer [86] and it has also been
applied to many industrial problems such as solidification dynamics [133], image inpainting [11, 94],
volume reconstruction [90], tumor growth [27], block copolymer [63, 64], and etc. Of interest to
researchers at present is the coupling of the phase-field method to the NS equations of fluid flow
for solving multi-phase fluid flows [118, 136].

A formulation of the phase-field model are based on a free energy functional depending on
an order parameter (or the phase-field) and a diffusive field (variational formulations). The order
parameter can be a scalar function such as a fraction of a mixture in two-phase problem (or a solid
in solid-liquid phase change problems), that varies from —1 (or 0) in one phase (or liquid) to 1 in

the other phase (or solid), or a vector function for anisotropic surfaces [57]. By minimizing a given

free energy functional, the governing differential equations for the evolution of the multi-phase

system are derived [121].
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The description of some phenomena involves the definition of a precisely located interface on
which boundary conditions are imposed, especially yields a normal velocity at which the interface
is moving. This is so-called a sharp-interface approach. Nevertheless, a small scale of the interface
width is prohibitive in a computational point of view. To solve this problem, a finite width € be-
tween distinct phases is considered as a limit of a sharp-interface model. This limit is usually taken
by asymptotic expansions in powers of the interface width. Such a model is called a diffuse-interface
model. The concept of a transition zone between two co-existing phases was already introduced
by Gibbs; however, this notion has been employed in phase transition phenomena by Landau and
Khalatnikov, who firstly introduced an additional parameter to label the different phases on the
absorption of liquid helium. Essentially, diffuse-interface modeling appeared subsequently in the
literature in the context of phase transition phenomena and such models have advanced numerical
treatment as well as understanding of interfacial growth phenomena [47].

The changes of a structure interface are described implicitly by the time evolution of an order
parameter instead of tracking the interface explicitly. Although interface tracking approaches
can be successful in lower-dimensional systems, they becomes impractical for complicated three-

dimensional structures [25]. The one of other strong points of a phase-field method is its simplicity

in treating morphological changes with preserving the properties of a governirg equation.
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In this dissertation, we introduce two governing equations of the phase-field method: the Allen—
Cahn (AC) equation and the Cahn-Hilliard (CH) equation, deriving from the Ginzbug-Landau

free energy functional.

2.2. Allen—Cahn equation

2.2.1. Governing equations. The AC equation is a reaction-diffusion equation describing
the process of phase separation in iron alloys, including order-disorder transitions [2]. The equi-
librium configuration of the Ginzburg-Landau free energy functional has been applied to a wide
range of problems such as image inpainting [94], multi-phase problem [118, 136], crystal growth
[133], pattern dynamics [45, 109], and etc.

The equation is given as follow [2]:

8¢S:7t) _ _F/(QZ(QX’ t)) + A¢(X, t), X € Q7O <t S T) (21)

where x is the spatial variable in a domain € R¢ (d =1,2,3), t is the temporal variable in [0, T],

¢ is the quantity defined as a difference between concentrations of two mixture components (for

F(¢) =~ (1-¢%)°

| =
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is the double-well potential free energy potential approximated by a polynomial of degree four

(see Fig. 2.1), and € > 0 is the gradient energy coefficient related to an interfacial energy. The

boundary condition is

do B
8—n—n-V¢—00n 09, (2.2)

where n is the outgoing unit normal vector to the domain boundary 0f2.

15 -1 -05 05 1 15

0
¢

FIGURE 2.1. A double well potential F(¢) = 0.25(1 — ¢?)2.

The AC equation is the Ly-gradient flow of the Ginzburg-Landau free energy functional, which

has an important role in nonlinear evolution equation [102], and the functionalffas a form as follow;

5(<¢>)=/Q [Fe(f) +%v¢>l2} dx.
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Differentiating (2.3) with respect to ¢ gives

d. . d [[F) 1, .
Ge@ =5 [ [52+ 51vor|ax

- / [F'(‘z’)m LV wt] dx,
Q

€2
= / {F/(Q@—Aas} Prax + / (V6 - n)prdx
Q € N

= /Q (—0¢) drdx

- [ (@ ax<o, (2.4)
Q

using the integration by parts and the boundary condition (2.2) and it implies that the total energy
is non-increasing in time.
Allen and Cahn also showed that the normal velocity V' on a single closed interface I' is

governed by its mean curvature [2]:
V(x,t) = k(x,t) for x € T, (2.5)

where k(x,t) is the mean curvature of the interface I'. This dynamical property has been studied
in [16, 103, 112, 119]. Figure 2.2 shows the temporal evolutions of curves with the AC equation
in two dimension. The dashed line is the initial curve and the solid lines are the evolutions of

interfaces. The directions of evolutions are indicated by arrows.
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FIGURE 2.2. Temporal evolutions of arbitrary curves with the AC equation. The
dashed line is the initial curves and directions of evolutions are indicated by arrows.

We observe that the AC equation does not conserve its initial mass. We can check that the

AC type dynamics does not preserve the volume fractions as follows:

%/ngdx:/ﬂgbtdx

:/Q {_lf%rm} dx

€

:_/S)F;(2¢)dx+/mn-v¢ds

which is not always zero.

2.2.1.1. Mass-conservative form. As seen in above, we check that the classical AC equation

does not preserve the mass in both theoretically and numerically. To preserve the volume, Rubin-

stein and Sternberg introduced a Lagrange multiplier 5(t) into the AC modg

!/
ac(;, ) __F (Ce(;Q t)) + Ac(x,t) + (1), x€ Q0 JEt< T,
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where notations are followed the classical AC equation except the phase-field function ¢ € [0, 1]

instead of ¢ € [—1, 1] and the double well energy potential
L, 2
F(e) = ¢ (1—c¢%).

Here, 8(t) must satisfy

Jo F'(e(x,t)dx

/B(t) = €2f dx s
Q

to keep the mass conservation, and this formulation has been widely used [8, 137, 141]. the normal

velocity V' on a single closed interface I' is changed to
1
V(x,t) =k(x,t) — — / kds for x € T,
Tl Jr

by volume-preserving mean curvature flow, where |T'| is the total curve length in a two-dimensional
space and the total area in a three-dimensional space.

Figure 2.3 shows the temporal evolutions of curves with the mass-conservative AC equation
in two dimension. The dashed line is the initial curve and the solid lines are the evolutions of
interfaces. The directions of evolutions are indicated by arrows.

The Rubinstein and Sternberg’s model has been studied analytically and numerically [16, 10,

19, 132, 138, 95]. However, it has a drawback on preserving small featwrés since the Lagrange

multiplier is only a function of time variable. For example, there isfa eritic
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F1GURE 2.3. Temporal evolutions of arbitrary curves with the conservative AC
equation. The dashed line is the initial curve and directions of evolutions are
indicated by arrows.

which eventually disappears below the radius. This phenomenon is observed in the frame of the
Cahn-Hilliard model [138].
Brassel and Bretin proposed the following conservative AC equation to preserve small geometric

features [16]:

86(5? 2 _F/(Cg(’ 2) + Ac(x,t) + B(t)V/2F (c(x,1)), x € Q0<t < T (2.7)

where

Jo F'(e(x,t))dx

€2 [, \/2F (c(x,t))dx

B(t) = (2.8)

Then, the solution ¢(x,t) of the conservative AC equation (2.7) satisfies the total mass conservation

property:
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L 20+ aes sovaFa] o
/ dx—i—/ n- Veds + B(t /Fdx
:7%/ (c)dx + B(t) /\/7dx

. /F’ eQ;Sf/Q(FELdX/ V2F (¢)dx

using the divergence theorem, the homogeneous Neumann boundary condition (2.2), and the def-
inition of the Lagrange multiplier (2.8). Note that the Cahn-Hilliard equation, discussed in the

later section, is an also mass conservative model.

2.2.2. Numerical solution. We consider discretization of the AC equation to implement a
finite-difference method. For simplicity, an one-dimensional case is introduced where Q = (a,b)
and higher dimensional case can be extended straightforwardly. Let N be a positive even integer,

h = (b—a)/N be a uniform spatial step size,

O = {z; = (i — 05)h,1<i < N}

be a set of cell-centers of a computational domain. Denote the approximate value of the order

parameter ¢ as

OF &~ ¢(x;, nAt)
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where At is the temporal step size defined as T/Ny, T is the final time and V; is the total number

of temporal steps and the discrete order parameter at time nAt is defined as

¢n:( 7lla 377¢T]</)

nAt

T 2= (i—0.5)h T
FIGURE 2.4. Approximation value ¢}' in €, x [0, 7.

Let V5, and Ay, be discrete differential and Laplacian operators as

Vh¢i+% :%7
Piy1 — 207 + 9
Ah(ﬂzn = +l h2 1a

respectively. The operators can be applied to not only pointwise value, but also vector-valued

function as

Vg = (Vndl, - Vadly,s ) -
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Here, the discrete Laplacian operator uses the central differentiation and it can be expressed by

Vi as
A =V (Vadly s — Vaol ).
Note that the boundary condition (2.2) can be written in a discrete sense as
Vhﬁbg = Vh¢?\;+% =0. (2.9)

Moreover, we define the discrete ls-inner products as

N
(@", %" )n =hY_ oFv7,
=1
N (2.10)
(V" V™), =h Y Vadl, s Vadfy s,

=0

and the discrete discrete lo-norm as
2
o™ [l, = (9", @"),, -

Using the summation by parts, a discrete version of the integration by parts, the following property

holds with the discrete boundary condition (2.9):

(Apd"™ " )n = — (", 9");, = (", Aptp™ ).
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Now, we consider the following discrete AC equation:

oIt —gr  —a (67— (1-a) (61) + Bt + (1 - B)gy

At €2

+An (v + (1 =) ¢7), (2.11)

where «, (8, and « are constants for the weighted average between explicit and implicit schemes.
We analyze numerical schemes such as explicit, implicit, Crank—Nicolson, nonlinearly stabilized
splitting (NLSS), and linearly stabilized splitting (LSS) ones in solvability, stability, and bounded-
ness points of views. The basic strategies of proofs are based on [65]. For each cases, a, /3, and ~y

have the following values:

1. Explicit scheme (« = 8=+ =10)

it —or = (o1)’ + o}
At - €2

+ ARel, (2.12)

2. Implicit scheme (o = =v=1)

n+1 n n+1 3 n+1
. — O — . —+ o
¢1 At ¢z _ (¢1 22 ¢’L + Ah¢;b+17 (213)

3. Crank—Nicolson scheme (« = 8=~ = %)

n 3 n i n
ot —op _— () N e e 1
At 2¢2 2

Ap (¢ | + (157
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4. NLSS scheme (=1, =0, y=1)

n+1 n n+1\3 n
ntl _gn (@ + ¢
¢z - ¢z _ (¢z 62) ¢z + ﬁh¢?+17 (2.15)

5. LSS scheme (=0, =-2, y=1)

Prtt —gn  — (o) — 20701 4 3¢

A - = + Apgi Tt (2.16)

2.2.2.1. Analysis of the schemes. We first check the unique solvability of the schemes. We

need not to consider the case (2.12) since solvability of the explicit scheme clearly holds. Bearing

in mind that the discrete Eq. (2.11) as the Euler equation of a functional, we can consider the

following functional:

3 1— n\3 5 1_6 n
G(d) =5a 16— @I + <¢’ + 1= @) —2—6"3—%,¢>h

+ 2 VAl + (1 =) (Vo™ Vi), (2.17)

Here, ¢tp is the element-wise multiplication (¢1t1,- - ,dn¥n). Let ¢ and 1 (# 0) be a fixed

vector and s be a real number. Then, the following polynomial H(s) is a quadratic:

H(s) =G (¢ + s1))

n + 1- °
2At ||((Z)+S’l/)) ¢ |}2L+< (¢4 ;"/’) ( 04>¢ _

U L s¢>h + 21906+ 5wl
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+ (1 - 7) (vhd)na Vi ((b + S’l/’))ha

At + €2 + €2 T €2

n 3 — n\3 _ n
:G(¢)+S<¢—¢ a¢’  (1-a)(@") po _(1-H)¢

2At 2¢? 2

+53<a¢¢ ,¢> i <Z¢2 ,¢> (2.18)

3ap? — A
- Ah(’)’¢+(1—'y)¢"),¢>h+52<i+(a¢ B)¢_7 h¢,¢>
h

To check the convexity of the functional, we calculate the first and second derivatives of (2.18) as

following:

At + €2 + €2 e €2

— H" a3 — ny\3 _ n
H,(s):<¢> ¢"  ag’ (1-a)(¢") Bo (1-P)¢

2At 2¢2 2

2
+3s2<0‘i’;/’ ,¢>h+4 <OI/’2¢> (2.19)

2_
h

and

2 _ 2
) :2<1+ (309~ 5) ¥ _wAhw’¢> con (2 )
h ¢ h

2At 262 2
3
+12s2<%,¢> 7
h
1
:(A—t 2 >||¢||h+—H¢+sw 2|y 19l (2.20)

If @ >0, 8 < €2/At, and v > 0, the derivative H”(s) is strictly positive from (2.20); hence, thé

polynomial H(s) is strictly convex and the functional G(¢) is bounded
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the minimizer ¢* such that H(s) = G (¢* + sv) and G (¢*) < G(¢) for all ¢p. Moreover, taking

s =0 to (2.19), we get

— A (18" + (1=7)@") ) =0, (2:21)

Here, the equation becomes zero because of the property of the critical point of the convex func-

tional. Since Eq. (2.21) holds regardless of 1, we have

" — " —a(¢")’ —(1-a)(¢")’ +Be" +(1—B)e"

At €2

+Ap (79" + (1 —v)¢"). (2.22)

To show the uniqueness of the minimizer ¢*, let us assume that qAb is another minimizer of the
functional Gj i.e., G((}&) = G(¢") and Y = ¢ — o # 0. Using strictly convexity of H, proven in

above, the following inequality holds:

Eq. (2.11).

Inequality (2.21) is satisfied with any temporal step size for LSS and

other hand, the Crank Nicolson and implicit schemes holds if At < 2¢2 fa
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Next, we check that the stability of NLSS and LSS schemes, which have no restriction in

solvability as discussed above. A numerical scheme is called unconditionally gradient stable when

the discrete total free energy is non-increasing for any temporal step size At, i.e., the purpose of

the part is to show the NLSS and LSS schemes inherit a decreasing the total energy properties.

It is known that a numerical scheme for the AC equation is unconditionally gradient stable if we

split the free energy appropriately into contractive and expansive parts,

E(o) = /ab {ng) + ;qbi} doe = Ec(p) — Ec(9),

and treat the former part £.(¢) implicitly and the latter part £.(¢) explicitly [49]. The discrete

energy functional £"(¢") of the AC equation is defined as

h n h ad ny\2 2 h = n 2
") = 15 D@~ 1P+ 5 S [Vadl,,|
i=1 =1

4e? <

for each n. It is convenient to consider the discrete energy functional by decomposing into three

parts:
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Using the constants «, 8, and v used in (2.11), we can rewrite the decomposed discrete energy

functional as
EM@") = EM(P™) — ENM (™), (2.23)
where

EMNP") == BED (¢") +4EP (¢") + aED (¢™),

EL(P") =(1 = HEW(@") = (1= 7)E® — (1 - )@,

Using a discrete total energy, we can derive the numerical scheme in Eq. (2.15) from a gradient of

the discrete total energy as

¢;L+l _ ¢n 1

1
i txoechiantly | Loehany. S )
A= VEL @M+ S VEL (@), fori=1,--- N, (2.24)

Given the discrete energy functional £)(¢), one defines the Hessian H(*) to be the Jacobian of

the VE(® (¢) and hence the Hessian for i = 1,2, 3 is represented by

HY =v2eW(¢)

1 0
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H®? =v2£®) ()

1 -1 0
-1 2 -1
—h ,
-1 2 -1
0 -1 1

2
¢N—1

0 N

where we have used the boundary condition in Eq. (2.9). The eigenvalues of HWY, H® and H®)

are
m _h
A =2
4 k—1
AP = 2 LT, (2.25)
3y 3h
N =56k,
where k = 1,2,--- | N, respectively. Note that all eigenvalues in (2.25) are non-negative. Let
Wi
Vi =

|wl’
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be the orthonormal eigenvector corresponding to the eigenvalues )\,(3) where

B (k—1)m 3(k—Dm 2N - 1)(k—1)m
Wk—(COS -, CO8 oN >7

then ¢" 1 — @™ can be expressed in terms of a linear combination of vy, as

N
¢ =" =D vy (2.26)
k=1

We establish the decrease of the discrete energy functional. If ¢™*! is the solution of Eq. (2.15)

with a given ¢", then
(g™t < (). (2:27)

Next, we prove Eq. (2.27). This inequality has been shown for the nonlinear gradient stabilized
scheme in [28] and here we consider all five finite difference schemes. Using an exact Taylor

expansion of £M(¢™) about ¢™ 1! up to the second order, we have

gh(¢n+1) _ gh(¢n) _ <%V8h(¢n+l)7¢n+1 _ ¢n>

h

- <%v26h(£)<¢”“ — "), 9" - ¢>"> : (2.28)

h

where

E=00" +(1-0)¢" ™ and0<H < 1.
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For the first term of the right-hand side of Eq. (2.28), using Eq. (2.24), and the mean value

theorem, we have

<%v5h(¢n+1), ¢n+1 _ ¢n> (229)

h

— (Ve - LT 6 - ")

h

¢n+1 - d)n 1 h n+1 1 h n n+1 n
—<T+EV5C(¢ ) =5 Ve ("), b —¢>h

= L (VEL@) - VELG"), 6 67, — 8" — ¢
< o (VEL@™) - VNG, ¢ - 47,
_ ‘% (VEM ("L — @), 9" — &),

= ([ - pED — (- YHE — (1 HO] (" - g7, - )

h

where

n=0¢"+ (1-0)¢p""'

and 0 < 6 < 1. Also, for the second term of the right-hand side of Eq. (2.28), using

Eh= W 4 €@ 4 O




2.2. ALLEN-CAHN EQUATION 25

we have

<1hv2€h(£)(d)n+l _ d)n)7¢n+1 _ ¢n>
h

(0 ) g ),
< o ((E0 —H®) (71 - g7), 9" - ) (2.30)

From the equality (2.26), and inequalities (2.29) and (2.30), we have

£ ) — ()"

< -3 ([0=HHD - (1= )HE - (- HO] (67 - ¢), 6" - ¢

h

+ 5 <(H<1> H(?)) (™! — o), ¢ — ¢n>

h

_ 2B ( 27 (2) (3):| n+l _ n n+l n>
—<[ oh THO 4 2 — B+ hH (@™ —¢").0" " — o

N
-1y 1=27 0 1-a\@
= Z <[ oh >\ 2h )\ + 3 )‘k AV, V]

N
26—-1 2—4y  ,(k—1)m 3—3a 4
= Zl<[ 9¢2 + 2 Sin N + 2 Mo | Ak VE, V] .

i{2/3—1+2—47.2(k—1)7f+3—3a 2} > (2.31)

h

h

2¢2 Rz M TN | Y
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—2, v =1), a sufficient condition for having negative value of Eq. (2.31) is

m < \/5/6.

Finally, we show that the decrease of the discrete total energy functional implies the pointwise
boundedness of the numerical solution for the AC equation [28]. Let ¢™ be a numerical solution

for the discrete AC equation and
£Mg") < E"6" )

Then,

for any 1 < i < N. Therefore, we have

"l < \/1 +26,/E(¢°)/h,

and it implies that the largest solution at ¢ = nAt is always pointwiselybounded

the initial discrete total energy functional value.
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2.2.3. Mass-conservative form. In [78], we propose a practically unconditionally stable
numerical scheme for the conservative AC equation with a space-time dependent Lagrange multi-
plier. The scheme is based on the recently developed hybrid scheme for the AC equation [95] with
an exact mass-conserving update at each time step.

Here, we present a discrization of a two-dimensional case. Let a computational domain 2, is
the set of points (x;,y;) = (a+(i—0.5)h,c+(j —0.5)h) fori =1,--- Ny and j =1,--- , N, where
h is a uniform spatial step size (b — a)/N, = (d — ¢)/Ny for Q = [a,b] X [¢,d], N, and N, are the
numbers of cells in z- and y-directions, respectively. Denote the approximate value or the order

parameter ¢ as

ciy = c(zi, y;, nAt),

and the discrete order parameter at time nAt is defined as

T T T
‘i1 G2 - Cp,
n T T
n €21 G2 1 GOp,
C =
n n n
CN,1 CN,2 " CN.N,

The zero Neumann boundary condition is implemented by

. n  __ . .n — yn __ Yy .n —
s = VaN, 415 = Valiy = VaCing+s =
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where

T —
A\ _Cit1, T Gy
WCirl i =

1 n
_Cig+1 T Gy

\VASoAS —_
h%,j+% h ’

is the discrete gradient operator. Further, the discrete Laplace operator is defined as

T n Y
AN Vi

h

T .n n Y .n
C. . C. . C C. .
h=it+ 1 j i,j+%5 h™=i5+%

no__
Ahcij =

gty —AGh it e
- o ,

Applying an operator splitting method to Eq. (2.7), we can rewrite the equation as a sequence

of simpler problems in a numerical analytic point of view:

¢ =Ac,

F'(e)
€2

Ct = — ’

¢t =B+\/2F(c).

For the first step, we calculate the temporary solution ¢?*!:!

(2.32)

(2.33)

(2.34)

numerically from c”, which is

the solution at the n-th time step. Here, the IE method is used as a numerical scheme for solving

the heat equation (2.32):
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The multigrid method, known as one of the fastest method to solve common discretization problems
[4, 17, 129], is applied to solve the above discrete equation. The detailed of the multigrid method
can be shown in appendix. Note that the CN scheme can be also applied as in [95]; however, it
is well-known that the scheme suffers from oscillatory behavior with large time step although it is
also unconditionally stable and has higher order accuracy.

n+1.2 s derived from Eq. (2.33) analytically with an

Next, the second temporary solution c
initial condition c"*! by using the separation of the variable [123]. Since there are no spatial

derivatives in the governing equation of this step, we assume that ¢ depends on only the time

variable t:

Here, we can assume that ¢ € (0, 1) since ¢ = 0 or ¢ = 1 implies that the time derivation becomes

zero. By using the separation of the variable,

de dt

-3 423 2’

- _ dc _dt
c(l—c)(2—c) €’

1 1 4
o(it o) e 5

c l—c 1-2¢c €2’
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and integrating both sides,

n41,2

Cij 1 1 4 (n+1)Atdt
N _ dec = —,
o Crimig)e [,

+1,2

(1 —2¢%)?
n+1,2)

ij

(1 _ 20’2;"1‘1,2)2

¥1,2 ¥1,2

c:-;- (1-— c?j )

(L—2¢02 | At

€2’

< In —In

n+1,2(1

cij —c n+1,1(1 _ cn-i-l,l)

1] 1]
(1 _ 20’%"1‘171)2

11 i1
c?j (1- c?j )

C

At
€<,

(2.35)

We can directly get rid of the absolute value functions since both terms in the functions are positive

with assumption ¢ € (0,1). By expanding and simplifying, we can rewrite Eq. (2.35) as a quadratic

. n+1,2,
polynomial of c; ;o

2
(A+4) () = (A+ e 1 =0,

where

Solving the polynomial, we get

L2 :1 4 i
t 2 2/A+14
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From the boundedness of c?jﬂ’z in [0, 1], we can cancel out the plus-minus sign and the absolute

value function. Therefore, the solution can be simplified as follow:

n+1,1
1-— 2Cij

2 . .
2\/(1 - 2c?j+1’1> + 40;;#171 (1 _ CZ+1,1) Y

Finally, we discretize Eq. (2.34) as

n+1,2
Cij =

N —

cnf"_l — c’ﬁ"’m

T T g1 Jopentli2
=5 (5,

or

C?j+1 _ n+12 +Atﬁn+12 /2F( n+1, 2) (2.36)

To satisfy the mass conservation property in a discrete sense, the following condition should

holds from Eq. (2.36):

N, Ny <« Ny
WD DI
i=1 j=1 i=1 j=1

Ny Ny

i=1 j=1

and it implies

Ny N, +1,2
Z¢:1 Ej:y1 (C?j - CZ’ )
Ny N, 1,2y
Aty Zj:yl QF(CZ' )

Bn+1,2 —
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Here, the denominator of 3 can has a zero value pointwisely, i.e., CZH’Q =0or1 (or F(CZH’Q) =0
for some specific ¢ and j. However, the summation cannot be zero since we does not consider the
constant case: ¢ =0 or ¢ = 1. Note that if ¢ is not a constant, there should be at least one ¢;; in

(0,1) because of a diffused-interface.

In summery, the proposed algorithm for solving the conservative AC equation numerically in

[78] is
+1,1

i —C —A, Ll (2.37)

At Mo '

n+1,1

o2 L Loy (2.38)

1] ) :

29/ -2ty padit i1 - gt ¥

et =it 4 A2 2R (). (2.39)

2.2.4. Numerical experiments.

2.2.4.1. Decrease of the total energy. To check the robustness of the numerical schemes, we
consider the evolution of the discrete total energy. The random perturbation 0.1rand(z) is given
as an initial condition ¢(x,0) on ©Q = (0,1) with 64 grid points, where rand(x) is a random number
between —1 and 1.

We use the simulation parameters e and At = 0.4h%. In Fig. 2.5(a), the temporal evolution

of the non-dimensional discrete total energy E*(¢™)/E"(¢") is shown. Thesotal discrete energy



2.2. ALLEN-CAHN EQUATION 33

is non-increasing. Also, the inscribed small figures are the concentration fields at the indicated

times. Figure 2.5(b) is a snapshot of ¢(x,t) at ¢t = 0.0015.

—5— Explicit
—A— Implicit
—*%—CN

——LSS

0.8

0.4r

0.2 -1

0 ) 0.5 )

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0 05 1

(a) (b)

FIGURE 2.5. (a) Temporal evolution of non-dimensional discrete total energy
EM(p™)/EM(#°) with an initial data, ¢(x,0) = 0.2rand(z). (b) Snapshot of ¢(z, t)
at t = 0.0015.

2.2.4.2. Motion by mean curvature. It was formally proved that, as ¢ — 0, the zero level set

of ¢ evolves according to the geometric law (2.5)
V=-x
1 1
_ (X 1 2.40
(%) (2.0

where Ry and Ry are the principal radii of curvatures at the points of the surface [2]. In a two-

dimensional space, Eq. (2.40) becomes
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An initial condition is given as a circle with center (0.5, 0.5) and radius Ry = 0.35 on the

computational domain © = (0,1) x (0, 1):

¢(x,y,0) = tanh (RO VA Gl 0-f52)€2 + (y — 0.5)2> |

Let Ry and R(t) be the initial radius and the radius at time ¢ of the circle, respectively. Then, Eq.

(2.40) becomes

Therefore, analytic solution is given as
R(t) = \/R% —2t.

In order to compare the motion by mean curvature flow with several numerical schemes, we im-
plement numerical simulations with various e values (e, €s, and €12), h = 1/64, and T = 250h>.
Figures 2.6 and 2.7 show the results with At = 0.1h% and At = 10h2, respectively.

With different € values, the numerical solutions have different errors comparing with the an-
alytic solution as shown in Fig. 2.6. The most sharped-interface case, €4 has the biggest errors

among our choices. On the other hand, eg case has the most accurate solutions for the explicit,

implicit, and the Crank—Nicolson schemes and the speed of shrinking is Mttle faster than other

cases in €15 case.
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0.3 A 03 03
© x &
@ x -
< *

— Analytic @ — Analytic & — Analytic

O Explicit S O Explicit A O Explicit
0.2 O Implicit @ 0.2f O Implicit 0.2 O Implicit

* CN * CN * CN

* NLSS * NLSS * NLSS

A LSS A LSS A LSS S

0 0.02 0.04 0 0.02 0.04 0 0.02 0.04 t
(a) €4 (b) €8 (C) €12

FI1GURE 2.6. Comparison of temporal evolutions of the radius with various € values
and At = 0.1h2 from t = 0 to ¢t = 250h? in two-dimensional space.

IEHEFoF O o5 D% * T Dy ¥y N R A A & A
* A A A N

(1) r(t) R ) FaTh a4,
* * N

03 03 03 * ok "
*

0.2 0.2 0.2
0 0.02 004 ¢ 0 0.02 004 ¢ 0 0.02 004 ¢
(a) €4 (b) €8 (C) €12

FI1GURE 2.7. Comparison of temporal evolutions of the radius with various € values
and At = 10h? from ¢ = 0 to t = 250h? in two-dimensional space.

In Fig. 2.7, we could check the effect of € values as in Fig. 2.6. Similar to previous case, the

speed of shrinking is proportional to the magnitude of e. Comparing the effects in time step size,

the numerical results with various schemes are close to analytic solution when At = 0.1h2. With

have unstable results with large time step size.
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Moreover, Eq. (2.5) becomes

The numerical results comparing with analytic solution are shown in Fig. 2.8. The behavior of
numerical solutions is similar to results in the previous two-dimensional test. We used all same

parameter values as the two-dimensional case except T = 120h2.

r(t) A r(t) r(t)
0.3 @ % A 03 03
© % O
o x4 A
a *A
— Analytic @ — Analytic & —Analytic
o Explicit S O Explicit A O Explicit
0.2 O Implicit @ 0.2f O Implicit 0.2 O Implicit
e CN e CN e CN
* NLSS * NLSS A * NLSS
A LSS A LSS A LSS S
0 0.02 0.04 0 0.02 0.04 t 0 0.02 0.04 t

(a) €

(b) €8

(©)

€12

0.2]

ROTFTFTF A TAH T D T By

0.2

¥ 440 K
* Ty *A%A A A A A
* %y
*

0.2]

A
* %A*A
*

2 a a0,
* A4
-

*
*

0.02

(d) €

0.04

0.02

(e) €s

0.04 t

t = 250h? in three-dimensional space.
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2.2.4.3. Mass-conservative form. In this section, we perform numerical experiments such as
the basic mechanism of the model, a comparison with previous model, and the temporal evolution
of drops in a two-dimensional space. Note that the equilibrium state of the order parameter is

given by

c= % (l—l-tanh (%)),

varies from 0.05 to 0.95 over a distance of approximately 4e tanh71(0.9) across the interfacial
regions (See Fig. 2.9). Therefore, if we want this value to be approximately m grid points, then e
value is given as €,, = hm/[4tanh™(0.9)] [75]. Throughout the rest of this section, we shall use

eg if not otherwise specified.

1 L
0.8t

0.67
0.9
0.4r

0.27

€m

91 -0.5 0 0.5 1

FIGURE 2.9. Phase transition of the equilibrium profile c¢(z) = (1 + tanh(z/(v/2¢))) /2.
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curvature (see dashed line) [60]. The position with a higher curvature moves faster than those
with lower curvatures on the curve. However, with the mass correction step Eq. (2.39), the curve
uniformly moves to the outward normal direction (see solid line). By continuing this process, the

initial ellipse relaxes to the circular shape with the same mass.

« Initial shape
- - -Allen—-Cahn step

——Mass correction step

FIGURE 2.10. Basic mechanism of the proposed numerical scheme.

Moreover, to see the difference between two models Eqs. (2.6) and (2.7), we consider the
following numerical experiments. On a computational domain Q = (0,1) x (0,2) with a mesh grid

of 128 x 256, the initial conditions are given as

) 1 if40 <43 <88, 168 <14 <216, and 40 <17 < 88,
(i) ¢i; =

0 otherwise,

and

3 1 if56 <i<72, 184 <1i <190, and 56 <14
(ii) Pij =

0 otherwise,

(see Fig. 2.11(a)). The temporal step size is chosen as At = 107°.
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FIGURE 2.11. (a) Initial conditions with two different shapes. (b) and (c) are
numerical results from Eqgs. (2.6) and (2.7), respectively.

Figures 2.11(b) and (c) show the numerical results of Egs. (2.6) and (2.7) at a steady state
with two different initial conditions, respectively. Here, we define the numerical steady state as
the state when the discrete Iy norm of the difference between ¢"t! and ¢™ becomes less than a
given tolerance, tol = 1075. Observing the numerical results in the top row of Fig. 2.11, we can
see that both models work well when the initial feature is large enough. It should be noted that
the order parameter in the outside phase is 0.009 for Eq. (2.6), on the other hand, the value is

0.0 for Eq. (2.7) with our proposed numerical scheme. The reason why the order parameters have
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In [19], the authors gave the evolution law for radii of spheres in n-dimensional geometric
flows. For the m interfaces of radii r; for i = 1,2,...,m with r; < rj4q for j =1,2,...,.m -1,

the equations of evolution in n-dimensional case are given by

dr; R |
i:(n—l) (zjﬁl;rkl__>’ i=1,2,---,m.
dt D k1T T

We consider two disjoint circular interfaces in two-dimensional space. Assume that the two inter-

faces have radii r and R with » < R, then the equations of evolution become

dr 2 1

%_r—i—R T

)

(2.41)

iR 21
dt r+R R

From the above equations, we can get the time ¢; at which smaller circle disappears (i.e., r(ts) = 0)

by solving a system of ordinary differential equations [16]. To solve the system (2.41), we consider

the change of variable as follow:

§=rR,

n=r’+R?

and the system (2.41) can be rewritten as

¢ d
ZﬁR—i-rﬁ

dt dt
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=0. (2.42)

Note that the area of two circles 7r? + mR? is a constant since the governing equation has a

conservative property and it has a good agreement with Eq. (2.42). Now, let 1 be a constant up

to the time variable. Using the separation of variable, we can solve the d
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follow:

1
2026 —n) + 5
2 2" e _
T, dsd

A Gt o
© :(é_%(njzs))df:/otfdt
(- &(ty) = r(ts)R(ts) = 0)

n ()], -
Q I (126 +2€ °_
(5]

<1+n 2£>} —Y

Therefore, by replacing &y and 79 to 79Rg and rg + R3, respectively, we get

P
ty = —0.5r0Ro +0.25 (r2 + RZ) In [ 1+ iﬂQ
(Ro — o)
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where ry and Ry are the initial radii. We present results for ro = 0.05 and Ry = 0.2 using a temporal
step size At =0.1xh? on Q = (0,1) x (0,1) with a mesh grid 128 x 128. Then ¢; = 1.7574 x 1073
by Eq. (2.43). For the reference solutions of r and R, we numerically solve the ordinary differential
equations by using the fourth order Runge-Kutta method [12, 142, 20].

In Fig. 2.12, the solid lines represent the result from the Runge-Kutta method, dot and star
represent the radius evolutions of R and r with Eq. (2.7), respectively, and circle and diamond
also represent the radius evolutions of R, and r, with Eq. (2.6), respectively. As shown in Fig.
2.12, R grows monotonically with our numerical scheme and r disappears at the similar time as
predicted from the analytic calculation. Compared to Eq. (2.7), the results from Eq. (2.6) do
not predict the theoretical prediction because most mass diffuse into the bulk phase from a global

mass conservative Lagrange multiplier.

0.2 55560 06 00 0 o000 o d
0.15¢
R
r
R,
0.1} . T
0.053
<><><>
¢
° %
0
0
x107°

are radii from Eq. (2.6) and R, and r, are radii from Eq. (2.7)
are the corresponding reference solutions.
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2.3. Cahn—Hilliard equation

2.3.1. Governing equations. The CH equations were originated from a model of the phase
separation, called the spinodal decomposition, in a binary alloy at a fixed temperature [21]. Phase
separation occurs when a single phase homogeneous system composed of two mixtures in thermal
equilibrium is rapidly cooled to a temperature below a critical temperature where the system is
unstable with respect to infinitesimal concentration fluctuations. Since the spinodal decomposition
is one of few phase transformation models in solids, the equations have been applied to various
problems in theoretical and experimental material science fields as a governing equation of a phase-
field method in image inpainting [11], volume reconstruction [90], block copolymer [63, 64], elastic
non-equilibrium [82], multiphase fluid flow [72, 73, 77, 79], phase separation [46], flow visualization
[52], quantum dot [134] and etc. It is closely related to the AC equation described in section 2.2.

One of the general forms of the CH equation can be written as follows:

P00 _ g (a6 ) Va0, )], x €00 <1< T, 40
ﬂ(éf’(xv t)) - F/(¢(X5 t)) - €2A¢(X7 t)’ (245)

where x is the spatial variable in a domain € R? (d = 1,2,3), t is the temporal variable in

> 0 is a diffusionél

[0,T], ¢(x,t) is the difference between concentrations of two mixtures, M (g

mobility, u(¢) is a chemical potential, T is the final time, F(¢) = 0.25(
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free energy which has a double well potential, and ¢ > 0 is a gradient energy coefficient related
to an interfacial energy. The natural boundary for the CH equation is the homogenous Neumann

condition (or the no flux boundary condition) as follow:
n-V¢=mn-Vy=0on0dQ, (2.46)

where n is the outgoing unit normal vector to the domain boundary 0f2.
The CH equation is deduced from the Ginzburg-Landau free energy functional in a H ! space

and the functional has a form as follow [87]:
62 2
E(p) = A F(¢) + 5 [Vo|®| dx. (2.47)
If we assume that M (¢) is a constant, i.e., V- (MVu) = MAp, differentiating (2.47) with respect

to t gives

G606 = 4 [ [P0+ 5 196 ax

= [ [P+ € (99 Vo] ax
= [[[F6) - ad suix+ [ (n Vopoux
Q [2}9)

= /Q pordx

= [ warapax
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:M{—/|Vu|2dx+/ ,u(n-Vu)dx]
Q o0

= —M/ |Vu|® dx <0, (2.48)
Q

using integration by parts and the boundary condition (2.46) and it implies that the total energy

is non-increasing in time. Besides, the derivative of the total mass with respect to t gives

%/ﬂqﬁdx:/gqﬁtdx

= / MApdx
Q

=M (n-Vp)dx
0

=0. (2.49)

Hence, the total mass conserves in time.

There have been development in many numerical algorithms to solving the CH equation such as
phase-field [44, 79, 140], immersed boundary [42, 81], volume of fluid [56], front tracking [41, 130],
boundary integral [36, 58], immersed interface [93, 117], and level set [110, 116] methods.

As shown in Egs. (2.44) and (2.45), the system of equation is the fourth-order differential

equation in space and it implies that there are some difficulties in numerical analysis for the CH
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numerical stability at the lower order spatial derivatives. The explicit scheme is simple but less

efficient duo to severe time step restriction, whereas the implicit scheme is efficient but needs

large linear systems of equations to solve. Likewise, each numerical methods has its own unique

advantages and disadvantages for specific needs. Therefore, comparison of different schemes have

been discussed to use adequate schemes for specific problems. In this dissertation, we focus on

six widely used schemes in numerical analysis such as the explicit Euler’ s, the implicit Euler’ s,

the Crank-Nicolson, the semi-implicit Euler’ s, the linearly stabilized splitting and the non-linearly

stabilized splitting schemes.

2.3.2. Discretization. In this section, we present fully-discrete finite-difference methods for

the CH equation with six different schemes and discuss some analytical properties of the schemes.

We shall discretize the CH equation in two-dimensional domain €2 = (a,b) X (¢, d). one- or three-

dimensional discretizations are defined analogously.

Let positive even integers N, and IV, be a numbers of spatial step sizes in z- and y-directions,

respectively, h = (b—a)/N, = (d—c¢)/N, be the uniform mesh size and the computational domain
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matrix-valued phase-field ¢" is defined as

TL . o 1
11 12 1N,
| B PR O,
¢71§rw1 ‘15%,02 T R/mNy

To implement the no flux boundary condition (2.46), we define the ghost points ¢Z), o7 Ny 417 ®6;>

n
and @}, ., ; for each n as

n

i0 = i1, Pin,41 = Pin, for 1 <i <N,

P0; = P1j O, 41,5 = ON,,j for 1< j < Ny

Next, we define the discrete energy functional £" by

N, Ny N, Ny N, Ny
_ 1.2 n 2 n n 2
=h*Y > F( ZZ Py —O5) DD (81 — 90)
i=1 j=1 i=1 j=1 i=1 j=1

and the discrete Laplacian Aj, by the standard five-point stencil

¢i—17j + ¢i+1,j 4¢zg + ¢1] 1 + ¢Z,j+1
h2

Appij =

We also define the discrete [, norm as

1Bl =, max [di]-

1<i<N,
1<g<N
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For simplicity, we assume M (¢) = 1; i.e., the mobility is independent of the quantity ¢ and denote

F'(¢) as f().

Now, we consider the following six numerical schemes as mentioned in above of

Egs. (2.44) and (2.45):
1. Explicit Euler’s (EE) scheme [100]

¢’I’L+1 _ AN

ij ijo_
At - Ah/‘%a

iy = F(6) — .
2. Implicit Euler’s (IE) scheme [48]

¢T‘.+1 — o
] v n+1
—t = Ah'u” ,

pi = ) — Mgt

3. Crank—Nicolson (CN) scheme [70, 72, 74]

¢7,l,+ 1_pn 1
ij ij_ n+1

ZA (™ n
At 2 h(M” +:uzg)7

P = FOTY) — EAngpt,

ij
4. Semi-implicit Euler’s (SIE) scheme [22, 32, 43, 139]

ot — g
(%) 1y n+1
Ar A

W= F() — EanT
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5. Linearly stabilized splitting (LSS) scheme [1, 11]

¢n+1 AN
iJ i A n+1
AL M5

WY = (0T — 207 + 2005 — EApglT

6. Non-linearly stabilized splitting (NLSS) scheme [49, 50, 76]

ot — g
17 1y n+1
Ar D

pIE = F(OTY) — ARG 4 g — g

(2.50)

(2.51)

Compared with other general schemes, LSS and NLSS are known as having larger time step sizes

[49]. We prove this property roughly here and precisely in the latter part of this section.

2.3.3. Analysis of the schemes. Next, we prove the unique solvability precisely in a func-

tional analysis’ point of view and stability using a similar strategy introduced in section 2.2. To

reduce the complexity of a proof, an one-dimensional case is considered here. A functional has

the unique minimizer if it is not only strictly convex, but also coercive and lowe
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¢:<1/}17"' ,,(/}N) as

N
(@, 0)), =h > i,

i=1

N
(Vad, Vi), =h Y Vi 1iss.

i=0
Applying the nonlinear stabilized splitting scheme [49, 50], the one-dimensional CH equation can

be viewd as the following discrete scheme:

P+t — g 1
i o At
Al hH;
(2.52)
n n 3 n
o +1 _ ((bz +1) _ ¢;n _ 62Ah¢1‘ Jrl7
fori=1,---,N. Using the discrete boundary condition, we have a discrete summation by parts
(And, Y = (&, App)p = —(Vir@, Viath)n,
and the scheme (2.52) inherits the mass conservation in the sense
N N
hY #l=h) el
i=1 i=1
This is readily as follows:
<¢n+1, 1>h _ <¢)n7 1>h + At <Ahun+1, 1>h
(2.53)

= <¢n7 1>h — At (vh“n+1’ Vh]-)h = <¢n7 1>h P
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where 1 = (1,1,---,1). Next, let us construct a discrete energy functional
N N
h 2 €2h 2
h(mny __ 2
ACEES USRI Vael (2.54)

For our convenience, we separate the discrete energy functional £"(¢") into three energy terms:

N

£0(g") = >, (255)
£ (g = é [Vaor, | (2:56)
EG) (™) :hZN: % (2.57)
=
Let
EL(¢") = EP(P") +ED (")
and
(o) = €W (9"
so that

EM@") =EMP™) — EL (D).
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b2

Evolving ¢" as the gradient flow, we define the operator “grad,” as follows:

grad, £ (¢"); = — == VE" (¢");

= — Ap(B1) + Al + A7 97,

where A,ngbi = Ap(Apg;) is the discrete biharmonic operator and

" ($) aehw))

h —
vg (¢)_ < 8¢1 3 ) 8¢N

is the gradient in RY, that is,
VEM@)i = h [(¢:)® — i — € Andhs] -

Then, we can rewrite the scheme (2.52) in terms of a gradient of the discrete functional £"(¢) as

ot —gp

A = —ead, ("), + grad, £ ("), (2.58)

fori=1,...,N. Let Ay be the matrix version of Ay:

-1 1 0
1 -2 1
IO
1 -2 1
0 1 -1
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The matrix —Ay is the semi-positive definite with eigenvalues

4 (=17
A= E S TSN

fori=1,---,N. Let

v =W;/ |w]

be the orthonormal eigenvector of —Ay corresponding to the eigenvalue \;, where

_ (t— D 3(i—1)m 2N -1)(i — D7
wl—<cos o G0 T g ey COS SN .

For simplicity, we define by

V1:1,

and denote
Hy={y eRY | (1), = 0}.
For
N
X = Z TiVi,
i=1

N
Y = Z YiVi,
i=1
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in RN such that X € Hy or Y € Hy, we also define an inner product by:
N
(X,Y)_y =hY Az
i=2

Note that we have the identity

N
(X,Y), =h Y ay;
1=2

N
=2

=(-AdX,Y) -

Here, the matrix —Ay is the positive definite with eigenvalues

4 L (i—Dm
A= qE st TN

fori=1,---,N.

The Hessian of £M)(¢), denoted by H), is the Jacobian of VEM) (¢) and is thus given by

HY =v2eW(¢)

:hIN?
where Iy is the identity matrix of order N, and the Hessian matrices of £2)(¢) and £®)(¢) are

H® =v2£®)(¢)

=— he’Aq,
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where D = diag (43, ¢3, ...

H® =v2£6)(¢)

—3hD,
, %) Moreover, the eigenvalues of H), H®), and H® are
A =h,

4¢? — 1
A\ 212 g (=D

N =3he?,

for i =1,..., N. Note that )\51), )\1(2), and )\53) are non-negative for all 7.

Now, we construct an appropriate functional of our scheme, and then prove the existence and

uniqueness of a solution for the minimizer of the functional. Let F(¢) be a discrete functional

such that

for functions f and g. Then, the first (discrete) variation 6.F(¢; 1)) of the F with respect to ¢ is

defined as
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N

i hz f(i + svi)g(di + s1i)
=1 s=0

N

=h> " [fo.(0:)9(6i) + F($:)g0, (6:)] i

i=1

=(VF(®), ¥)n,

for any vector-valued function 1) and a scalar s where

_of
and
_ 99

or the first variation can be also derived from an increment

AF(¢;9) =F (¢ + ) — F(9)

=0F (¢; ) + o(v),

by using the Taylor’s theorem. Note that o(1)) is a small-o notation: if the function g(x) is positive
and f(x) is an arbitrary function, f(x) = o(g(x)) implies that f/g — 0 as ||x||cc — 00. We define

the second variation 62F as a similar manner:

AF(¢39) = 0F (¢:9) + 6" F (¢ 9) + o(9p?),
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ie.,

d*F(¢ + s1)

CR($Y) = —5 0

s=0
Bearing in mind that we want to have Eq. (2.58) as the first variation of a functional, we consider

the following functional G(¢) on the Hilbert space

H={¢|{p,1)n=(¢",1)}

such as

G(&) = 2(6.6) 11— h(". @)1+ hAIEL(6) — AL(VEL(S7). ),

The first variation of G(¢) is

dG(¢ + sv)

6G(d;7) = Is

s=0

:h<¢7 ¢>—1,h - h<¢na ¢>—l,h + At<vgch(¢)7 ¢>h - At<vgg(¢n)7 ¢>h

=h{p — ¢", ) _1n + AL(VE! (@) — VEN (&™), %), , (2.60)

where @ € Hy is a non-zero vector. In addition, the second variation of G(¢) is

A
PCG) = () 15+ 5 (VELS,9),

=S )t S ((HO 4 HO) g )
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and it is strictly positive without depending on ¢. Now, we split

G(¢p) = Gi(P) + G2(o)

to prove that the functional is coercive as follow:

h
Gl(d)) :§ <¢7 ¢>—17h —h <¢nv ¢>—1,h )

Ga2(¢) =hALE! ($) — At(VEL ("), ¢),, ,
and G1(¢) can be rewritten as

h
2

h
G1(¢) :E <¢_¢n7¢_¢n>_17h <¢n7¢n>—1,h'

Since it is clear that
hig—¢"d— ")y, — o0 as [|p]lz = oo,
and
G1(¢p) — o0 as ||@||2 — co.
Moreover, the order of first term in G5 is higher than the second term’s one and it also implies

Ga(@p) — o0 as ||@||2 — co.
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In conclusion,
G(¢p) — 0 as ||@||2 = oo for ¢ € H,

which is the definition of coerciveness.

If there is a constant M > 0 such that ||¢|2 < M, a Fatou’s lemma for series yields

G() < liminf G(¢)

for any bounded sequence {¢,} which converges to ¢. Thus, the functional G is lower semi-
continuous. Next, we prove the existence of a solution. Since G is convex and lower semi-

continuous, we can assume that G is bounded below. Then, we define by
m=1inf{G(¢) | ¢ € H} < +oc.
Now, we consider a sequence {¢;} in H such that
kli_)n;o G(¢r) = m.
Since

||¢r|l2 < oo,
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from coercivity, there exists a subsequence {¢;.} whose limit is ¢*. From the lower semi-continuity

of G, we have
G(¢") < Jim G(9}) = m < G(@"),
Le.,
G(g") = m.

Next, we assume that ¢* and ¢° are the distinct vectors with

to show uniqueness. Then,
(NP UV I S
G (30 + 59°) < 5610 + 568 = m.

which is contradiction by strictly convexity. Moreover, the G has the minimum value at its ex-
tremum since the functional G(¢) is differentiable. This completes the proof of uniquely existence
of a solution of the functional G(¢).

Furthermore, from Eq. (2.60), for any 1, we have

0G(¢"3 ) =h ((¢" — &"), ) _y,, — At (Au[VEL (¢7) —
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=(h(¢* — ") — AtAYVE! (@) — VEI (@™ %), ,

)

=0.

Therefore, by substituting ¢ for ¢*, and it is true if and only if the given equation holds:

St —or A

A7 T (Ve (9" = VEL(9™):) (2.61)

= — grad, & (¢" "), + grad, &L (¢"),, (2.62)

for i =1,..., N, which is the same as Eq. (2.58).
In the next step, we consider the stability of the solution for the numerical scheme (2.52). Let

@™ — ¢" ! be expressed in terms of v;, i.e.,
N
" — ¢n+1 = E Qi Vi.
i=1
By the discrete mass conservation and definition of v;, we have

0=(¢" —¢"" 1),
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and therefore a; = 0. If " is the solution of Eq. (2.58) with given ¢", then
EM@"T) < E(e"). (2.63)

We now prove the inequality (2.63). With an exact Taylor expansion of £"(¢™) about ¢™** up to

second order, we have

gh (¢n) :gh (¢n+1) + <%V5h(¢n+1)’¢n _ ¢n+1>

h

+ <%V25h(£)(¢” —¢"), 9" - ¢"“> , (2.64)

h

where

E=00"+(1-0)¢p"

and

Now, by using the mean value theorem and Egs. (2.58) and (2.59), for the first term of Eq. (2.64),

we have

<%V€h(¢n+l)v ¢n - ¢”+1> - <gradh€h(¢n+1)7 ¢n - ¢n+1>—1,h '

h

= <gradhgf(¢n+l) - gradhgh(¢n+1
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n+1 n
B <¢*_—¢ + grad, £ (") — grad, £1'(¢"),

At
n _ n+l
o),
> <gradh52(¢") —grad, £l (¢"T), " — ¢n+1>_1 ,
— (Ve - 1VE e 0" - o)
h h h
- <%V2<€£‘(n) (" — "), 0" — ¢n+1>
h
1 n n n n

= (HO (¢ = ¢71) 6" — g1 | (2.65)
where

n=0¢" +(1-0)¢"""
and

For the second term of Eq. (2.64), using

gh=—W 4@ 1B

we have

1

1
o <V2gh(£)(¢n _ ¢n+1)’¢n _ ¢n+1>h :% <(_H(1) + H(2) + H()) (¢” —
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" — ¢n+1>

h

> % <H(1)(¢n _ ¢n+1), o — ¢n+1>h. (2.66)

From inequalities (2.65) and (2.66),

gh(¢n) _ gh(¢n+1) > % <H(1)(¢n _ ¢n+1)’¢n _ ¢n+1>h

1
5o =, >0 (2.67)

Therefore, we have proven the decrease of the discrete functional £ for any time step At. Moreover,
the decrease of the discrete functional £" implies the pointwise boundedness of the numerical

solution;

16" loo <

for all n [75]. Therefore, we deduce that the proposed numerical scheme is unconditionally stable.

Next, we check the solvability for a two-dimensional case concisely. In [135], the authors prove
unique solvability for the unconditional gradient stable scheme. We introduce the proof for NLSS
here concisely for a two-dimensional case. For any discrete cell-centered matrix-valued function

¢, there exists unique discrete cell-centered matrix-valued solution v which has zero Neumann
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. . N, N . .
boundary condition mean zero (i.e. > ;% 2 Vi = 0) for next discrete equation :

2

L) (= —dnp) =6 = Z Z Bij- (2.68)

11]1

From the zero Neumann boundary condition, we get

N, Ny N, Ny
- Yi—1,j + Vir1; — iy + i1+ Vi
(—Antij)

i% (i1, + Yir1,5) — 4ij 4 (i j—1 + Vi j11)

i=1 j=1 h?
N, Ny N N, Ny -

EODR DRI DN

i=1 j—1 i=1 j—1 i=1 j—1

=0,

It means that both left and right hand sides in (2.68) have zero mean, i.e. the necessity of the
unique solution existence for the equation (2.68) is proved. Now, we consider the symmetry and
positive definiteness for discrete laplacian operator £ for uniqueness. For distinct zero Neumann

vector-valued functions ' and 2,

Nm Ny 1 2

LE Ui — 4%+ 2 1)
R RTENEE 5 o
i=1 j=1 i=1 j=1 h

:_Zzy: ZJ i— 1]+wl+1j) 4w7,j +¢ ( i,j— 1+’¢),j+1)

h2
=1 j=1

N, N
= — Zi 1,5 + d)7,+1,]) 4wzg ( 21 il + Tr/} ,]+1) 5

B2
i=1 j=1
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N, N

_ = y( zlg+wz+1] 412[}1]—’_12[}] l+w1]+1)1/]2
- ZZ h2
=1 j=1
Nac Ny
=D D (~Awii)v}
=1 j=1

which implies the symmetry for the operator and setting ¢ = @' = ¢2, then,

ZZ% —Aptij) = Z Z Vij (i1, + Viv1,j — Wiy + o1+ Yi)

h2
=1 j=1 i=1 j=1

_ % % Vi (Yi15 — 205 + Yig15) + (Vi jo1 — 2055 + i j41)

=1 j—1 h?
al gm: Vi (Vij — Yio1,5) — Vij(Wig1,5 — Vij)
J=1i=1 h?
N. N
e Vi (Yig — V1) — Vi (i1 — i)
+
;j 1 h?

and for the first term of the right hand side (let FRHS),

FRHS = % Zivzml wi]’ ('(/)zj - '(/)i—Lj) — ZN o "Z}z 1,5 (d’w %-14)

2 0

o

n i’: Zj\,:yl Vi (Vi — ij—1) —hZ2N i o1 (ig — i1
i=1

S (Wi — im1)? + Y1 (1 — Yo5) — YN, (N1 — ¥N,.)
h2

Mﬁ

j=1

n i E;Vé'z(i/fij —ij1)® + 1/1i,1(¢i,1h—2 Vi0) — Vi, (ViN, 11— YiN,))

ZIZ wm wz,j 1) ZO

=1 5=2
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By the same process, the second term of the right hand side is also greater than 0, i.e. Z i wm( Aptp
0. Since the equality holds only if both terms are zero which implies 1 is a zero constant function,
L is positive definite, i.e. £ has an inverse operator £ 1.

Now, we consider a strictly convex discrete functional G(¢) for ¢ which has mean zero such

that

hz N, Ny
ZZ% (i) = B2 DS Wi LWE) + Fu()

i=1 j=1 i=1 j=1
Nz Ny

2N i (65 Fe(6F))
i=1 j=1

where 1) is a unique solution of the equation £(v)(:= —AtAyp) = ¢, for J () = h? Zfizl Z;\f:yl Vi f(ij),
dsJ () = f(¢) + P f'(1p) is the discrete variational derivative, and F.(¢) and F.(¢) are re-
spectively the contractive and the expansive part of the energy where chemical potential y =

S Fe(dy) — 0 Fe(dy) = (f(y) + ¢y — €2Andpy) — ¢, for distinet matrix-valued variables ¢, and

¢,. From the existence of inverse operator such that 9 = £L7!(¢) and symmetry of £ in above,

we can rewrite G such that

o N Ny

) =0 33 £ M o) 2SS gl F.(®)

i=1 j=1 i=1 j=1

N, Ny
— h? Z Z ®ij (5¢Fe(¢§j))

i=1 j=1
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and if we take the variational derivative d4 to G,

1

0pG(O ) =5 | L7H(#) + oLLNG)| L@+ ED) B E(0F) - C

d e

=L (@) = L7HP") + 0 Fe(@ ) — 64 Fe(d*) - C
=L NPT — @) + 0, Fu(¢"T) = GsFu(8") - C

where C is a constant since £71

is clearly linear operator. From the convexity of G, variational

derivative of G is zero at ¢" ! if and only if " is the unique minimizer of G. Since E‘l((j)k‘H —

®") has mean zero, it implies that 64 F.(¢" ™) — 6,F.(¢") — C has also mean zero, i.e.

Taking the operator £ to above equation taken the variational derivative, we finally get

L — gt

xS ApSgFo(T) — ApdsFo(@")

which is the same form of NLSS since £(C') = 0 and it completes the proof.
Note that the NLSS scheme approximates the following viscous CH equation with an implicit

Euler’s scheme:

¢r = A(f(¢) — €A¢ + vy)
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where v is a viscosity. To see this, let us rewrite Eq. (2.51) as

n+l _ n

MZ‘+1 - f(¢?ﬂ+1) - €2Ah¢?j+1 + At”Tt”

Therefore, the NLSS scheme approximates the viscous CH equation when v equals At. When
using a large time step, we effectively take a large viscous parameter.
In [49], Eyre proved that if ¢"** is a numerical solution of Eqs. (2.50) and (2.51) with a given

¢™, then
M@ty < &Mg"). (2.69)

Furthermore, authors showed the discrete energy decreasing property by using eigenvalues of the
Hessian matrix of the energy functional in [76]. Using this decreasing property of the discrete total
energy functional, we can show the boundedness of the numerical solution of Egs. (2.50) and (2.51)
[75]. If @™ is a numerical solution satisfying Eq. (2.69), then there exists a constant K, which is

independent on n, such that

16" [0 < K. (2.70)
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Suppose Eq. (2.70) is false then there is an element ¢ such that |¢;/| > K, where K =

\/ 1+ 24/EM(¢")/h. Since the total energy is non-increasing, we have
e"(¢") =h*F(K)

<h*F(¢])

2

x

Ny
> hPF(41%)
1j=1

<
i

<EM"K)

<&EM(¢°).

This contradiction implies that Eq. (2.70) should be satisfied.

2.3.4. Numerical experiments. In this section, we perform the following numerical exper-
iments: finding a relation between the € value and the width of the transition layer, convergence
test, linear stability analysis, the non-increase of the total energy, stability tests, and a test for an

adaptive time step.
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from Eqs. (2.44) and (2.45), an equilibrium solution ¢* satisfies
0=(¢")° — 9" — A¢". (2.71)

Suppose that the solution is on the infinite domain, then we can assume that it is an one-dimensional

case; therefore, Eq. (2.71) can be rewritten as
62¢;x — (¢*)3 _ *’

and its solution is

E n i
PF =ta h(\/i€>.

In our first numerical experiment, we consider a relation between the € value and the width of
the transition layer for the CH equation. From our choice of the total energy density Eq. (2.47)
and an equilibrium profile tanh(z/(v/2¢)) on the infinite domain, the concentration field varies
from —0.9 to 0.9 over a distance of about 2v/2tanh™*(0.9). Therefore, if we want this value to be

about m grid points, the ¢ value need to be taken as following [44]:

B hm
~ 2y/2tanh1(0.9)

€m
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generated number. As can be observed from Fig. 2.13, the transition layer from ¢ = —0.9 to

¢ = 0.9 is almost 4 grid points as we expect from our proposed algorithm.

64

56

481

407

327

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
(a) t = 30 (b) ¢ = 300
FIGURE 2.13. The contours of surface at ¢ = —0.9, —0.7, ---, 0.9 at time (a)

t =30 and (b) t = 300.

2.3.4.2. Conwvergence test. Tables 2.1 and 2.2 show the discrete I3 and maximum norms of the
errors and convergence rates for space and time, respectively. Here, we refer the results and values

in Tables 2.1 and 2.2 from [89]. For the simulation, the initial condition is used as

¢(x,0) = 0.1cos(27z) in Q = (0,1).

€ =0.03 and T' = 0.1 are used. Since no analytical solutions are available, we use the relative error

to calculate the convergence rate.

The spatial convergence rate is computed on the mesh grids with IV,

We fix the time step size as At = 10~7. We define the error of a grid as the di
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grid and the average of next finer grid cells as follows:

h/ ) h/ )
e = ¢ (@, T) — ¢ 2($21—1,T)2+¢ 2($2Z,T)_

The convergence rate in the discrete ls norm sense is defined as the ratio of successive errors

o (e e
B2\ [,

and it is similarly defined for the discrete maximum norm.

The second-order accuracy for space is observed.

TABLE 2.1. Errors and convergence rates for space.

Mesh 64 Rate 128 Rate 256 Rate 512
|eh [ 6.784e-3 2.015 1.678e-3 2.003 4.188e-4 2.001 1.047e-4
| eh| oo 1.329e-2 1.984 3.359e¢-3 1.995 &8.425e-4 1.999 2.108e-4

To show the convergence of the time integration, we fix the spatial grid as N = 512 and choose

a set of time steps At = 2" x 1077, for n =0, 1, 2, 3. We define the discrete error as

eA = pA (z, T) — ™2 (24, T)

(2

and the convergence rate is defined as the ratio of successive errors,

oo (el
082 ||6At/2||2 :

The first-order accuracy for time is observed.
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TABLE 2.2. Errors and convergence rates for time

At 8e-7 Rate 4e-7 Rate 2e-7 Rate le-7
[e2%2 4.910e-6 1.000 2.455¢-6 1.001 1.226e-6 0.999 6.137e-7
€2l 2.197e-4 1.000 1.099e-4 1.001 5.490e-5 0.997 2.751e-5

2.3.5. Linear stability analysis. We carry out the linear stability analysis near a solution

¢ = 0 in one-dimensional space. Let us assume that the solution can be expressed by

¢(x,t) = Zﬂk(t) COS(kx), (272)
k=1

where B (t) is an amplification factor at the wave number k. After linearizing Eqs. (2.44) and

(2.45) about the equilibrium solution, and substituting Eq. (2.72) into the linearized equations,

we have

dﬂ;t(t) =k (1 - K2 Br(t).

(2.73)
The solution of Eq. (2.73) is Bk (t) = Bk(0) exp(nit), where i = k?(1 — €2k?) is the growth rate.

Note that the growth rate is positive if ek < 1. We denote ky,.x by the wave number which has

the maximal growth rate. In addition, the numerical growth rate is defined by

= g (1271
T\ 6"

For the numerical test, we take the initial condition

¢(x,0) = 0.01 cos(kzx) in Q = (0,7),
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At = 1078 h =279, ¢ = 0.03, and T = 107% are used. Figure 2.14 illustrates the growth
rate versus the wave number k. Circles and solid line are corresponding numerical results 75 and
analytic solutions 7 from the linear stability analysis, respectively. The maximum growth rate is

obtained at k.. = 24.

Linear theory
200
3
E
B
2
O
100
0 7 14 21 28

FIGURE 2.14. Growth rate versus the wave number k.

2.3.5.1. Non-increase of the total energy. In order to demonstrate that NLSS inherits the
energy non-increasing property, we consider the temporal evolution of the discrete total energy.
In the simulation, we choose h = 1/64, At = 0.1 and ¢;. In Fig. 2.15, the temporal evolution of

the non-dimensional discrete total energy £"(t)/£"(0) (solid line) of the numerical solutions with

property.
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Ficure 2.15. The time dependent non-dimensional discrete total energy
EM(t)/EM(0) (solid line) of the numerical solutions with the initial state ¢(z,y,0) =
0.1 x rand(z, y).

2.3.5.2. Stability tests. This section is contained in [89] and we refer the contents and results.
We investigate the stability of the different schemes mentioned in section 2.3.2. We consider
numerical solutions with random initial condition ¢(z,0) = rand(z) and ¢(z,y,0) = rand (z,y) on
the unit domain for one- and two- dimensional spaces, respectively. Define At. be the largest time
step, which satisfies the gradient stable, i.e., E"(¢" ') < £7(¢™). The numerical simulations are

performed on the uniform grids, h = 1/2" for n = 5,6,7 and 8. In Table 2.3, we list the values of

CN and SIE schemes are not gradient stable when we use the time step

both LSS and NLSS are unconditionally gradient stable.
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TABLE 2.3. At,. with different schemes for the initial condition ¢(z,0) = rand(z).

Case 32 64 128 256
h=1/32 h=1/64 h=1/128 h=1/256
EE 38x10% 19x107° 47x10 % 1.1x10°©
IE 55x107% 1.1x1073 26x10% 61x107°
CN 56x10% 1.1x107% 1.1x10"% 48x 1071
SIE 82x107% 84x107* 86x10"* 7.3x1071
LSS 00 00 00 00
NLSS 00 00 00 00

TABLE 2.4. At,. with different schemes for the initial condition ¢(z,0) = 10rand(z).

Case 32 64 128 256
h=1/32 h=1/64 h=1/128 h=1/256

LSS 81x10% 20x107% 36x107 88x 108

NLSS 00 00 00 00

Next, we also consider other numerical solutions to investigate gradient stability between LSS
and NLSS with the initial data ¢(x,0) = 10 xrand(z, y). For simplicity, we perform the comparison
of LSS and NLSS in one-dimensional domain instead of two-dimensional one with larger random
initial condition than previous simulations. In Table 2.4, we can recognize that there is the different
time step constraint in terms of numerical stability for NLSS and LSS; NLSS is still unconditionally
gradient stable, but LSS is conditionally stable as shown in the reference [135].

2.3.5.3. Comparison of the efficience of CN and NLSS schemes. We compare the efficiency of

the CN and the NLSS schemes. In the early stages of spinodal decomposition, a rapid separation

in the late stages. Hence we may take a large time step near the equilibrium st,
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we perform two tests. The first case is that the CN is used over whole simulations and the second
case is that the CN scheme is used over the early stages and we alter into the NLSS that can adopt
a large time step. The reason why we use the CN scheme at the early stages is to accurately evolve
the rapid phase separation. We decide to change the scheme when [|¢p" T — ¢"||,, <2 x 1074, In
this test, |[¢" T — ¢"||o is less than 2 x 10~* within 10000 iterations. Thus, in second case, we
turn on the NLSS schemes after 10000th iteration. We simulate until ¢ = 0.66 in the CN scheme
case and until ¢ = 0.9 in the NLSS scheme case. We continue the computation until [|¢" ! — @™ ||
become less than 104, In both cases, a 256 x 256 mesh is used on the domain Q = (0,1) x (0, 1), €4
is taken and a time step for the CN scheme, At = 0.00001 and for the NLSS scheme, At = 0.0001
was employed. Figure 2.16 shows the temporal evolution of each case. In the first case, we reach
the [|¢"+! — ¢"||o < 10~* with 66000 iterations. In contrast, only 18000 iterations are needed to
reach the same state in the second case. With less iterations, mixed scheme with the CN and the

NLSS schemes can obtain the results same as those of the CN scheme.
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t=0.1 t=0.2 t=0.32 t=0.66
it=20000 it=32000 it=66000

t=0.1 t=0.3 t=0.5 t=0.9
it=10000 it=12000 it=14000 it=18000

FIGURE 2.16. The temporal evolution of morphologies during a spinodal phase
separation of a binary system with different time step size (a) At = 0.00001
using the CN scheme and (b) A¢ = 0.00001 using the CN scheme until 10000th
iteration and At = 0.0001 using the Non-linearly stabilized splitting scheme after
10000th iteration, respectively. Both cases run until ||¢" 1 — ¢" ||, < 107%. With
less iterations, mixed scheme with the CN and the NLSS schemes can obtain the
results same as those of the CN scheme.
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Chapter 3

Dendritic growth

3.1. Introduction

Solidification is one of the most important phenomena in production of alloys. In general, it is
called a dendrite when the outcome of solidification has a tree-like structure [85]. Dendritic growth
involves complex processes in a micro-scale; the diffusion of the solute, melt convection, motion of
the solid phase, and their couplings play important roles in dendritic solidification. Such a complex
process determines the mechanical properties; therefore, understanding dendritic growth is of great
interest in industrial fields [113].

The phase-field method, described in Chapter 2, is considered as the powerful and accurate nu-
merical tool to simulate microstructural evolution including dendritic growth. The most significant
advantages using a phase-field method is the way of representing an interface [29]. As discussed
in the above part of this dissertation, the phase-field method tracks an interfaces implicitly. See

references [5, 14, 120, 124] for reviewing simulations of dendritic growth using a phase-field method.
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In this chapter, we discuss a numerical approach to model a dendrite growth in phase-field
simulations applying an operator-splitting method. Here, we consider the numerical scheme in-
troduced in [96], which is known as a fast, robust, and accurate method, and present numerical

simulations to show consistency with previous numerical experiments.

3.2. Governing equations

A standard form of the solidification model using phase-field method is given by [96]

)20 =9 ((6)V9) + [0~ AU (1 - 67)] (1~ 6?)
d
2w 0g), o
ou 10¢
—; =DAU + 5=, (3:2)

where €(¢) is the anisotropic function, ¢ is the order parameter defined in [—1,1] with ¢ = 1 in
the solid phase, ¢ = —1 in the liquid phase, and ¢ = 0 representing an interface, ¢ is the temporal

variable, A is the dimensionless coupling parameter, U = ¢,(T" — Tas)/L is the dimensionless

temperature field, ¢, is the specific heat at a constant pressure, T is the melting temperature, L
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€(¢) is defined as

(3.3)

d
€() = (1 — 3¢4) (1 n des Dy d’ii) 7

1=3es |Vl

where ¢4 is a parameter for the anisotropy of interfacial energy.

3.3. Discretization

We introduce a robust hybrid numerical scheme for crystal growth proposed in [96]. Here, we
focus on the two-dimensional case and present the discretization on the two-dimensional domain.

The discrete equation of Egs. (3.1) and (3.2) is derived as follow:

2/ n ¢n+1 - ¢n _2/n n+1,2 n n n _ ol n+l
€ (¢ )—At =e"(¢")Ang +26(¢")Vre(d™) - Vio" — F'(¢"T)
5 0 0e(@)\" 5 0 0e(@)\"
+ <|Vh¢| €(¢)T¢w>w + <|Vh¢| €(¢)T¢y>y
—ANU"F (g™ Th1), (3.4)
Un+1 _pyn B i (bn—i—l _ (bn
—x; = DA g AT (3.5)

where F(¢) = 0.25(¢? — 1)2, F'(¢) = ¢(¢? — 1), and ¢"t1F for k = 1,2 are defined in an operator

splitting method. The formulation applying the operator splitting method is written as

n+1,1 _ n
(6N i =2eld" ) Vae(6") - V"

)

n (wﬁe(qs)

x
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¢n+1,2 _ ¢n+1,1

62((15“) N 262 (¢n)Ah¢n+1,Q _ 4>\UnF(¢n+1,1), (37)
¢n+1 _ ¢n+1,2

62(¢n) N I FI(¢n+l). (38)

Here, we can simplify the last two terms in Eq. (3.6) as follows:

Oe(9p) 1640, (9505 — )

2
N P
2 0e(¢)  16es9y (920, — dy)

Next, Eq. (3.8) can be considered as a following continuous equation:

since it has an approximation form using an implicit Euler’s scheme with the initial condition
¢"t12. Note that we analytically solve the similar equation in previous section 2.2 using the
separation of the variable. Applying the same strategy used in above, the analytic solution is

derived as

¢n+1,2
\/672At/62(¢") + (pn+12)2(1 — 672At/e2(¢"))'

¢n+1 _
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Therefore, the Eqs. (3.4) and (3.5), applying the proposed operator splitting method, can be

rewritten as

2@ =0 (16a0a(6205 = 6) " | (1640, (0265 — ) )"
At YR V|t
+ 2e(¢")Vihe(@™) - Vo™, (3.9)
¢n+1,2 _ ¢n+1,1

(0" = (@) A" — AU (6", (3.10)
¢n+1 _ ¢n+1,2 (3 11)

\/672At/62(¢”) + (pnt1:2)2(1 — 672At/e2(¢n))’ ’

n+l _ 7rn n+1l _ in

3.4. Numerical experiments

In the numerical experiments performed in the section, we choose a relatively large time step
to show the stability of the used scheme who does not suffer the traditional time step restriction
At < O(h?). Figure 3.1 shows the evolution of phase-field contours for a dendrite growing at (a)
A = —0.4 and (b) A = —0.6. Here, a 512 x 512 meshgrid is used on the computational domain
(0,500) x (0,500) with At = h, ¢4 = 0.05, D = 2, and A = 1.5957D. Each contour is drawn per

every 800 iterations.
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(a) A=—04 (b) A = —0.6

FIGure 3.1. Evolution of phase-field contours for a dendrite growing at (a) A =
0.45 and (b) A = 0.55.

at the top and bottom of the domain, respectively. Here, Atop = 11A, Apottom = 0-9A and
Atop = 1.2A, Apoitom = 0-84; i.e., we assume that the approximated forced flow flows from the
tom to the bottom. Note that the result in Fig. 3.2 is similar with a dendrite growing presenting

in [127], which consider the convective effects for a fixed crystal on a given domain.
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FIGURE 3.2. Evolution of phase-field contours for a dendrite growing with the
underlying temperatures who have a gradient (a) Atop = 1.1A, Ay gttom = 0-9A
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Chapter 4

Navier—Stokes equation

4.1. Introduction

The NS equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the
motion of viscous fluid substances. Including water and air, the dynamics of almost every viscous
liquid and gas are governed by this partial differential equation. The equations arise from the
Newton’s second law to fluid motion with the assumption: the stress in a fluid is the sum of a
diffusing viscous term and a pressure term. Understandably, the solution of the NS equation is a
flow velocity field.

Since a fluid does not have a fixed morphology like a solid, but flexible one, the classical
dynamics properties cannot be applied directly. Therefore, we need to reorganize the Newtonian
mechanics to the suitable form for a fluid; and the result is the NS equation [37]. Nevertheless, the
NS equation is one of the most difficult equations to solve analytically among the known partial
differential equation. In some specific cases, the exact solutions were derived [15, 38, 131]; however,

the general solution is still remained in mysterious one.
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Therefore, the numerical solution, which is the approximated solution of the exact NS equation,
is the only way to analyze the dynamics of fluid flows and is clearly an important issue in many
industrial, physical, and mathematical fields. There have been numerous researches for solving the
NS equation numerically [6, 7, 31, 53, 80, 125], and the Chorin’s projection method is considered
as one of the most useful numerical solver because of its simple implementation [31].

In this dissertation, we only focus on the incompressible Newtonian fluid flow case, which is

the appropriate form for the solute of metals and alloys; the dendrite crystal growth.

4.2. Governing equations

There are the basic assumptions of the NS equations: (i) a fluid is a continuum; i.e., a fluid is
not made up of discrete particles but rather a continuous substance at the scale of interest and (ii)
all fields of interest are (at least weakly) differentiable such as pressure, flow velocity, density, and
temperature. The derivation of the equation starts from the conservation of mass, momentum,
and energy [126].

The Newton’s second law states that the net force on an object is equal to the rate of change

of its linear momentum p:
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where F is the net force, m is the mass of a body, and v is the body’s velocity. Moreover, m can be
taken outside the differentiation operator in Eq. (4.1) by the constant factor rule in differentiation

since the Newton’s second law is only valid for a constant mass body:

, (4.2)

where a is the body’s acceleration. Thus, the net force applied to a body produces a proportional

acceleration. Equation (4.2) is rewritten as the following form:

du

(pdxdydz) pri

F.

On the other hand, let J,,(x,t) be a mass flux where x is defined on a domain 2. and the
changes of J,, be equal to a lost or gained mass through the boundaries ) plus a created or

dissipated mass by sources or sinks inside 2. Then, its continuity equation is given as follow:

E/deV:—/ (Jmu)-ndA—i-/de (4.3)
dt Jo a0 Q

where u is the flow velocity, n is the outgoing normal vector proportional to 02, and s is the
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theorem, Eq. (4.3) can be rewritten as follow:

i/ J,,dV = —/ v. (Jmu)dV—i-/ sdV,

dt Jo Q Q

o a;—mdv - —/ V- (Ju)dV +/ sdV,
Q Ot Q Q

@/ <8J—m + V- (Jnu) — s) dv =0, (4.4)
o \ ot

The integral is zero only if the integrand itself is zero, hence Eq. (4.4) becomes as follow:

o3, -
W_FV' (Jpu) —s=0. (4.5)

Now, we replace the mass flux J,,, with the product of mass density p and flow velocity u (i.e.,

Jm = pu) in Eq. (4.5):

3(8ptu) + V- (puu) —s =0,
@pg—?+u%+Vp-uu+qu-u+pu(V-u):s,

ap Ju B
@u(E+Vp~u+p(V-u))+p<§+u'VU> =S,

@u(%—i—V(pu))—l—p(%—?—ku-Vu):s. (4.6)
Here, we consider the mass continuity equation:

ap B
E—FV-(pu)—O.




4.2. GOVERNING EQUATIONS 92

On the other hand, in the case of an incompressible fluid, the density is constant up to temporal

evolution, i.e., dp/dt = 0. It implies that Eq. (4.7) can be rewritten as:
V-u=0. (4.8)

Returning to the derivation from the continuity equation (4.3), we plug Eq. (4.7) into Eq. (4.6)

to get

p (38_1; +u- Vu) =s. (4.9)

Next, the momentum source s, consisting two parts: surface forces and body forces, can be written

as follow:
s=—-Vp+V.-14f, (4.10)

where p is the pressure, T is the deviatoric stress tensor, f is the body forces such as gravity using

Cauchy momentum equation [83]. For Newtonian fluids, the term of the stress tensor is derived as

ver=v-(y (Vu+(Vu)T))+v<—%”v.u> 4, (4.11)




4.2. GOVERNING EQUATIONS 93

where 7 is the viscosity of fluids with assumptions by Stokes. In conclusion, the NS equations for

incompressible Newtonian fluids has the following forms using Eqgs. (4.8)—(4.11):

p (?;tl +u- Vu> =-Vp+V. (77 (Vu+ (Vu)T>) +f, (4.12)

V-u=0. (4.13)

Moreover, if the density and the viscosity is constant and the external force consists of only surface

tensional and gravitational forces, we can rewrite Eq. (4.12) as

p(gl;wLu-Vu) =—Vp+nAu+f, (4.14)

and we treat this form in this chapter for simplicity.

4.2.1. Non-dimensionalization. The dimensional analysis is an analysis by converting di-
mensional variables, such as length, mass, time and other quantities, to dimensionless variables.
This is a widely used technique for performing comparisons in mathematics, physics, and en-
gineering. Since it is too much complicated if all variables have each physical dimension, the
non-dimensionalization is quite important and useful in both theory and experience.

To non-dimensionalize the Eqgs. (4.13) and (4.14), we consider the following dimensionless

variables:
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x* = X
=7
P

- L*JU*’
P
PURE

where U* and L* are the characteristic velocity and length, respectively. Applying the change of

the variables to Eqgs. (4.13) and (4.14),

B(U*u*) * % . % 2 . .
P<W+(Uu)-V(Uu)):—V((p(U))p)+nA(Uu)+f’

V-u* =0,

or,

%-i-u -Vu" =—-Vp —l—EAu —l—Wef,

V-u* =0,

where Re = pU*L* /7 is the Reynolds number, We = p(U*)?L* /o is the Weber number, and o is
a coefficient.

For simplicity, we rewrite the non-dimensional equations omitting the * sign as

ou 1 1
E‘Fu'VU——Vp-FEAU-me,

V -u=0.
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4.3. Discretization

In this section, we describe the discretization of the governing equations (4.15) and (4.16).
To simplify the exposition, we consider the equations on the unit square computational domain

Q=(0,1) x (0,1). Let h be the uniform mesh grid size, then the center of the cell is

Xij = (w3, 95) = ((1 = 0.5)h, (j = 0.5)h)

for i,7 = 1,--- , N. Here, N denotes the number of grid points in each direction. Let At be the
time step size. Recall that the discrete gradient and laplacian operators for cell-edged values are

defined in Section 2 as follows:

_ Wil — Uij

xr
hu'i-',-%,j - h ’
Vi i — Ui
Y _ gl T Vg
vhvi,j+% = h .

Moreover, we define another discrete gradient operators as

Vitu = (Viu,Viv),

Vap = (Vip, Vip).
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cell-edges. In a discretized equation, we denote p(x;;, nAt) as pi;- By discretizing the Egs. (4.15)

and (4.16), we can rewrite them as follows:

u"tl —un 1 1
AL RS

nva n:_v n+1
tu ot ap +Re We

£ (4.17)

Vg u"tt =0. (4.18)

Therefore, in two-dimensional Cartesian coordinates, we have

n+1 n
T p’,l‘*‘l,_pﬂﬂ‘l 1
W + (- V) = “JTJ + EAh“ZF%,j + mflnwg,j, (4.19)
oL ntl _on+l
J+35 J+3 P Dy 1
Wrth’“z + (W Vao)f s = ”HT’J + EAh/U’Zj*F% + mﬁi’ﬁ%’ (4.20)
(Va-u)™ =0. (4.21)

Here, we denote

I i+t 0.5(f, i1, T frm ij)

form=1,2,3.
We use the projection method to find u™*! from given u” by solving Eqs. (4.17) and (4.18).

At first, we compute an intermediate velocity field, @1, which generally does not satisfy the incom-

pressible condition. To apply the no-slip boundary condition, we set the valugs of ghost poiuts



4.3. DISCRETIZATION 97

as

n _ noo_ _,n
u_%)j—Oandvo’j— (D

in the z-direction. The reason that only u™ has a different type of formula is that only u"™ is saved
at a cell-edge in the z-direction on the MAC mesh. The values at ghost points in the y-direction

are similarly defined. From Eq. (4.19) without the pressure gradient term, we have

~n+1 n

wu. 1 .—U. 1 . 1 1

i+3,] i+3,7 n n n

—_— u-Vau), = —Apu! 4 —fT .
At T Vaw)iy ) = Relntiy, e/l

Then, we define

n n
ul s ul
i+5.0 T Tieg.d

At At
~n+l1 _ n n —fn T
Uply  =Uiya 5= At(u‘Vdu)iJr%,j + W€f1 i+35 T h?Re (

n n n
duiiy st uis it “i+é,j—1) ,

where the advection term is defined as

[ [ (L ot

0 SR i3 T Ving-1 Tl TG,

(u-Vau) 1 . =ul 1 .4 + .
i+35.] 5,0 Tirl 4 Yiyl.j

The values ﬁ;_+ are computed using the following upwind scheme:

P
Ui T Yl
T2l e, >0,
—n i+35,7
u. = n n
ko ) Wy T Wy .
—_— otherwise.

h
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The other values v, ;, 1 are calculated similarly. Then, we solve the following equations for the

advanced pressure field at the (n + 1)-th time step.

u"tl —a
—Qx Vap"tt (4.22)
Vq-u"tt =0. (4.23)

Applying the divergence operator to Eq. (4.22) and using Eq. (4.23), we have the Poisson equation

for the pressure at the advanced time (n + 1).

App"™ = —V, -1, (4.24)

where

Pyt P — AP PR TP

AhpZ'Jrl h2 )

e Rt n Vij+d T Vij-1

Since the Poisson problem is ill-posed under the no-slip boundary condition, the adjustment step
is needed for p"*!. Here, we specify that p"*! has zero mean.
The linear system of Eq. (4.24) is solved using a multigrid method [129], specifically, V-cycles

using Gauss-Seidel relaxation with a tolerance of 10~7. After solving the pressure
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n+1

u. oas
i+2,jk

n+1 — i 1‘_g(n+1 nJrl)
i3,y Witda T T \Pirg T Pij

The variables v;‘;}l are updated in a similar manner.
R 2
This completes one time step update. Refer [30] to see more details of numerical implementa-

tion.

4.4. Numerical experiments

4.4.1. Cavity flow. In this section, we consider a lid-driven cavity flow in a two-dimensional
domain. Figure 4.1 shows a schematic of a computational domain and the boundary conditions in
a driven cavity. The initial condition of the flow inside the domain is given as a zero value and the
flow at boundaries at three walls except the top is fixed as a zero velocity. On the other hand, at
the top, the lid-driven flow is given as (u,v) = (1,0). Here, there is no the external force effect,

ie,f=0.
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To show the effect of the domain size, we first consider a lid-driven cavity flow in Q = (0,1) x
(0,1). The result is shown in Fig. 4.2 with 64 x 64 mesh grid, i.e., h = 1/64, Re = 5000, and
At = 0.01h%Re. We can observe that the eye of principal vortex moves into the core of the cavity

and the lower left/right corner-eddies as time evolves.

t = 200At t = 2000At t = 100000At

FIGURE 4.2. The evolution of cavity flow on the square domain Q = (0,1) x (0, 1).
The dimensionless times are shown below each figure.

Next, we perform a numerical simulation on a non-square domain Q = (0,1) x (0,4) with
64 x 256 mesh grid. We use h = 1/64, Re = 5000, and At = 0.01h%2Re. Figure 4.3 shows the
numerical results of the lid-driven cavity flow at each time on the rectangle domain. Unlike the
results in Fig. 4.2, we observe that more than two vortices with an opposite directional rotation

at the lower corner.
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L\

o iy

t = 800000A¢

e
NN

t = 400000A¢

t = 160000A¢

FIGURE 4.3. The evolution of cavity flow on the rectangle domain Q = (0,1) x
(0,4). The dimensionless times are shown below each figure.
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Chapter 5

Convection of crystal growth under a flow

5.1. Introduction

As mentioned in Chapter 1, convection of the crystal in the melt is of great interest for the
practical processes to understand the dendritic solidification.

In numerical investigation, the phase-field method, widely applied to model various meso-scale
phenomena such as solidification, recrystallization and so on [26], is also a flexible mathematical tool
to describe the interfaces in a dendritic crystal growth with convection. Two- and three-dimensional
adaptive phase-field simulations of dendritic crystal growth ini a forced flow were presented in [23].
The effect of natural convection in 3D dendritic growth using an efficient adaptive phase-field
simulation was investigated by Chen and Lan [24]. A two-dimensional lattice Boltzmann method-
cellular automatic model was presented to investigate the dendritic growth of binary alloys in the
presence of natural convection [143]. Recently, motion and growth of a dendritic ini the presence

of melt convection was modeled using a phase-field-lattice-Boltzmann method [113].

However, the crystal is fixed in the space and cannot be convected, inStead the supercooled

melt flows around the crystal, which is hard to be realized in the real
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in the previous studies. Direct application of the advection term to the crystal equation would
lead some problems such as the shape deformation and the ambiguity of the crystal orientation
for the anisotropy. In recent years, few models have been elaborated for using two computational
domains to distinguish between the fluid flow and the phase separation by applying a fictitious
domain method [39], a combination of the volume of fluid and the immersed boundary methods
[69]. Nevertheless, there are drawbacks in their algorithm; difficulty in matching the grids or
computational efficiency.

The main purpose of the present dissertation is to resolve these difficulties by using a moving
overset grid. The fluid domain is covered with a fixed Cartesian grid, while a moving overset
grid is used to represent the crystal growth and convection. The motion of the crystal is derived
by calculating the translational and rotational force of the crystal. Using the fictitious domain
method with distributed Lagrange multiplier method, the method in [39] has an advantage that
simulations can be performed in a problem involving different scales in time and space. Note that
the proposed method would be compared with the method in [39] since our moving overset grid
method is similar to their method based on a fictitious domain method. However, our method is

simpler to implement and it also has the advantage involving different scales.
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5.2. Governing equations

We consider the solidification of a pure substance from its supercooled melt in a two-dimensional
flow. This problem has a much more difficult numerical challenge than the previous ones. To model
the solidification system, let ¢(x,y,t) be the phase-field function, where ¢ = 1 and ¢ = —1 refer
to the bulk solid and melt phases, respectively. The phase-field variable ¢ is smoothly changed
but has small thickness, and we define the interface by the zero level set of ¢ [127]. The governing

equations for crystal growth in the flow are given as

o - Vu=—Vpt 2V [y(¢)(Vu+ VuT)] 6-1)
V- u=0, (5.2)
(o) (7 +u-V0) =7 - (2@V0) + b A1 - 1~ )
v (woraag ) +(voranB ) . ey
%+u-VU :DAU+%%, (5.4)

where u is the velocity, p is the pressure, 7(¢) is the variable viscosity, and U is the temperature.
Note that Egs. (5.1) and (5.2) are the Navier—Stokes equations [30] and Egs. (5.3) and (5.4) are

the governing equations for dendrite growth [71]. Here, n(¢) = 0.5[ns(1 + ¢) +

viscosity [33] which uses a very large viscosity in the solid to describe the resi
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The dimensionless parameters are the Reynolds number Re, A\, and D. For the four-fold symmetry,

€(¢) is defined as:

des Oz + 4y
€(6) = (1 - 3cy) (1 2 |v¢|4y> |

where €4 is a parameter for the anisotropy of interfacial energy.

We will consider the two computational domains to separately represent the crystal growth
and fluid flow. The flow with appropriate boundary conditions is defined on the base domain. The
phase-field function ¢ for representing the crystal is defined on the relatively small domain, and

the crystal growth equation is

(9) 50 =V (E)V0) + o~ (1~ )1~ ¢?)
# (1vepe@ 5 ) + (1wepe 3;;":))y (5:5)

by using Eq. (5.3) without the advection term u - V¢.

5.2.1. Motion of a rigid body. For translating and rotating of the crystal domain, we use
the conservation law of the linear and angular momentums. Since the crystal is governed by a rigid

body motion, the conservation of the linear momentum is given as:

Mcucz/u(x,y)p(x,y)dx
Q
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where M, is the total mass of a crystal, M, = fQ p(x,y) dx, 2 is a crystal, and u, is the velocity

of the crystal. With regarding to the constant density field p, we can rewrite as

= Jo BV (5.

Jo dx

Next, the angular momentum L. of the crystal is generally defined as a sum of the infinitesimal

angular momentum dL [3]:

LC:/dL
Q

= [ G(o.9) x ula) )i

where T(z,y) is the displacement vector from the center of mass. Moreover, L. can be written by
a product of the moment of inertia /. and the angular speed w,, i.e., L, = I.w.. With p =1, w,

can be written as

L. Fx ) d
wc:__fﬂ(rxu) X

L~ TR 5-1)

Therefore, we can translate and rotate a crystal without solving the advection term since the
velocity vector and the angular speed of a crystal (or an overset grid) can be derived from Egs.

(5.6) and (5.7).
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5.3. Numerical solutions

In this section, we propose a hybrid numerical method using a overset grid for the simulation
of the crystal growth in a cavity flow. Let Q¢ = (a,b) x (c,d) be a domain for the fluid velocity
u = (u,v), pressure p, and temperature U with proper boundary conditions. Also, let Q. = (0, a) x
(0,8) be another domain for the phase-field function ¢ with interpolated boundary conditions.
Qmoving 18 the coordinate transformation of )., and it represents the location and rotation of €.
on Q. Let X1, Xy, X3, X4 be corners of Quoving 0n 5 corresponding to points (0,0), (a,0),
(o, B), (0,5) on Q, respectively. We determine the location of Qmoving by setting its center as
m, = (X3 +Xo+ X3+ Xy)/4 and the rotation . as the signed angle measured from the horizontal

e
axis to the vector X;X5 (see Fig. 5.1).

Xy

QInovin g

X3

XD

/TN
V

¢, and the moving domain Qyoving-
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For the time integration, we consider the uniform time step At = T/Ny, where T is the final
time and [V; is the total number of iterations. For Q0¢, we use a uniform mesh with mesh spacing
h=(b—a)/N, = (d—c)/Ny, where N, and N, are the numbers of cells in the 2- and y-directions,
respectively. The center of each cell is located at x;; = (z;,y;) = (a + (i — 0.5)h,c+ (j — 0.5)h)
and we define the computational domain Q’} ={x;; |it=1,--- ,Ny,j=1,---,Ny}. Using the
marker-and-cell mesh, the pressure p and temperature U are defined at the cell centers and the
velocities u and v are defined at the cell edges (see Fig. 5.2). Let pi; and Uj; be approximations
of p(x;,y;,nAt) and U(x;,y;,nAt), respectively. Let Uiy ; and v, o be approximations of

u(z; + h/2,y;,nAt) and v(z;, y; + h/2, nAt), respectively.

U1 j+1 Uit j+1
Vi-1,j+1 Yij+3 Vit1,j+1
.y U;; oDij Ty
Vi1,j-1 Vi j—1 Vig1,j-1
Uil j-1 Yitg,j—1
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is located at sy = (s%,s)) = ((k — 0.5)h, (I — 0.5)h), and we define the computational domain
QF ={sgy |i=1,--+,Nyj=1,---,N,}. And, m? and 0" represent the center position and
rotation of Quoving at time nAt, respectively.

Next, we describe our proposed numerical solution algorithm. At the n-th time step, we have
a divergence-free velocity field u”, the phase-field ¢", and temperature U". We seek u"*!, pn*1,

o™t and UL

5.3.1. Hydrodynamic flow on ;. First, we solve Egs. (5.1) and (5.2) to update u™*! and

p" ! on the fluid domain Q¢ by using the Chorin’s projection method [31, 98]:

un+1 —u®

Ty n n 1 n n n
A +u” - Vi¥u" =—Vgp g Evd . [77 (Vdu + (Vqu )T)] , (5.8)

Vg -u™tt =0. (5.9)

We solve an intermediate velocity field, a™ = (@™, 0"):

~M n n At n
By Uivy,y — Atlute touy )iy o+ 2o 20nua)e £ (1uy)y + (102)y)ig g5

- At
UZ]‘+% :UZJ-JF% — At(uv; + 'va)z]‘+% + Re ((nve)e + (nuy)x + Q(U”y)y)zﬁé .

The advection terms are defined by

n _n —n
i+3.5 " Yitg Y

(UUQ/; +Uuy) ZJ,»%J xH%J
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n . n —n n -n
(uvg + ’uvy)i’jJr% Ui, + Uiy U, g,y
where the values u;; | and u; | are computed using the upwind procedure
it35.7 i+5.7
u 4 —u
i+1, i—L .
N if ul’,, >0,
Uy | =4 yn . _yn 2+ (5.10)
i+l i+3, Citdls .
2 2 2 h
7 , otherwise,
u” 1, " 159 .
. i+35,7 h1+2v1 , lf/U:L_i_l ] >0,
Uy = w, —un, 2 (5.11)
i+5.7 i+3.5+1 i+l :
2 —2i 22 otherwise.
The quantities v;  and vy are similarly computed. The viscosity terms are defined by
i+ i+l

(2(nuz)s + (Muy)y + (va)y);:.%,j

n
Mi+1,5

=2
n

T 0id 43
n

T ity svy

((nvz)z + (uy)

_.an
= it L+

n
T ity svy

n

+ 2 i1

n n n
u s —u g u 4=
i+3. i+3.0  p it3.d =3,
h2 ] h2
u . —ult u . —ut
it3,j+1 it3.J n i+3,j i+5,j—1
n2 Mi+t,5-1 2
n n n n
ol — Ul A VL
i+1,j+% Lits g ij—3 i—1,j—3
h2 Mitd -1 h2 ’
n
»t Q(WUy)y)i,jJr%
ot — Ut ot —vlt
i+1,j+3 Lits o n i,j+3 i—1,j+73
12 i—%.J+3 h2
n n n n
u o= ul g u g —u
it3.0+1 Titsd g ity itgg-l
h2 Mimgi+d 2
n n n n
vl s — Ul vt — Ul
i,j+3 ity o bits i,j—%
h2 ij h2
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Because the viscosity ™ on {2y depends on the phase-field function ¢™ on €., we consider the
interpolated function q;" as follows: First, to check whether x;; € Q;% is inside of Qmoving OF NOt,

we compare the sum of areas of four triangles with the area of moving domain Qoving. That is, if
AXin1X2 + AXinQXg + AXin3X4 + AXZ']'X4X1 > DX1X2X3X4,

then it means that X;; ¢ Qmoving (Fig. 5.3(a)). If the two areas are same, then X;; € Qumoving (Fig.
5.3(b)). Next, we estimate the value of &Z from ¢™ on Q. if x;; € Qmoving by using the bilinear

interpolation and we define ({52 = 1 otherwise. For more details, we denote the directional vectors

=
as a = X1Xo, b = XXy, and ¢ = Xyx;;. If X;5 € Qpoving, Xi; is corresponding to the location
((a-c)/|al, (b-c)/|b]) on . and then we can calculate the ¢;; by the interpolation. Finally, we

define as

= Ne(1+ @) + nm (1 — 01
1) 2 °

We then solve the pressure field at the (n + 1)-th time step.

un+1 —a”

AT T Vap" (5.12)

Vg -u"t =0. (5.13)
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Xy X4
d 7&/2 d %J)
BV o Y o e
o L S
\ [ U
x}k T \4
¢ Qy c Qy
a b a b

(a) (b)

FIGURE 5.3. Schematic illustration of (a) X;; ¢ Qmoving and (b) Xi; € Qmoving-

Applying the discrete divergence V4 and divergence-free Eq. (5.13) to Eq. (5.12), we obtain the

Poisson’s equation with the homogeneous Neumann boundary condition:

App"™h = Aitvd AU (5.14)
where
Appitt = p?:ll,j +p?j11,j — 4p?j+1 +p2j+11 —l—p?j}l
i 72 )
and

1 ST ot %
a o, —at .+ 0",
v, i i+1.7 i—%.7 i+
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We solve the Eq. (5.14) by the multigrid method, and using the updated pressure p"*!, the

divergence-free velocities are obtained

n+1 ~n _g( n+1l n+1)
=Uit1 h Piv1,; —Pij )

n+l _ ~n At n+1 n+1)

Yijrt TVl T f(pz‘,jﬂ Pij

5.3.2. Dendritic crystal growth on .. Next, we solve the crystal equation (5.3) to obtain
the updated phase-field function ¢™ on {2.. Note that the convection term u - V¢ is treated by

translating and rotating the moving domain Qnoving. We use the operator splitting scheme [96]:

) ¢n+1,1 _ ¢n
(") g = 26(8")e(d" oy + 2e(6")e(d")y Py (5.15)

mwwwwﬁﬁ—%)"+l&MWMM%$W®n
Vholt Vol ’

¢n+1,2 _ ¢n+1,1 R
(0" T = (0" AR — AR ("), (5.16)

where F(¢) = 0.25(¢* — 1)2. Because the temperature U™ is defined on Qf, we consider the
interpolated function U™ for €. ﬁ,?l at sp; € QP is the bilinearly interpolated value from the
temperature U™ at the position 83 = X1 + sfa/|al + s/b/[b| on Qf (Fig. 5.4). If §;; ¢ Qy, then

we define by 0{; = A with a dimensionless undercooling A.
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FIGURE 5.4. Schematic of the temperature field interpolation.

And then we update ¢"*1.

i = gnt1? /\/e‘W +(gr12)e (1— e mer ) (5.17)

Equations (5.14) and (5.16) are solved by a multigrid method [129]. For more detail discretiza-

tions, please refer to [96].

5.3.3. Translation and rotation of Qyoving. Also, we update the position of the advected
crystal on Qf by moving oving. The magnitudes of its rotatory and parallel translations are
derived from the conservations of the linear and angular momentums, respectively. Here, we

calculate the velocity of the crystal

uC = (un Un)?

cr e
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and the rotation angle 67 of the crystal to represent the motion of the crystal. Using the interpo-

lated phase-field ¢™, fluid velocity u™, and Eq. (5.6), we can write u?, as

n
177

T N Nn n
D N ] ) A (5.18)
e = N, N b : :
S S 0.5 (14 6y ) b2

Note that the interpolation of (E)” is described in Section 5.3.1. And, we estimate the fluid velocity

at cell centers as

wly = (05075 + s ),05(0 1 0 ). (5.19)

i+35.] 3

Next, we consider the angular momentum L, of the crystal to calculate the rotation angle .. Let

n

. is written as

w? be an approximation of w, at time nAt. From Eq. (5.7), w

x N, n n in
ZzNzl Ejzyl 0.5 (mc - Xij) X Uy <1 + ¢z]) h?
= Nao N, - .
> ijyl | (my —x5) ||*h?

n
(&

w (5.20)

Therefore, we can compute the new position and rotation angle of the crystal domain 2. on the

fluid domain Q; from Eqgs. (5.18) and (5.20):

m” T =m” + ulAt, (5.21)

orH =07 + W At. (5.22)
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"At

FI1GURE 5.5. New center position and rotation angle of the crystal domain €.

5.3.4. Temperature field on ;. Finally, we solve the temperature field U on the domain

Qf with the homogenous Dirichlet boundary condition using the multigrid method:

-
bis — Pl

2At

n+1 n

At + (u” . VdUn)ij = DAhUij+1 +

Here, we apply the upwind scheme for the advection term:

Uk-uUr | .
ij i—1,5 : n
- ;o il >0,

Uz, = ur. . —un
— 4 otherwise,
ur—ur
7 i7—1 : n
0o = ifel >0,
Yij ULy —uls

—hit—d otherwise.

)
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Note that the velocity located at a cell center (u?j7 v;g) is defined by using interpolation as

i1, 0501+ ”Zj—?)

(0.5(ui+%)j + u;

as in Section 5.3.3.

5.3.5. Summary for the implementation. A brief summary of numerical procedures for
crystal growth simulation in a cavity flow is as follows: Given the fluid velocity u”, the phase-field
function ¢”, the temperature U"”, the crystal location m}, and the crystal rotation 67, we proceed
the following steps:

1. Update u™** on Q; by Eqgs. (5.8) and (5.9).

2. Update ¢"*! on Q. by Eqgs. (5.15)—(5.17).

3. Update m?*! and 67! of Quoving by Egs. (5.21) and (5.22).

4. Update U™ on Q¢ by Eq. (5.23).

This completes the description of the process above by which the quantities u»*!, ¢"*1, Un+1,
m”+1 and 97+

Moreover, we compare our moving overset grid method for the implementation with the fic-

differences in describing other physical properties.
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TABLE 5.1. Comparison of the moving overset grid method with the fictitious
domain method

] Moving overset grid | Fictitious domain model [39] |
Using the local domain for 0 0
the phase-field
Solving the NS equations in X 0
the local domain
Advection term in the X o

phase-field equation

Treating permeability Using a very large viscosity Adding a term in the NS

ratio equation for the local domain
Calculate the translation
Enforcing rigid motion velocity and the angular Using the correct velocity

velocity separately

5.4. Numerical experiments

In this section, we present an example to numerically demonstrate the efficiency of the proposed

methods. The first example compares the result by the proposed translation algorithm with the

result by solving the advection equation. And, next examples show temporal evolution of the

crystal growth in two-dimensional flows.

5.4.1. Translation algorithm. We first compare results by our translation algorithm for

the moving domain 2 with those of the usual advection equation. Here, we just consider

moving

an advection equation

¢t +u-Vo =0,
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i.e., without the crystal growth and the heat diffusion. The underlying velocity field is given by a

rotational flow

(o) = (365~ 100)

which gives a uniform angular velocity in a fluid domain Q; = (—50,50) x (=50, 50). The initial
translated feature is a square whose one side has a length of 12 and it is defined on a quadruply

smaller domain Q. = (0,50) x (0, 50). The location of the corresponding moving domain Qmoving

is set as defining m? = (50, 75) in Q.
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(a) (b)

FIGURE 5.6. Translation of the non-growing crystal under the rotational flow
by (a) applying a proposed overset grid and (b) solving the advection equation.
The solid contour represents the initial configuration, dotted contours are the
configurations at every 400 iterations, and arrows are the underlying velocity field.
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well known that the smeared phenomena occur by the upwind scheme. We could, of course, obtain
the better results by using other time integrating schemes such as Lax—Friedrichs, Lax—Wendroff,
Godunov’s, Leapfrog, essentially non-oscillatory, weighted essentially non-oscillatory, and so on;
however, it is not easy to not only implement but also avoid the drawback perfectly. On the other
hand, the overset grid method shows that no unreliable deformation of the structure in contrast

with solving the advection equation directly.

TABLE 5.2. Numerical and theoretical angles at T.

mesh 1282 2562 5122 exact
angle | 6.286168 6.283511 6.283191 6.283185

Because of the uniform velocity w = 0.01 from the underlying velocity, the initial and final
configurations should match with each other exactly; i.e., the angle is 27 at the final time. Table
5.2 lists the numerical and theoretical angles at 1" up to seven significant figures. As the mesh
is finer, the angles from the numerical experiments converge to the exact value. In conclusion,
the results in this section show that our translation algorithm has a good agreement with the

theoretical one.

5.4.2. Cavity flow. We perform numerical experiments for the crystal growth in a two-

dimensional cavity flow. We consider a sufficiently large domain Qy = [—-300, 300

observe the growth of crystal under the flows for the fluid and temperature and €2

[0,300] for the crystal. In , the time step is restricted to At < 0 25Reh2
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explicit discretization for the diffusion term in Eq. (5.8). In contrast, in €., the operator splitting
method for solving Eqs. (5.15)—(5.16) allows large time step, e.g., At < 5.5k [96]. Thus, we use
At = min (0.2Reh277m/77S7 5.5h), unless otherwise specified.

For the initial state, we take:

0 ifep>0

Ry — /22 + 4

o(x,y,0) = tanh ( 3

) and U(xz,y,0) =

A otherwise
The zero level set (¢ = 0) of the initial state represents a circle of radius Ry = 6. From the
definition of dimensionless variable U, the value of 0 corresponds to the melting temperature of
the pure material, while the value of A is the initial undercooling. And, we use A = 3.1913 like
as [96, 97, 114]. The initial center m? is located at (0,120) and the initial fluid flow is defined as
the steady state solution of the cavity flow Re = 1 to reduce the computational time. For other
parameters, we set as follows: e¢4 = 0.05, D = 2.0, A = —0.3, Re = 10, n,, = 1, ns = 25, and
T = 4272.

Figure 5.7 shows the temporal evolution of the crystal growth in the cavity flow. The snapshots
with the contour of crystal and corresponding fluid vector field are drawn at the specified time.
Now, the crystal is not fixed but floats in a liquid, so that the crystal can not grow symmetrically

anymore. The flow and crystal affect each other by the viscosity difference, and.4
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(c) t = 1709

(e) t = 3418

(a) Initial state

(d) t = 2563

FIGURE 5.7. Evolutions for the traces of crystal and the flow field.

the fluid flow. The heat distribution is also changed due to the interaction of the flow and crystal,

and it makes the non-symmetrical crystal growth.

without/the flow

)

b

(

) with the flow

a

(

FIGURE 5.8. Contours of crystal growth (a) with and (b) without the cavi

The elapsed time for each contour is 427.2.




5.4. NUMERICAL EXPERIMENTS 123

In addition, Fig. 5.8 displays the temporal evolutions of crystal growth with and without the
cavity flow to show the effect of the flow. Same parameters ¢4 = 0.05, D = 2.0, and A = —0.3
are used in a domain [0,300] x [0,300] to simulate the crystal growth without the flow. Small
difference of growth is observed in the early stage, however, in the case of with the flow, symmetry
in growing branches is getting broken and the crystal is growing faster.

Next, we check the Reynolds number effect for the crystal growth in a cavity flow. The used
parameters are same as previous simulation except for Re and At. For comparison of the Reynolds
number effects, we set Re = 5 and Re = 100. Since the time step restriction depends on Re, the

corresponding At is used as 0.02441 and 0.04883 for Re = 5 and Re = 100, respectively.

600f—35 1 ' ' o~
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FIGURE 5.9. (a) Migration distances with respect to time and (b) contours of the
crystals at T'.
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external heat would give rise to growth of crystal. As shown in the figure, migration distance is

changed as Re is also changed and it implies that the crystal absorbs more external heat when

Re =100 than Re = 5. This agrees well with our result for growth of crystal.

The initial undercooling A is also one of the influential parameter to determine the growth of

the crystal. We perform simulations to check the effect of A in the cavity flow. Figure 5.10 shows

= 2563. The other parameter

—0.2 and A = —0.4 until ¢

that configurations of crystal with A

settings and initial condition are same as the simulation in the previous result.

(c) t = 1282

(b) t = 854.5

(a) t = 427.2

(e) t = 2136 () t = 2563

(d) t = 1709

—0.2

F1GURE 5.10. Evolution of the crystal growth under the flow fields with A

(solid line) and A = —0.4 (dotted line).

Figure 5.10 shows that the traces of crystal growth under the flow/vector fiel

Here, the flow vector ffields i

—0.2 (solid line) and A = —0.4 (dotted line).
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understanding in convection of crystal. As seen in the figures, the crystals with different A has

apparently different morphology.

&)

(a) A =—0.2 (b) A=—-04

FIGure 5.11. Contours of crystal growth when (a) A = —0.2 and (b) A = —0.4.
The elapsed time for each contour is 427.2.

We also displays the temporal evolutions of crystal growth when A = —0.2 and A = —0.4 in

Fig. 5.11 to compare both cases conveniently.

5.4.3. Gravitational flow. The Boussinesq approximation can be made the gravitational

effect, i.e., the accelerations of flow by gravitational force, with a constant density. Hence, the

constant density contribute to the buoyancy force in terms of the momentum equation [99]. Because
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The NS equation with a gravitational force in terms of the Boussinesq approximation can be

modified from 5.1 as

0 1 1
afltl +u-Vu=-Vp+ EV [n(e)(Va+u”)] + At (?) g, (5.23)

where g is the gravitational force density. Note that it is written as (0, —g) in a two-dimensional
case. To implement this model, we just add the vector term g in the step for solving an intermediate
velocity field.

Figure 5.12 shows the evolutions and the traces of the crystal and the fluid flow fields. Here,
a fluid domain Q; = [0, 200] x [0,400] and a crystal domain Q. = [0,100] x [0, 100] is considers.
The mesh grids of €2y and ). are 256 x 512 and 128 x 128, respectively. Moreover, the parameters
Nm =1, ms = 25, Re = 10, ¢4 = 0.05, D = 2, A = —0.4, At = 0.2Reh?n,,/ns, T = T200At,
At = 0.01, g = (0,—1) are used. Because of the gravitational force, generated by the crystal,
we can see the force-driven downward flow and the direction of the crystal growth tends to also
downward.

Figure 5.13 shows that evolutions and traces of the crystal and the fluid flow fields when the

initial seed is not isotropic. Other parameters are same as the previous simulation for Fig. 5.12
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(a) Initial state (b) t = 1440At (c) t = 2880At

(d) t = 4320A¢ (e) t = BT60AL (f) t = T200At

FIGURE 5.12. Evolutions and traces of the crystal and the fluid flow field.

of the crystal growth is different comparing with the previous one. The direction of growth is not

symmetric for left and right tips of the crystal, and the bottom tip of thé crystal growths on a

skew.
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Chapter 6

Conclusion

We proposed a moving overset grid method to model dendritic growth with convection in
phase-field simulations. Unlike most previous studies, the translation and rotation of the crystal
were simulated with its deformation. The proposed numerical method was able to be resolve
the difficulties in deformation of the crystal shape and ambiguity of the crystal orientation for
the anisotropy since the phase-field and fluid flow are solved in distinct domains. Numerical
results demonstrated that the proposed method can predict the crystal growth under flows. As
future researches, a more accurate algorithm for the motion of fluid and crystal can be applied to
the proposed moving overset grid method and the methodology introduced in this thesis can be

extended to three-dimensional space.
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Appendix A

Multigrid method

A multigrid method is known as one of the fastest method in solving common discretization
problems [4, 17, 129]. When applying the Jacobi and Gauss—Seidel iterative methods, high frequen-
cies of the errors are almost removed in a few iteration but the lower frequencies are reduced very
slowly. Moreover, the computational cost is O(N?). In a multigrid method, lower frequencies act
like higher frequencies by changing data on a finer grid to a coarser grid. After solving a problem
on a coarser grid, we again interpolate the data back to a finer grid. This fine-coarse-fine loop is
called a v-cycle and the sub-steps are called restriction and prolongation [122].

In this dissertation, we use the method when solving the AC equation, the CH equation,
a Poisson problem, and the heat equation. Here, we present practical examples of the multigrid
methods: the heat equation for a linear equation case and the AC equation for a nonlinear equation

case.
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A.1l. Linear multigrid method

The linear multigrid method is one of the fastest iterative solvers for solving linear partial

differential equations. Note that the differential equation

Ly = f,

is called linear when L is a linear operator, i.e., satisfies

L(y1 +y2) = L(y1) + L(y2).

where L is the differential operator, y is the unknown function, and f is a given function. Therefore,
the classical heat equation is a good example of a linear partial differential equation.
The one-dimensional heat equation with homogenous Neumann boundary condition is given

as follows:

%u(a:,t) =Au(z,t), = € Q= (0,1), t € (0,T], (A1)
0 0
550(0:1) =5-u(1,t) =0, (A.2)
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Applying a backward-time central-space scheme (or the implicit Euler’s scheme) [106], Egs.
(A.1) can be discretized as follow:

uf Tt — uf = 2wt !

N - }12 i+l (A.4)

where u = u ((i — 0.5)h,nAt) for i = 1,2,...,N, and n = 0,2,...,N;. Here h = 1/N, is the
spatial step size, N, is the number of spatial steps, At is the temporal step size, and N; is the

number of temporal steps. The homogeneous Neumann boundary conditions are discretized as

n n n n
uy =uy, Uy, 41 = uy,, 0 <n < Ny

Let us rewrite Eq. (A.4) as

w2t s (45
At h? At '

Using an operator notation, we also let Eq. (A.5) as

Lul™t = fi, (A.6)

where

un+1 u?jll _ 2u?+1 + un+1

n+l _ Y _ i+1
Lui™ = At h2 ’
n
fi _ W
f )

At
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In order to explain clearly the steps taken during a single V-cycle, we focus on a numerical

solution on an eight point grid. We define discrete domains, 5, €1, and g, where

O = {(zi = (i — 0.5)hy)[1 < < 2"+ and hy, = 227 Fh},

Qr_1 is coarser than 2 by a factor of 2. The multigrid solution of the discrete heat equation
(A.4) makes use of a hierarchy of meshes (Q2, 91, and ) created by successively coarsening the
original mesh, Q5 as shown in Fig. A.1. A pointwise Gauss—Seidel relaxation scheme is used as the
smoother in the multigrid method. We use notations u} at time ¢ = nAt and £, as a numerical

solution and the operator defined as (A.6) on the discrete domain Q. We rewrite the above Eq.

(A.6) by

,CQ(’U,QHJ) = f2 on QQ. (A?)

y y —e— Oy = {x1,22, 23, 24}

O_
8
o~
8
S
8
8

. % Sl
Ay e Ay d
\N 7 \N 7
I * } & I Qy=1{z. z
1 1 2
O 521 }'2 1 { ? }
[ o~ | Q) —
0 = 11
0 . ) {1}
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Multigrid cycle

n+1,m+1 n+1lm
Uy, = MGeycle(k,u, s Ly fryv1,12).

That is, uZ'H’m and uzﬂ’m“ are the approximations of uf ™! before and after an MGeycle. Given
the numbers v; and v, are pre- and post- smoothing relaxation sweeps of an iteration step for the

multigrid method using the V-cycle [129]. Starting an initial condition u9, we want to find u% for

n=1,2,---. Given u}, we want to find the uj ™" solution that satisfies Eq. (A.7). At the very

beginning of the multigrid cycle the solution from the previous time step is used to provide an

initial guess for the multigrid procedure. First, let u721+1,0 = uy.

Step 1) Presmoothing

ay " = SMOOTH (upth™, Ly, fr),

means performing 17 smoothing steps with the initial approximation uZ'H’m, source terms fy, and

a SMOOTH relaxation operator to get the approximation ﬁZH’m.
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We use the following Gauss—Seidel relaxation scheme.

un+1,m,s+1 _ ﬂ + ungl’m’s i + i
1 At h2 At h2)’
n +1,m,s+1 +1,m,
gLl u; n w4 u:‘:—l ° L + 3
i At h2 At h? )’

(2<i<2"2N, —1),

+1,m,s+1
Un+17m,s+1 — u"]ill + u,ylvw_;-n ’ i + i
N, At h2 At h?2)’

where s and s + 1 denote the current and the new approximations, respectively. Therefore, in a

multigrid cycle, one smooth relaxation operator step consists of solving Eq. (A.8) given above for
1<i<2F2N,.
Step 2) Coarse grid correction

e Compute the defect: dj* = uf — Ly(ap™"™).

. _ 7 k—17
e Restrict the defect and uw}*: dj* | = I, " d}}!

The restriction operator I ,’: ~! maps k-level functions to (k — 1)-level functions.

de—1(ws,y5) =18 di (2, y;)

:%[dk(aji_ )+ dk(xi-q-%)]'

1
2

e Compute an approximate solution fLZﬂ "™ of the coarse grid equation e

Lk—l (uzti’m) = _};n_l.
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If k =1, we use a direct or fast iteration solver for (A.9). If £ > 1, we solve (A.9) approximately

by performing k-grid cycles using the zero grid function as an initial approximation:

o™ = MGeycle(k — 1,0, Ly_1,d 1, v1, v2).

. ngl A+l
e Interpolate the correction: ;"™ = IF o7 ™.

Here, the coarse values are simply transferred to the four nearby fine grid points, i.e.,
okl(@i,y5) =I§_ve—1(2, ;)
:vk—l(xi—i-% ) yj—i—%)a

for the ¢ and j odd-numbered integers.
e Compute the corrected approximation on
UZL’ after ccco _ ﬂZ-‘,—l,’m + {)Z-l—l,m.
Step 3) Postsmoothing:

uZ+1,m+1 — SMOOTH" (UZT’ after CGC7Lk7fk).

This completes the description of a one MGcycle step, which stops if the consequence error

|unttmEl _yntlm|ig smaller than a given tolerance. An illustration of the ¢brresponding two-grid

cycle is given in Fig. A.2.
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uz-ﬁ-l,m > urkz+1,m u:+l,m+1
vy
smooth
Tsmooth”g
m,afterCGC
U
Im n —n+1lm _ —n+lm ~n+1lm
r =0 — Li(uy ) = Uy + U

/

Interpolate(IF_,)

\

Restrict([,’j_l)

gm __ 7k—1jm ~n+lm _ 7k ~nt+lm
w1 =1p dg Vg =1 10,7,

A4

kal(@zf%m) ~dit

FIGURE A.2. The MGceycle (k,k — 1) two-grid method.

To show the numerical result comparing an analytic solution, we set the initial conditions as
uo(x) = cos(2mwz) on the space domain Q = (0,1). We take h = 1/128 and At = 0.5h. The number
of relaxation is 3. Tolerance is 1.0e-7. Figure A.3 shows temporal evolution of the numerical
solutions at t = 0, 2At, 4At, 6At, 8At, and 10At. The exact solution for the heat equation with the
given initial conditions can be derived by using the separation of variables. Let u(z,t) = X (z)T'(¢).

Then, Eq. (A.1) is rewritten as

X(2)T'(t) = X" (2)T(t),

T/ XII
T T X
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Using the boundary conditions (A.2) and the initial condition (A.3), we can get the solution

cos(2mz)e 1.

° numerical solution
y | ——exact solution

o 05 . 1

F1GURE A.3. Temporal evolution of the numerical solutions with the initial con-
dition u(z,0) = cos(2mx). Times are at t = 0,2At, 4At, 6At, 8At, and 10A¢.

A.2. Nonlinear multigrid method

Next, we study a nonlinear multigrid method with the AC equation as an example, which is
the simple nonlinear partial differential equation.
Since the details of AC equation is presented in the section 2.2 of the main text, we just

introduce one-dimensional form here:

0 0?

5 0@ 1) = - @3 (2, t) + ¢, t) + 62@¢(x,t), reN=1(0,1), t€(0,T] (A.10)

0 0
%(b(ovt) :%(b(lat) =0,

d)(l?, 0) :¢)0($)7
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where ¢(z,t) is the order parameter in [—1, 1], x is the spatial variable, ¢ is the temporal variable,
€ is the coefficient related to interfacial energy, T is the final time. Here, ¢ terms in the right
hand side of Eq. (A.10) gives a nonlinearity of the differential equation. To treat a nonlinearity in
a multigrid method, we use a linear approximation in a smooth relaxation step. Here, we consider

the nonlinearly stabilized splitting scheme [48, 49] for a discretization of the AC equation as follow:

1 1 1
9 ot — 200t + ¢?j—rl
h2 ’

n+l n
% == (1) o} e

(A.13)

where ¢ = ¢(x; = (i — 0.5)h, nAt), At is the temporal step size, Ny = T/At is the number of
temporal steps, h is the spatial step size, and N, is the number of spatial steps, for i =1,--- , N,
andn=1,---, Ny

We describe a nonlinear full approximation storage (FAS) multigrid method to solve Egs.
(A.10), which is the nonlinear discrete system of equations. Refer [18, 129] for the details and the
backgrounds of the nonlinear multigrid method.

Let

1 1 1 1
¢n+ :(¢?+’ 72H_ ’7¢71i/'—:)

and

£ = (12, IR,
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Let us rewrite Eq. (A.13) as follow using an operator notation:

o=t (A.14)
where
Noitt = % 4 (¢?+1)3 e Pl — 2¢52+1 4 g
and
1=

n+1

Given ¢", we want to calculate ¢"" . We iterate the following FAS multigrid cycle until the

discrete lo-norm of the two consecutive approximations is less than a given tolerance, i.e.,

||¢n+1,m+1 _ ¢n+1,mH2 < tOl

Let

QO = {xili=1,...,N,},

be the original finest grid, where K satisfies N, = p - 2% and p is an odd number. Then, for

k=K,...,1, we define the successively coarser grids as

Q1 = {yilys = 0.5(z2i—1 + x2;) and xa;_1,29; € Qy, for i =
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Now, we introduce the nonlinear multigrid iteration for solving the discretized problem (A.14)

on grid level Q.

dp T = FASeycle(py ™™ N, £, 1),

n+1lm

which means that ¢} and @p ™! are the approximations of ¢" before and after an

FAScycle on grid level Q. By starting from an initial value ¢" ™0 = ¢"

, one step of the iteration

is given in the following step:

Step 1) Presmoothing

b " = SMOOTHY (¢1™, Ni, £7) on Q grid.
This means performing v smoothing steps with the initial approximations (;Szﬂ’m, source terms

', and SMOOT H relaxation operator to get the approximations &ZH’m.

First, let us rearrange discrete Eq. (A.13) as a Gauss—Seidel type.

¢@+1,m,s+1

3
i N + (¢?+1,m,s+1> +

1 1
262¢?+ ,m,s+

h2

+1,m,s+1 +1 (A.15)
. ¢n_1 ,mM, S + ¢n+1 ,m, s
— fz 4 62 7 h2 7

n+1,m,s and ¢?+1,m,s+1

Here, we denote ¢, as current and the new approximations in a Gauss—Seidel

iteration.
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n+1,m,s

1, 1 : : . .
(71513 is nonlinear, we linearize it at ¢) ,ie.,

Since

n+1,m,s+1 ~ n+1,m,s n+1,m,s n+1,m,s+1 n+1,m,s
(@ THm YR e (@) 4 By (T = g ).

2 K2 2

Therefore, Eq. (A.15) is rewritten as

_+3 ¢n+1ms 24_@ ¢n+1,m,s+1
At h2 |

Al
n+1 m,s+1 n+1,m,s ( 6)
.2 ?;_ + ¢

i+1
h2

_fn+2(¢n+1ms>
One SMOOTH relaxation operator step consists of solving the system (A.16) for each ¢ on
n+1,m

Q. grid. After taking v smoothing steps, we let qb

Step 2) Compute the defect

1,
o, Nk¢n+ m

Step 3) Restrict the defect and d)nH "

k—1
ap 1 =1 ayg,

n+1lm

n+1m
" =1 Py

The restriction operator I, ,’j ~! maps k-level functions to (k — 1)-level functions.

d/c_l(’i) ZI]]:_ldk(i)

=[dk(2¢) + dg(2¢ — 1)]/2,
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where dj(¢) is the i-th component of the vector dy.

Step 4) Compute the right-hand side

n+1,m
f 1 = o1+ Ni— 1¢+ .

n+1 m

Step 5) Compute an approzimate solution ¢~ of the coarse grid equation on Q_1, i.e.

Neorpp o™ =17, (A.17)

If k£ = 1, we explicitly invert a 2 x 2 matrix to obtain the solution. If k& > 1, we solve (A.17) by

,m

performing a FAS k-grid cycle using (}Zi as an initial approximation:

~n+1lm

br_1 —FAScycle((f)Z_:ll’m,qu,fl?_pV)'

Step 6) Compute the coarse grid correction (CGC):

~n+1l,m Antlm n+1,m
T = bl e

Step 7) Interpolate the correction:

An+1m_ An+1m
Vi IF v .

Here, the coarse values are simply transferred to the two nearby fine grid ptints, i.e. vi(

vi(2i — 1) =IF vi_1(i) = vg_1(i) for 1 <i < p-2k-1
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Step 8) Compute the corrected approzimation on €y,

n+1,m, after cGcc _ Zn+lm ~n+1,m
k = ¢k: + Vi .

Step 9) Postsmoothing
d)’z-‘rl,m-‘rl _ SMOOTHI/(d)Z"rl,m, after CGC,Nk,f]Z})

This completes the description of a nonlinear FAScycle.

uz+1,m > —n+1lm uz+1,m+1

k

l Tsmooth””

m,afterCGC
Ug

I = 6}~ L@t = g

/

Interpolate(I¥_,)

smooth”?

Restrict(I} 1)

Tm  _ 7k—13m ~n+lm _ 7k sn+lm
o1 =1, dyg, Uy, =1y 19,

N/

L1 (010 = di
FIGURE A.4. The MG (k,k — 1) two-grid method.

Now, we present the numerical result performed by the algorithm exp

conditions is ¢o(z) = 0.2rand() on the space domain Q = (0,1), where ra
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number uniformly distributed between —1 and 1. We take h = 1/128 and At = 0.5h. The number
of relaxation is 3. Tolerance is 1.0e-7. Figure A.5 shows temporal evolution of the numerical

solutions at ¢t = 0, 20At, 40At, 60At, 80At, and 100A¢.

1

¢ |

o 0.5 = 1

F1GURE A.5. Temporal evolution of the numerical solutions with the initial con-
dition ¢(z,0) = 0.2rand().
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