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Portfolio selection problem introduced byMarkowitz has been one of the most important research fields in modern finance. In this
paper, we propose a model (least squares support vector machines (LSSVM)-mean-variance) for the portfolio management based
on LSSVM. To verify the reliability of LSSVM-mean-variance model, we conduct an empirical research and design an algorithm
to illustrate the performance of the model by using the historical data from Shanghai stock exchange. The numerical results show
that the proposedmodel is useful when compared with the traditional Markowitz model. Comparing the efficient frontier and total
wealth of both models, our model can provide a more measurable standard of judgment when investors do their investment.

1. Introduction

Portfolio is the combination of securities such as foreign
exchange, stocks, and othermarket instruments. Stock invest-
ment has become very common for household investors to
involve in the stock market. Investors used many technical
methods to minimize risk and optimize return. Among the
methods, Markowitz model developed by Harry Markowitz
in 1952 had serious practical limitations due to complexities
involved in compiling the variance, covariance, expectation,
standard deviation of each asset to other assets in the
portfolio. In recent years, many works have been done by
scholars to make the portfolio theory more efficient. In
[1], the authors presented the different variants of the goal
programming model that has been applied to the financial
portfolio selection problem. In [2], the authors optimized
the portfolio based on entropy and higher moments by
using a polynomial goal programmingmodel, and the results
indicated that the proposed method is suited for portfolio
models which have higher moments. Portfolio optimization
techniques also significantly improved the return-risk trade-
off performances using multiobjective evolutionary model
proposed in [3]. The authors in [4] used the multiperiod
mean-variance model to investigate a defined contribution
pension plan investment problem during the accumulation

phase. To incorporate social responsibility, a modification
of the Markowitz model was proposed in [5]. Konno [6]
proposed a mean-absolute deviation portfolio optimization
model and applied it to Tokyo stock market. The results of
numerical experiments showed that the model generated a
portfolio quite similar to that of the Markowitz model within
a fraction of time required to solve the latter. In [7], the
authors used the independently estimated possibilistic return
rates to deal with a portfolio selection problem.

However, there are few scholars who used the methods
of machine learning to modify the Markowitz model. As we
know, the return rate in the mean-variance model refers to
the historical return rate, which can also be called historical
volatility. Historical volatility refers to the standard deviation
of the underlying asset price changes over the past period
of time, which represents the past volatility law. The actual
volatility in the trading point cannot be determined, but can
only be predictedwith historical volatility and currentmarket
information. In this paper, we predict the actual volatility
with historical volatility by using machine learning. As one
of important applications of the machine learning, LSSVM
has been used to deal with various financial problems such
as stock price prediction [8, 9] and regression [10]. Mustaffa
[11] optimized LSSVM for nonvolatile financial prediction.
In [12], the authors proposed a time series forecasting
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model which used LSSVM optimization based on Grey
Wolf optimizer algorithm. For time series prediction [13–
15], Van Gestel [16] used the LSSVM regression within the
evidence framework to infer nonlinear models for predicting
time series and volatility. By regularizing least squares fuzzy
support vector regression, Khemchandani [17] handled the
financial time series forecasting. In [18], the authors opti-
mized LSSVMmodel by weight particle swarm optimization,
and they forecasted stock return accurately.

In our study, we apply LSSVM regression model to tradi-
tional Markowitz model and an efficient result is achieved by
our proposed model when we compare the efficient frontier
and total wealth of both models.

The contents of this paper are as follows: in Section 2, we
providemodel description aboutmean-variance, LSSVMand
LSSVM-mean-variance model. In Section 3, we describe the
data set and software which will be taken to do the empirical
research in this paper. In Section 4, we will show and describe
the empirical results. In Section 5, conclusions are given.

2. Model Description

2.1. Mean-Variance Model. Modern portfolio theory was first
introduced by Markowitz [19]. By the model, Markowitz
proposed the formulation of an efficient frontier shown in a
two-dimension graphic, from it, investors can choose their
financial portfolio to maximize return for a given level of
risk as measured by the variance of returns. Suppose that
the investor’s wealth is 𝑊0, the weights on the 𝑛 assets are𝜔1, 𝜔2, ⋅ ⋅ ⋅ , 𝜔𝑛, and the return rate in the future is 𝑅𝑝, then
the investor’s wealth in the future will be W = 𝑊0(1 + 𝑅𝑝).
Investors usually determine the proportion of investment
in each asset at the initial stage to maximize the expected
investment value. Then, the process can be formulated as

max
𝑤𝑖

𝐸 [𝑈 (𝑅𝑝)] = 𝐸[𝑈( 𝑛∑
𝑖=1

𝑤𝑖𝑅𝑖)]

𝑠.𝑡. 𝑛∑
𝑖=1

𝑤𝑖 = 1
(1)

By Taylor expansion,

𝐸 [𝑈 (𝑅𝑝)] = 𝑈 (𝐸 (𝑅𝑝))
+ 𝐸 [𝑅𝑝 − 𝐸 (𝑅𝑝)]𝑈󸀠 (𝐸 (𝑅𝑝))
+ 12𝐸 ((𝑅𝑝 − 𝐸 (𝑅𝑝))2)𝑈󸀠󸀠 (𝐸 (𝑅𝑝))
+ ⋅ ⋅ ⋅
+ 1𝑛!𝐸 ((𝑅𝑝 − 𝐸 (𝑅𝑝))𝑛)𝑈(𝑛) (𝐸 (𝑅𝑝))
+ ⋅ ⋅ ⋅

(2)

Assuming that the series 𝑅1, 𝑅2, ⋅ ⋅ ⋅ , 𝑅𝑛 follow normal distri-
bution, then the above function depends on themean and the

variance of 𝑅𝑝. Suppose 𝑈(∙) is a concave function, then we
can simplify (1) to

min
𝑤𝑖

𝜎2 (𝑅𝑝) = 𝑛∑
𝑖=1

𝜔2𝑖 𝜎2 (𝑅𝑖) +∑
𝑖 ̸=𝑗

𝜔𝑖𝜔𝑗𝜎 (𝑅𝑖, 𝑅𝑗)

𝑠.𝑡. 𝑅𝑝 = 𝑛∑
𝑖=1

𝑤𝑖𝐸 (𝑅𝑖)

and
𝑛∑
𝑖=1

𝑤𝑖 = 1,

(3)

where 𝑅𝑝 represents the portfolio’s expected return which
the investor expected. The mathematical form of (3) is the
quadratic programming problem that can be solved by a
Lagrangian method. We give the first-order condition

[[[
[

Σ 𝑒 𝑅
𝑒󸀠 0 0
𝑅󸀠 0 0

]]]
]
[[
[
𝜔∗
𝜆1𝜆2
]]
]
= [[[
[

0
1
𝑅𝑝
]]]
]
, (4)

where 𝑅 is the return mean vector composed by𝑁 assets, 𝑒 is
the𝑁× 1 unit column vector, and Σ is the𝑁×𝑁 covariance
matrix of return. Then, the final investment proportion is
optimally satisfied by

𝜔∗ = 𝑎 + 𝑏𝑅𝑝,
𝑎 = 𝛽Σ−1𝑒 − 𝛼Σ−1𝑅𝛽𝛿 − 𝛼2 ,
𝑏 = 𝛿Σ−1𝑅 − 𝛼Σ−1𝑒𝛽𝛿 − 𝛼2

(5)

𝛼 = 𝑅󸀠Σ−1𝑒,
𝛽 = 𝑅󸀠Σ−1𝑅,
𝛿 = 𝑒󸀠Σ−1𝑒.

(6)

2.2. Least Square Support Vector Machine. Support vector
machine (SVM) has been successfully applied for financial
problems, especially in time series forecasting. LSSVM is
the least squares formulation of SVM and was developed by
Pelckmans [20]. LSSVM is the combination of structural risk
minimization and VC dimension theory [21] and usually is
used for classification as well as regression, such as pattern
recognition, fitting functions [22, 23], and data analysis. The
algorithm of LSSVM is introduced as follows. The following
regression model is constructed by using a nonlinear map-
ping function 𝜑(.) : 𝑅𝑛 󳨀→ 𝑅𝑛ℎ, which maps the input data
to a higher dimensional feature space:

𝑦 (𝑥) = 𝜔𝑇𝜑 (𝑥) + 𝑏, (7)

where 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅,𝜔𝑇 is the weight vector, and 𝑏 is the bias.
Assume a training set as

𝑆 = {(𝑥1, 𝑦1) , ⋅ ⋅ ⋅ , (𝑥𝑖, 𝑦𝑖) | 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ 𝑅} (8)
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The original optimization problem is

min 12 ‖𝜔‖2 (9)

and the LSSVM can be formulated as

min 𝐽 (𝜔, 𝑒) = 12 ‖𝜔‖2 + 12𝛾
𝐿∑
𝑖=1

𝑒2𝑙 (10)

subject to the constraints

𝑦 (𝑥) = 𝜔𝑇𝜑 (𝑥𝑙) + 𝑏 + 𝑒𝑙 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, (11)

where 𝛾 is the regularization parameter and 𝑒𝑙 is the random
errors. Using a Lagrange multiplier method, we have

𝐿 (𝜔, 𝑏, 𝑒, 𝛼) = 𝐽 (𝜔, 𝑒)
− 𝐿∑
𝑖=1

𝛼𝑙 [𝜔𝑇𝜑 (𝑥𝑙) + 𝑏 + 𝑒𝑙 − 𝑦𝑙] , (12)

where 𝛼𝑙are the Lagrange multipliers, from the optimization
conditions, by partially differentiating with respect to each
parameter, yielding

𝜕𝐿𝜕𝜔 = 0 󳨀→ 𝜔 = 𝐿∑
𝑖=1

𝛼𝑙𝜑 (𝑥𝑙) ,
𝜕𝐿𝜕𝐵 = 0 󳨀→

𝐿∑
𝑖=1

𝛼𝑙 = 0,
𝜕𝐿𝜕𝑒𝑙 = 0 󳨀→ 𝛼𝑙 = 𝛾𝑒𝑙,
𝜕𝐿𝜕𝛼𝑙 = 0 󳨀→ 𝜔𝑇𝜑 (𝑥𝑙) + 𝑏 + 𝑒𝑙 − 𝑦𝑙 = 0.

(13)

After elimination of parameters 𝜔 and 𝑒, we obtain the
following matrix solution.

[[
[
0 1𝑇𝐿
1𝐿 Ω + 𝐼𝛾

]]
]
[𝑏𝛼] = [

0
𝑦] , (14)

where the composition of thematrixΩ isΩ𝑖𝑗 = 𝜑(𝑥𝑖)𝑇𝜑(𝑥𝑗) =𝐾(𝑥𝑖, 𝑥𝑗), 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐿. Here, 𝐾(𝑥𝑖, 𝑥𝑗) is the radial basis
function (RBF) kernel function. For regression models, the
RBF kernel is often applied because of its influence and speed
in training process [24].

𝐾(𝑥, 𝑥𝑙) = exp(−󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑙󵄩󵄩󵄩󵄩22𝜎2 ) (15)

Then, we can obtain the regression function as

𝑦 (𝑥) = 𝐿∑
𝑙=1

𝛼𝑙𝐾(𝑥, 𝑥𝑙) + 𝑏 (16)

𝜎2 in the above function is the kernel width and we apply
it to adjust the degree of generalization. To make the
LSSVM model, we should optimize the parameters 𝛾 and𝜎2. In this paper, to do the comparison test between the
traditional mean-variance model and the proposed LSSVM-
mean-variance model, we take 𝜎2 = 0.06 and 𝛾 = 5 unless
otherwise specified.

2.3. LSSVM forMean-VarianceModel. In this section, we give
a description of applying LSSVM to mean-variance model.
We first select a portfolio and then calculate the returns
of the assets in the portfolio. As mentioned above, in the
LSSVM model, we take the matrix of assets’ returns as the
training sets, by the process of Section 2.2, we get a regression
matrix of assets’ returns. Then, we use returns and regression
returns to do the test and follow the steps described in
Section 2.1. Finally, we compare the efficient frontier and final
wealth return for the two methods, which will be shown in
Section 4.

3. Data Set and Software

We select a portfolio consistimg of three assets which are
chosen fromShanghai stockmarket. To do a buy-and-sell test,
we use the historical data for the stock “-zgyh-”, “-nyyh-”, and
“-jtyh-” from August 09, 2018, to October 26, 2018. We take
the data fromAugust 09, 2018, toOctober 25, 2018, intomean-
variancemodel and LSSVM-mean-variancemodel.There are
50 data in total. In the LSSVMmodel, we divide the data into a
training set with 39 data and a test set with 10 data. Then, we
compare the performance with the two models on October
26, 2018. To do a buy-and-hold test, we use the historical data
for the stock “-zgyh-”, “-nyyh-”, and “-jtyh-” fromMarch 10,
2017, toMarch 12, 2018.We take the data of closing price every
5 days; then, there are 50 data in total. In the LSSVM model,
we also divide the data into a training set with 39 data and a
test set with 10 data.Then, we compare the performance with
the twomodels onMarch 19, 2018. For the calculation process,
MATLAB R2016a will be used.

4. Empirical Results

4.1. Empirical Results of Buy-and-Sell Strategy. From the
stocks data chosen in Section 3, we can see the stocks’ price
trend as shown in Figure 1.

The body in the candlestick usually consists of an opening
price and a closing price; the price excursions below or above
the body are called the wicks. For a stock during the time
interval represented, the wick contains the lowest and highest
prices, as well as the body contains the opening and closing
prices. The red body of a candlestick indicates the security
has a higher closed price than it opened, the opening price at
the bottom and the closing price at the top. The green body
of a candlestick indicates the security has a lower closed price
than it opened, the opening price at the top and the closing
price at the bottom.

Nowwe select the real historical data of the stocks “-zgyh-
”, “-nyyh-”, and “-jtyh-” from August 09, 2018, to October
25, 2018. Taking the closing data to the calculation of return
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Table 1: Proportion of each asset for traditional mean-variance model.

Investment proportion combination Proportion of “-zgyh-” Proportion of “-nyyh-” Proportion of “-jtyh-”
1 0.7994 0.0000 0.2006
2 0.6483 0.0000 0.3517
3 0.4972 0.0000 0.5028
4 0.3461 0.0000 0.6539
5 0.1950 0.0000 0.8050
6 0.0635 0.0349 0.9016
7 0.0000 0.0349 0.9016
8 0.0000 0.4608 0.5392
9 0.0000 0.7304 0.2696
10 0.0000 1.0000 0.0000
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Figure 1: Candlestick chart for “-zgyh-”, “-nyyh-”, and “-jtyh-” from August 09, 2018, to October 26, 2018. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article. The data sources were downloaded from the web site
“http://quotes.money.163.com/stock”.)

rate for every day, the total number of data is 50. Then, we
get 49 return rate data for each asset. The return rate of
“-jtyh-” is shown in Figure 2 and reflected by “∗”. Then,
we take return rate to the calculation process of Markowitz
model. As a result, Table 1 shows the proportion of each asset
for traditional mean-variance model, we set 10 investment
proportion combinations.

As a comparison, we calculate the proportion of each
asset for LSSVM-mean-variance model by using the LSSVM

regression. We take the return rate mentioned above to the
LSSVM model described in Section 2.2, we divide the data
into a training set with 39 data and a test set with 10 data.
Then, we get the regression data which is shown in Figure 2
and reflected by “o”.

Then, we take regression return rate toMarkowitz model.
Table 2 shows the proportion of each asset for LSSVM-mean-
variance model. Here, we also set 10 investment proportion
combinations.
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Table 2: Proportion of each asset for LSSVM-mean-variance model.

Investment proportion combination Proportion of “-zgyh-” Proportion of “-nyyh-” Proportion of “-jtyh-”
1 0.9668 0.0000 0.0332
2 0.6654 0.0000 0.3346
3 0.4173 0.0305 0.5521
4 0.2670 0.1171 0.6159
5 0.1167 0.2037 0.6796
6 0.0000 0.3094 0.6906
7 0.0000 0.4821 0.5179
8 0.0000 0.6547 0.3453
9 0.0000 0.8274 0.1726
10 0.0000 1.0000 0.0000
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Figure 2: Return rate of mean-variance model and LSSVMmean-variance model for (a) “-zgyh-”, (b) “-nyyh-”, and (c) “-jtyh-”.

Each investment proportion combination in the table
responds to a maximum return for a given level of risk as
measured by the standard variance.Thepoints are constituted
by mean and standard variance forming an efficient frontier.

As seen in Figure 3, the efficient portfolio frontier for
LSSVM-mean-variancemodel has a better performance than
the traditional model. It is possible to check that portfolios

corresponding to the new proposed method can improve the
return at the same risk. For the same expectation of both
models, the LSSVM-mean-variance model can reduce the
risk for investors.

According to the investment proportion combinations
shown in Tables 1 and 2, we perform a simulation test. We
assume that the initial total wealth is 100 million, and we buy
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Table 3: Proportion of each asset for mean-variance model for buy-and-hold for 5-day strategy.

Investment proportion combination Proportion of “-zgyh-” Proportion of “-nyyh-” Proportion of “-jtyh-”
1 0.0924 0.0000 0.9076
2 0.2957 0.0000 0.7043
3 0.4409 0.0302 0.5288
4 0.4531 0.1296 0.4172
5 0.4654 0.2290 0.3056
6 0.4776 0.3284 0.1940
7 0.4898 0.4279 0.0823
8 0.4410 0.5590 0.0000
9 0.2205 0.7795 0.0000
10 0.0000 1.0000 0.0000
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Figure 3: Efficient portfolio frontier of mean-variance model and
LSSVMmean-variance model.

the asset portfolio depending on the proportion combination
on October 25, 2018, and sell the portfolio on October 26,
2018. Under the two models, the total wealth on October 26,
2018, is shown in Figure 4; the point in the figure represents
the performance of each combination. By the simulation, the
wealth invested by using the new model helps investors earn
more than the traditional model when taking the buy-and-
sell strategy.

4.2. Empirical Results of Buy-and-Hold for 5-Day Strategy.
As the proposed model conducted by using buy-and-sell
strategy, we get a satisfied result. However, the data set we
selected is small and between summer and autumn, which
makes people think that the above results have specific
seasonality. To address this concern, we select a long data set
covering all seasons of the year, fromMarch 10, 2017, toMarch
12, 2018. The candlestick charts for three stocks are shown in
Figure 5. In addition, in order to show that our model does

Mean-Variance model
LSSVM-Mean-Variance model
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Figure 4: Total wealth for each investment proportion combination
of two models.

not only work for buy-and-sell strategy, we take the data of
closing price every 5 days for buy-and-hold strategy.

The return rate of “-jtyh-” for buy-and-hold for 5-day
strategy is shown in Figure 6 and is reflected by “∗”.
Then, we take return rate to the calculation process of
Markowitz model. Table 3 shows the proportion of each
asset for traditional mean-variance model, and we set 10
investment proportion combinations. Similar to buy-and-sell
strategy, each investment proportion combination in the table
responds to a maximum return for a given level of risk as
measured by the standard variance.Thepoints are constituted
by mean and standard variance forming an efficient frontier.

As seen in Figure 7, in the buy-and-hold strategy, the
efficient portfolio frontier for LSSVM-mean-variance model
has a better performance than the traditional model. It is
possible to check that portfolios corresponding to the new
proposed method can improve the return at the same risk.
For the same expectation of both models, the LSSVM-mean-
variance model can reduce the risk for investors.
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Table 4: Proportion of each asset for LSSVM-mean-variance model for buy-and-hold for 5-day strategy.

Investment proportion combination Proportion of “-zgyh-” Proportion of “-nyyh-” Proportion of “-jtyh-”
1 0.4498 0.0000 0.5502
2 0.5634 0.0301 0.4065
3 0.5718 0.1123 0.3159
4 0.5803 0.1944 0.2253
5 0.5887 0.2766 0.1347
6 0.5971 0.3588 0.0441
7 0.5134 0.4866 0.0000
8 0.3422 0.6578 0.0000
9 0.1711 0.8289 0.0000
10 0.0000 1.0000 0.0000
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Figure 5: Candlestick chart for “-zgyh-”, “-nyyh-”, and “-jtyh-” fromMarch 10, 2017, to March 12, 2018. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article. The data sources were downloaded from the web site
“http://quotes.money.163.com/stock”.)

Then, we take regression return rate toMarkowitz model.
Table 4 shows the proportion of each asset for LSSVM-mean-
variance model. Here, we also set 10 investment proportion
combinations.

According to the investment proportion combinations
shown in Tables 3 and 4, we perform a simulation test for
buy-and-hold for 5-day strategy. We assume that the initial
total wealth is 100 million, and we buy the asset portfolio
depending on the proportion combination onMarch 12, 2018,

and sell the portfolio on March 19, 2018. Under the two
models, the total wealth on March 19, 2018, is shown in
Figure 8; the point in the figure represents the performance
of each combination. By the simulation, the newmodel helps
investors earn more than the traditional model when taking
the buy-and-hold strategy.

To illustrate that this result is not caused by the specific
period we selected, we calculate the total wealth of each day
in 15 days from August 30, 2018, to September 19, 2018 for the



8 Mathematical Problems in Engineering

Mean-Variance model
LSSVM-Mean-Variance model

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
0.02
0.04
0.06

Re
tu

rn
 ra

te

5 10 15 20 25 30 35 40 45 500
t

(a)

Mean-Variance model
LSSVM-Mean-Variance model

−0.15

−0.1

−0.05

0

0.05

0.1

Re
tu

rn
 ra

te

5 10 15 20 25 30 35 40 45 500
t

(b)

Mean-Variance model
LSSVM-Mean-Variance model

5 10 15 20 25 30 35 40 45 500
t

−0.1

−0.08

−0.06

−0.04

−0.02

0
0.02
0.04
0.06
0.08

Re
tu

rn
 ra

te

(c)

Figure 6: Return rate of mean-variance model and LSSVM mean-variance model for buy-and-hold for 5-day strategy of (a) “-zgyh-”, (b)
“-nyyh-”, and (c) “-jtyh-”.
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Figure 7: Efficient portfolio frontier of mean-variance model and
LSSVMmean-variance model for buy-and-hold for 5-day strategy.
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of two models for buy-and-hold for 5-day strategy.
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Figure 9: Total wealth difference of two models.

two models according to the former 15 days. The calculation
steps are taken as same as the above process. We set the total
wealth of mean-variance model as 𝑇𝑊1 and 𝑇𝑊2 for the
LSSVM-mean-variance model; the difference of two models
is defined by

𝐷𝑖𝑓𝑓 = 𝑇𝑊2 − 𝑇𝑊1. (17)

As shown in Figure 9, almost all the difference values are
greater than 0, which indicates that the optimized model has
a higher yield of each day in 15 days.

5. Conclusion

Machine learning over the last few years has resulted in a
potential opportunity for investors to invest in the finan-
cial market with a smarter and profitable way. Combining
machine learning technologywith financial investment, it can
entirely change the way we make investment decisions. This
paper gives an overview of how the two technologies can be
combined into a powerful tool and proposes the LSSVM-
mean-variance algorithm with the aim of maximizing return
for a given level of risk as measured by the variance of
returns. The efficiency of the proposed method is measured
by empirical data, namely, efficient frontier and total wealth.
Comparing the efficient frontier and total wealth of both
models, the curve of mean-variance model is always below
the proposed model. This shows that our model has a higher
yield under the same risk and has more total wealth under
each combination; our model performs a more measurable
standard of judgment when investors do their investment.
We confirm the efficiency through the strategy both buy-and-
sell and buy-and-hold. The encouraging performance shows
that our proposed method may become a promising model
for the context of study and the results indicate a positive
opportunity to be explored in the future.
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