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A B S T R A C T

To reconstruct surface from unorganized points in three-dimensional Euclidean space, we propose a novel ef-
ficient and fast method by using l0 gradient minimization, which can directly measure the sparsity of a solution
and produce sharper surfaces. Therefore, the proposed method is particularly effective for sharpening major
edges and removing noise. Unlike the Poisson surface reconstruction approach and its extensions, our method
does not depend on the accurate directions of normal vectors of the unorganized points. The resulting algorithm
is developed using a half-quadratic splitting method and is based on decoupled iterations that are alternating
over a smoothing step realized by a Poisson approach and an edge-preserving step through an optimization
formulation. This iterative algorithm is easy to implement. Various tests are presented to demonstrate that our
method is robust to point noise, normal noise and data holes, and thus produces good surface reconstruction
results.

1. Introduction

Given a set of unorganized three-dimensional (3D) points, the pur-
pose of surface reconstruction is to restore the surface of the original
object where the points are scanned. The industry of 3D printing has
emerged in the past few years, thus 3D surface reconstruction to vi-
sualize objects in space has become one of the main issues in the fields
of both applied mathematics (Mancosu et al., 2005) and computer
science (Bellocchio et al., 2013). In the past few decades, many algo-
rithms have been developed to solve the surface reconstruction problem
(Avron et al., 2010; Berger et al., 2017; Bödis-Szomorü et al., 2017;
Calakli and Taubin, 2011; Carlini and Ferretti, 2017; Huang et al.,
2009; Kazhdan et al., 2006; Kazhdan and Hoppe, 2013; Khatamian and
Arabnia, 2016; Kolluri et al., 2004; Li and Kim, 2015; Li et al., 2014;
Lipman et al., 2007; Liu and Wang, 2012; Liu et al., 2016; Ohtake et al.,
2005; Reinhold et al., 2014; Xiong et al., 2014; Zagorchev and
Goshtasby, 2012; Zhao et al., 2001, 1998). However, it is still a very
challenging task due to the missing information of point orders, or-
ientations, connections, as well as complex surface topologies. In gen-
eral, existing surface reconstruction techniques can be classified into
two types: explicit mesh-based reconstruction and implicit volume-
based reconstruction.

The explicit mesh-based reconstruction techniques use the un-
organized points directly to form a triangular mesh. Kolluri et al. (2004)
introduced a noise-resistant method for reconstructing a watertight
surface from point cloud data. Lipman et al. (2007) presented a para-
meterization-free projection algorithm that does not need the local
parameters. This approach was extended in Huang et al. (2009) and
Reinhold et al. (2014). Xiong et al. (2014) proposed a unified method
that treats connectivity construction and geometry as one joint opti-
mization problem. Avron et al. (2010) presented an l1-sparse approach
for reconstruction of point set surfaces with sharp features. All these
mesh-based reconstruction schemes are precise, but they have diffi-
culties in dealing with noise, complex topologies, and especially holes
in data.

The implicit volume-based reconstruction approaches generally
construct an implicit volume-function from the input points, and then
obtain the restored surface from the iso-surface of the volume-function.
Liu et al. (2016) and Liu and Wang (2012) introduced a method to fit
the points with radial basis functions, then the surface is defined as the
zero level-set of those radial basis functions. Carlini and Ferretti (2017)
proposed a semi-Lagrangian method coupled with radial basis function
interpolation for computing a curvature-related level set model.
Ohtake et al. (2005) suggested an implicit surface representation using
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multi-level partition of a unity. The local shape was approximated by a
weighted piecewise quadratic function. Zhao et al. (2001, 1998) pro-
posed the construction of a stopping function that acts to stop the
evolution when the contour reaches the surface data points. The main
advantage of these methods is that it can easily reconstruct surface with
complex topologies, and can also be implemented concisely. A curva-
ture-adaptive implicit surface reconstruction for irregularly spaced
points in 3D space was introduced in Zagorchev and Goshtasby (2012).
One of the best-known techniques is Poisson surface reconstruction
Kazhdan et al. (2006), in which the implicit function is used as the
indicator function of the volume bounded by the surface. This function
is obtained by solving a Poisson equation and is identically equal to one
inside, zero outside, and discontinuous on the reconstructed surface.
The main disadvantage of this method was improved by Kazhdan and
Hoppe (2013) adding constraints on the points to avoid over-smoothing
of the reconstructed surface. Furthermore, Calakli and Taubin (2011)
suggested adding a higher-order regularization term and introduced the
Hessian matrix of the indicator function. Recently, we presented a novel
fast and accurate phase field model for surface embedding narrow vo-
lume reconstruction from an unorganized surface data set. The methods
proposed in Li et al. (2014) and Li and Kim (2015) were based on the
Allen–Cahn (AC) equation (Allen and Cahn, 1979), which has the mo-
tion by the surface mean curvature and can be applied to image pro-
cessing problems (Li and Kim, 2011, 2012). We choose the AC equation
because an accurate and fast hybrid numerical solver is available
(Li et al., 2010). The phase field model can be directly used to re-
construct a surface from the point cloud.

All these implicit methods used the l1- or l2-norm in their proposed
minimization or energy term. However, sometimes they suffer from a
tendency to oversmooth the data. To produce sharper surfaces than
either the l1- or l2-norm, in this paper, we present a novel accurate and
fast method by using l0 gradient minimization, which can directly
measure the sparsity of a solution and produce a sharper surface.
Therefore, the proposed method is particularly effective for sharpening
major edges and removing noise. To the best of the authors’ knowledge,
there are no existing methods for surface reconstruction using the l0-
norm, which can produce the sparsest solutions. Unlike the Poisson
surface reconstruction approach and its extended approaches, our
method does not depend on accurate directions of normal vectors of the
unorganized points. The resulting algorithm is developed by using a
half-quadratic splitting method (He et al., 2014) and is based on de-
coupled iterations that are alternating over a smoothing step by a
Poisson approach and an edge-preserving step using an optimization
formulation. This iterative technique is fast, simple, and easy to im-
plement. Various numerical tests are presented to demonstrate that our
method is robust to point noise, normal noise, and data holes, and thus
produces good surface reconstruction results.

Our paper is organized as follows. In Section 2, the proposed
method for surface reconstruction is given. We describe the proposed
optimization method in Section 3. In Section 4, experimental results
and comparisons are given. We draw the conclusions in Section 5. In
Appendix B, we present the numerical solver.

2. Description of the proposed model

The implicit method uses the data set to define a signed distance
function on Cartesian grids and the reconstructed surface is defined as
the zero iso-surface of the signed distance function. Let us briefly review
the definition of the signed distance function. At a point x in the domain
Ω, we denote by X the data point that is closest to x. Then, we define
the signed distance function as

=d s dx x x( ) ( ) ( ). (1)

Here d x( ) is the unsigned distance function, which is defined as
= −d x x X( ) and s(x) is the sign of the signed distance function d(x),

which is defined as

= −s x x X N X( ) sign(( )· ( )). (2)

Here, sign() is the sign function, which is defined as 1 or− 1 for positive
or for negative arguments, respectively and N is the outward normal
vector at the surface point. The inner product field is defined as the
signed distance of a grid point to the tangent plane of the closest surface
point. However, even the normal vectors are given with high accuracy,
if the vectors −x X and N X( ) are nearly perpendicular, i.e.,

− ≈x X N X( )· ( ) 0, or N X( ) is with noise, s(x) will be with noise. In
practice, there are outliers or conflicting points in an unorganized point
cloud. The normal vectors for the point cloud may be absent in practice.
However, the direction vectors exist when the points are scanned from a
3D machine. Note that the normal information is not necessary for our
proposed method. Although s(x) is with noise, the numerical tests in
Section 4 indicate that the proposed method can accurately remove
noise and produce good results. Let us consider the following l0 gradient
regularization version:

∫ ∇g ϕ dx xmin ( ) ,
ϕ Ω 0 (3)

where

=g d ξx x( ) tanh( ( )/( 2 )). (4)

Here, ξ is related to the interface transition thickness. g(x) is a weighted
function (see Fig. 1(b) and (d)), which is almost zero near the data set
and is non-negative in the other regions. The gradient
∇ = ∂ ∂ ∂ϕ ϕ ϕ ϕx( ) ( , , )x y z for each grid x denotes the vector differential
operator along the x-, y-, and z-directions. The l0-norm of a vector ∇ϕ,
i.e., ∇ = ∂ + ∂ + ∂ϕ ϕ ϕ ϕ ,x y z0

0 0 0 which directly measures the sparsity
and enforces the surface to be sharper. Here, we define =0 00 . The
initial surface ϕ0(x) (see Fig. 1(c) and (d)) is chosen as

=ϕ d ξx x( ) tanh( ( )/( 2 )),0 (5)

which is defined by ϕ0(x)≈ 1 in the interior region and ≈ −ϕ x( ) 10 in
the exterior region. The reconstructed surface is defined by =ϕ x( ) 00 .
The initial surface is usually not bad because most of the given data
points are located at the reconstructed surface. Note that our approach
does not require all exterior (interior) grid points to be identified cor-
rectly. We identify as many correct exterior grid points as possible
because a good initial implicit surface can reduce the computational
cost significantly.

The following points should be noted:

(1) Since the function g(x) is almost zero near the data set and is non-
negative in the other regions, g(x) also acts to stop the evolution
when the contour reaches the surface data points.

(2) The l0-norm minimization for ∇ϕ(x) can produce sharper surface
edges than those of either l1-norm or l2-norm.

(3) Combining the above two advantages, the reconstructed surface is
close to the original point clouds and has sharper surfaces with high
quality.

We need to define the value of the function along the domain
boundary for Eq. (3). If we assume that the reconstructed surface is
away from the boundary of the domain, we can use the Dirichlet
boundary condition, = −ϕ 1. Meanwhile, the zero Neumann boundary
condition enforces that the normal derivative is zero along the
boundary. A periodic boundary condition can also be used because the
triply periodic minimal surfaces exist (Li and Guo, 2017; Li et al., 2016;
Torquato and Donev, 2004).

3. Optimization of the proposed model

The minimization problem (3) is difficult to optimize due to the
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combinatorial nature of l0 minimization. Recently, an algorithm for
directly optimizing the l0-norm was proposed in the context of image
processing (Xu et al., 2011) and surface denoising (He and
Schaefer, 2013). Our work extends the l0 minimization concept to
surface reconstruction. By introducing a set of auxiliary variables

=ψ ψ ψ ψ( , , ),x y z the minimization problem (3) becomes

∫ + ∇ −g ψ λ ϕ ψ dx xmin [ ( ) ] ,
ϕ ψ, Ω 0 2

2

(6)

where λ is a value that controls the significance of ∇ −ϕ ψ 2 and || · ||2
is the Euclidean norm. The minimization problem (6) generally can be
minimized by an alternating minimization method in the following
manner:

(1) For fixed ϕ,

∫ + ∇ −g ψ λ ϕ ψ dx xmin [ ( ) ] .
ψ Ω 0 2

2

(7)

(2) For fixed ψ,

∫ ∇ −ϕ ψ dxmin .
ϕ Ω 2

2

(8)

To eventually force ∇ϕ to match ψ, both of these optimizations al-
ternate until convergence is reached with increasing λ at each iteration.
The idea is summarized as follows.

Step 1. By considering the independence of x, we can rewrite Eq. (7)
as

∫ + ∇ −g ψ λ ϕ ψ dx xmin[ ( ) ] .
ψΩ 0 2

2

(9)

For each point x, we need to minimize
= + ∇ −F ψ g ψ λ ϕ ψx( ) ( ) 0 2

2. As shown in Appendix A, we can
obtain the following condition:

= ⎧
⎨⎩

∇ = ∇ ≥ψ ϕ g ϕ g λx x
0

if ( ) 0 or ( )/ ,
otherwise.

2
2

(10)

Step 2. The expression (8) is quadratic in ϕ and trivial to minimize.
Following the Euler–Lagrange formulation, ϕ minimizes Eq. (8) as

∇ ∇ − =ϕ ψ·( ) 0. (11)

Therefore, to obtain the solution of the minimization problem (3), two
optimizations (Eqs. (10) and (11)) alternate until convergence is
reached with increasing λ at each iteration.

4. Numerical results

We present computational results using the proposed numerical
method on various synthetic and real data sets. To show the basic
mechanism of the algorithm, we start with the data of a bunny. The
evolution of surface reconstruction is shown in Fig. 2. From left to right,
they are the give data set, the numerical results at zero, two, and seven
iterations, respectively. Observing these results, we can see that our
method performs well in reconstructing the surface. The first reason is
that the zero level of the initial condition is much similar with the
original surface. The second reason is that each iteration converges very
quickly.

We compare our approach with l1- and l2-norm minimizations in
Eq. (3). The comparisons for the cube with the side length 1 are given in
Fig. 3. From left to right, they are the reconstructed surfaces using l2-
norm minimization, l1-norm minimization, and our proposed l0-norm
minimization, respectively. We can observe that the surfaces can be
well reconstructed with these three mentioned norm minimizations.

Fig. 1. (a) Signed distance function d x y( , )
= − +x y0.5 ,2 2 (b) the initial order parameter

ϕ0(x, y), (c) g(x, y), and (d) the slice plots of d(x, 0),
ϕ0(x, 0), and g(x, 0) at =y 0.
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However, we consider the error measured using the distances from the
obtained points to the reconstructed surface. The errors are −e5.756 3,

−e2.243 3, and −e1.402 3, for l2-norm, l1-norm, and l0-norm mini-
mizations, respectively. It can be seen that the result obtained with l0-
norm minimization is quantitatively in good agreement with the ground
truth.

Fig. 4(a)–(d) show the ground truth of a sharp sphere surface, and
reconstructed surfaces using l2-norm, l1-norm, and l0-norm minimiza-
tion, respectively. Here a mesh grid 212×212×212 is used. The
methods using l1 and l2-norm minimization can reconstruct the surface,
but also blur the sharp features. The sharp features are correctly re-
covered using our proposed approach. Note that the accuracy of our
results depends on the mesh grid used. The more mesh grids, the better
the reconstructed surface is.

Fig. 5 shows our reconstruction results for the dragon surface with

different densities of input data points. From left to right, they are in-
itial input data, reconstructed surfaces based on a coarse grid
(226× 164×110), and reconstructed surfaces based on a fine grid
(411× 293×191). Note that for the purposes of better visualization,
we displayed the points more sparsely than the original density. From
these results, we can observe that with low density of input data points,
our proposed method can still reconstruct the surface with much finer
detail and features. As the mesh grid is increased, the scales of the
dragon become more sharply pronounced. Meanwhile, the agreement
between the results obtained by different sampling densities suggests
that our method can successfully reduce the sampling density.

Our method can process the surface reconstruction for the open
boundary. Fig. 6 shows a family of the reconstructed surfaces for the
triply periodic constant mean curvature surfaces. The left two figures
are the given data points and the right two figures are the reconstructed

Fig. 2. Evolution of surface reconstruction for the data of a bunny. From left to right, they are the given data set, the numerical results at zero, two, and seven iterations, respectively.

Fig. 3. Recovering sharp features for a cube surface. From left to right, they are reconstructed surfaces using l2-norm minimization, l1-norm minimization, and our proposed method,
respectively.

Fig. 4. Recovering sharp features for a sharp sphere surface: (a) ground truth; (b) reconstructed surface using l2-norm minimization; (c) reconstructed surface using l1-norm minimization;
and (d) reconstructed surface using l0-norm minimization. Here a mesh grid 212×212×212 is used.
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surfaces, respectively. These simulations demonstrate that our proposed
method can perform well for open surface reconstruction.

Fig. 7 shows the surface reconstructions with different boundary
conditions. From left to right, the first two results are with Dirichlet
boundary condition having a value of − 1 along the boundary. The
second two results are with periodic boundary conditions. In Fig. 7(a)
and (c), we use =l 5. In the last two results, we use =l 1. Observing the
top figures, we can find that imposing Dirichlet constraints enforce the
surfaces to be closed. While using periodic boundary condition allows
the surface to extend out to the boundary of the domain. If the original
surface is closed, even the surface is much closer to the boundary of the
domain, we can obtain a clean surface with Dirichlet boundary condi-
tions. On the other side, due to the periodic boundary condition, the
artificial surface is created (see Fig. 7(d)).

The holes often arise in the surface reconstruction. Fig. 8(a)–(c)
show surface reconstructions of an angel, bunny, and dragon, respec-
tively. The top figures are the reconstructed surfaces and the bottom
figures are the reconstructed surfaces with the data points super-
imposed. Note that we use Dirichlet boundary condition = −ϕ 1 for
Fig. 8(a) and use periodic boundary condition for the other two tests. As
can be seen, the holes and missing parts can be filled successfully.

In practice, there are outliers or conflicting points into an un-
organized point cloud. In Fig. 9(c) and (d), we show surface re-
constructions with 10% and 20% random noise. Fig. 9(a) and (b) are
the given data points and the reconstructed surface without noise, re-
spectively. These results indicate that our proposed algorithm can
successfully reconstruct surfaces with noise. It should be noted that the

reconstructed surface with the higher noise level is different from the
original one.

When the noise level is much higher, l2 minimization may do better
than l1 and l0 minimizations due to its averaging properties. On the
other hand, l0 minimization is more effective for sharpening major
edges than the other minimizations. It is certainly difficult to find a
suitable minimization that simultaneously keeps the sharp edges and
removes the high noise. Therefore, when the noise level is not high, we
suggest to use the l0-norm minimization.

Unlike Poisson surface reconstruction approach or some extended
approaches, our method does not depend on the accuracy of the normal
vectors of the oriented points. To show that, we add random noise to
the normal vectors of a clean happy buddha point cloud. Fig. 10(a)–(e)
are the happy buddha point cloud, the reconstructed surface without
noise, and the reconstructed surfaces with 50%, 100%, and 300%
random noisy normal vector, respectively. The clear results suggest that
our proposed method can perform well for the surface reconstruction. It
should be noted that if we first use the tangent plane estimation method
(Hoppe et al., 1992) to remove the noisy normal vectors and then put
them to the Poisson surface reconstruction approach, a clean happy
buddha surface can also be reconstructed. However, in that case, the
comparison will be somewhat unfair, because the solution in our ap-
proach does not depend on the accuracy of normal vectors.

Next, Table 1 lists the number of data points, the iteration numbers,
and the CPU times. The computations are performed in MATLAB on a
3.4 GHz PC with 16GB of RAM. The CPU times are measured in sec-
onds. ‘Pt size’ denotes the number of data points. ‘CPU(ini)’ is the time

Fig. 5. Surface reconstructions generated with different sampling densities: (a) and (d) initial input data; (b) and (e) reconstructed surfaces based on a coarse grid (226× 164×110); (c)
and (f) reconstructed surfaces based on a fine grid (416× 298×196). Note that for the purposes of better visualization, the points are displayed more sparsely than the real density.

Fig. 6. Surface reconstruction for an open surface: (a)
and (b) the given data sets; (c) and (d) the re-
constructed surfaces from (a) and (b), respectively.
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Fig. 7. Surface reconstructions with different boundary conditions. (a) Dirichlet boundary condition having a value of− 1 along the boundary with =l 5. (b) Dirichlet boundary condition
having a value of − 1 along the boundary with =l 1. (c) Periodic boundary condition with =l 5. (d) Periodic boundary condition with =l 1.

Fig. 8. Hole filling: (a) angel surface; (b) bunny surface; (c) dragon surface. From top to bottom, they are the reconstructed surfaces and the reconstructed surfaces with the data points
superimposed, respectively.

Fig. 9. Surface reconstruction with noisy
data: (a) the given data points; (b) the re-
constructed surface without noise; (c) the
reconstructed surface with 10% noise; and
(d)the reconstructed surface with 20%
random noise.
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for the initial reconstruction such as simplification of input data and
computing the distance function. ‘CPU(pro)’ is the time for processing
the surface reconstruction. Since the complexity of our proposed
method is O(Nlog (N)), our proposed method achieves fast convergence
as shown in Table 1.

Compared with CPU times obtained by using the l0-norm mini-
mization and l1-norm minimization, l2-norm minimization results in
fast convergence because we can directly optimize the l2-norm mini-
mization problem (3) in one iteration. However, l2-norm suffers a ten-
dency to oversmooth the data. Observing Table 1, we also can find the
computational costs of l0- and l1-norms are similar since we can develop
a similar resulting algorithm for l1-norm minimization by using half-
quadratic splitting method.

The l0-norm in Eq. (3) can be replaced by the lp-norm (0< p<1)
(Krishnan and Fergus, 2009; Zhu et al., 2015, 2014). Here, we will
perform a test to compare the results by using l1/2 and l2/3 as shown in
Fig. 11. Note that we have used a fast alternating method as introduced
in Krishnan and Fergus (2009), in which the authors described a way to
solve an image deconvolution problem for two cases of =p 1/2 and

=p 2/3. For more details, please refer to Krishnan and Fergus (2009).
Observing the results in Fig. 11, we can see that there is no significant
difference between the three results. To obtain the exact analytical
solutions to the ψ sub-problem, a cubic and quartic polynomials for

=p 1/2 and =p 2/3 are derived. To find the roots of these polynomials,
we only can numerically solve these polynomials and should take more
care to choose a suitable root. Compared with the lp-norm, our method
can directly find the solution of Eq. (7).

Although our proposed method does not depend on the accuracy of
normal vectors and can perform well in surface reconstruction, the
accuracy of the reconstructed surface should be improved, specifically
oriented point sets point clouds have high-resolution details. In our
presented method, a regular grid formulation is used and hence results
in high storage requirements. On the other hand, to significantly reduce
the computational cost, the authors in Kazhdan et al. (2006);
Kazhdan and Hoppe (2013) and Calakli and Taubin (2011) discretized
their linear systems by adapting an octree to the location of the data
input. Fig. 12 shows an example of this situation for the reconstructed

Fig. 10. Surface reconstruction with noisy
normal vectors: (a) given data points; (b)
reconstructed surface without noisy
normal vectors; (c) reconstructed surface
with 50% random noisy normal vectors;
(d) reconstructed surface with 100%
random noisy normal vectors; (e) re-
constructed surface with 300% random
noisy normal vectors.

Table 1
List of data information, iterations, and CPU times (second). ‘Pt size’ denotes the number
of data points. ‘CPU(ini)’ is the time for the initial reconstruction. ‘CPU(pro)’ is the time
for processing the surface reconstruction.

Case Pt size Grid size CPU(ini) CPU(pro)

l0-norm l1-norm l2-norm

Fig. 2 70068 212×210×168 1.918 32.950 32.901 4.124
Fig. 3(a) 15302 212×212×212 3.619 – – 5.686
Fig. 3(b) 15302 212×212×212 3.619 – 45.372 –
Fig. 3(c) 15302 212×212×212 3.619 45.381 – –
Fig. 4(a) 15302 134×142×142 2.074 – – 2.115
Fig. 4(b) 15302 134×142×142 2.074 – 15.969 –
Fig. 4(c) 15302 134×142×142 2.074 16.102 – –
Fig. 5(b) 437645 226×164×110 1.170 12.277 12.222 1.531
Fig. 5(c) 437645 416×298×196 4.446 61.106 61.163 7.659
Fig. 5(b) 21883 226×164×110 1.170 12.277 12.389 1.533
Fig. 5(c) 21883 416×298×196 4.446 61.106 61.674 7.686
Fig. 6(c) 96240 124×124×124 0.514 6.583 6.538 0.828
Fig. 6(d) 84600 124×124×124 0.484 6.583 6.538 0.828
Fig. 8(a) 24566 241×177×107 0.811 31.122 31.415 3.964
Fig. 8(b) 70068 212×210×168 1.918 32.952 33.251 4.082
Fig. 8(c) 701891 342×166×238 3.697 33.228 33.218 4.102
Fig. 9(b) 172974 274×322×252 4.134 74.194 74.139 9.512
Fig. 9(c) 172974 274×322×252 4.134 74.194 74.139 9.512
Fig. 9(d) 172974 274×322×252 4.134 74.194 74.139 9.512
Fig. 10(b) 543652 186×422×186 3.449 35.989 35.831 4.498
Fig. 10(e) 543652 186×422×186 3.449 35.989 35.831 4.498
Fig. 10(f) 543652 186×422×186 3.449 35.989 35.831 4.498

Fig. 11. Comparisons between the results by
using different lp-norms: (a) result using l0-
norm; (b) result using l1/2-norm; (c) result
using l2/3-norm.
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eagle surface, with the results obtained by our proposed method as
shown in Fig. 12(a) and by the screened Poisson algorithm
(Kazhdan and Hoppe, 2013) as shown in Fig. 12(b) and (c). A
314×572×438 mesh grid is used in Fig. 12(a). Spatial octrees of
depth 9 and 11 are used for Fig. 12(b) and (c), respectively. Note that
an octree of depth 9 and 11 approximately corresponds to 5123 and
20483 regular grids, respectively. Owing to the restriction of stage
memory, we reconstruct a surface with more regular grids in our pro-
posed method. As Fig. 12 shows, the screened Poisson algorithm pre-
serves more details as the depth of the octree increases. In future work,
we will investigate the current algorithm over an adapted octree and
realize it with a GPU. Our algorithm also cannot produce a clean surface
when the number of data points is small and the mesh grid of our al-
gorithm is large. In this case, the distance function is so sharp that the
l0-norm cannot distinguish features and our computational results tend
to be over-sharpened. Fig. 13(a)–(d) show the input data points, ground
truth, reconstructed surface with a 180× 180×322 mesh grid, and
reconstructed surface with a 234×234×422 mesh grid, respectively.
As can be seen, even if we refine the mesh grid, the accuracy of the
reconstructed surface cannot be improved in this situation.

5. Conclusion

In this article, we have proposed a novel accurate and fast method
by using l0 gradient minimization, which can directly measure the

sparsity of a solution and produce sharper surfaces. Therefore, the
proposed method is particularly effective for sharpening major edges
and removing noise. Unlike the Poisson surface reconstruction ap-
proach and its extensions, our method does not depend on accurate
directions of normal vectors of the unorganized points. The resulting
algorithm has been developed by using decoupled alternating iterations
over a smoothing step realized by a Poisson approach and an edge-
preserving step through an optimization formulation. This iterative
algorithm is fast and simple to implement. Various tests have been
presented to demonstrate that our method is efficient at removing point
noise, and normal noise, and filling holes, and thus produces good
surface reconstruction results. In future work, we will investigate the
current algorithm over an adapted octree and realize it with a GPU.
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Appendix A

First, let us recall the definition of l0-norm: if =ψ 0, then =ψ 00 . Otherwise, =ψ 10 . For every individual point x, we need to minimize
= + ∇ −F ψ g ψ λ ϕ ψx( ) ( ) ,0 2

2 whose minima is F*. It is equivalent to find a suitable ψ that can minimize = + ∇ −F g ψ λ ϕ ψx( ) 0 2
2. If

=g x( ) 0, it is obvious that we can obtain the minimum F* by setting = ∇ψ ϕ, otherwise we need to analyze the relationship between ∇ϕ 2
2 and g(x)/

λ. The relations are summarized as follows.

Fig. 12. Surface reconstruction of an eagle
model: (a) our proposed method with a
314×572×438 mesh grid; (b) screened
Poisson algorithm (Kazhdan and
Hoppe, 2013) with an octree of depth 9; (c)
screened Poisson algorithm (Kazhdan and
Hoppe, 2013) with an octree of depth 11.

Fig. 13. Surface reconstruction with small
input data points: (a) data points; (b) ground
truth; (c) reconstructed surface with a
180×180×322 mesh grid; (d) re-
constructed surface with a
234×234×422 mesh grid.
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1) When ∇ ≥ϕ g λx( )/ ,2
2 we start splitting in the following two situations.

In the first situation, we consider ψ≠ 0. Then we can obtain

≠ = + ∇ − =F ψ g ψ λ ϕ ψ g0 x xmin ( ) min[ ( ) ] ( ).
ψ ψ 0 2

2

(12)

Here we can obtain the minimal value F* by setting ∇ =ϕ ψ. Considering the second situation =ψ 0, we can obtain

= = ∇ − = ∇ ≥ = ≠F ψ λ ϕ ψ λ ϕ g F ψ0 x 0min ( ) min ( ) min ( ).
ψ ψ ψ2

2
2
2

(13)

Therefore, to minimize F, we should only let = ∇ψ ϕ. Combining Eqs. (12) and (13), the minimum energy (7) is produced when = ∇ψ ϕ.
2) When ∇ <ϕ g λx( )/ ,2

2 in a similar way we obtain

≠ =F ψ g0 xmin ( ) ( )
ψ (14)

and

= = ∇F ψ λ ϕ0min ( ) .
ψ 2

2

(15)

Combining Eqs. (14) and (15), we can find =F ψ 0min ( )ψ is smaller than min ψF(ψ≠ 0). The minimum = ∇F λ ϕ* 2
2 reaches by choosing ψ is 0. In

summary, to minimize = + ∇ −F ψ g ψ λ ϕ ψx( ) ( ) ,0 2
2 we can obtain the following condition:

= ⎧
⎨⎩

∇ = ∇ ≥ψ ϕ g ϕ g λx x
0

if ( ) 0 or ( )/
otherwise

2
2

(16)

The proof is complete.

Appendix B. Numerical solver

Let Ω be a 3D domain that embeds the given point cloud =X X Y Z( , , )p p p p for = …p M1, , . The space step size h is defined as
= = =−

−
−
−

−
−h X X

N l
Y Y

N l
Z Z

N l2 2 2x y z
max min max min max min . Here, Xmax and Xmin are the maximum and minimum locations of the point cloud along the x-direction. The

other parameters are defined in a similar fashion. We use Nx, Ny, and Nz to denote the numbers of cells in the x-, y- and z-directions, respectively and l
is a constant number to keep the point cloud away from the boundary of domain Ω. The center of each cell is located at = x y zx ( , , ),ijk i j k where

= − + −x X lh i h( 1) ,i min = − + −y Y lh j h( 1) ,i min and = − + −z Z lh k h( 1) ,k min for = …i N1, , ,x = …j N1, , ,y and = …k N1, , z. Let dijk, gijk, ϕijk,
and ψijk be the approximations of d(xi, yj, zk), g(xi, yj, zk), ϕ(xi, yj, zk), and ψ(xi, yj, zk), respectively. Let ϕn and ψn be the solutions at the nth-iteration.

At the beginning of each time step, given ϕn, ψn, and λn, we want to find +ϕ ,n 1 +ψ ,n 1 and +λn 1 by solving the discretized equations of two
optimizations (Eqs. (10) and (11)) in time. The outline of the main procedure in one time step is as follows.

Step 1. Use a linear time method for computing the distance function d(x) (see Calvin et al., 2003) and initialize d(x), s(x), g(x), and ϕ0(x), by
using Eqs. (1), (2), (4), and (5), respectively. Here, λ starts from a value λ0.

Step 2. Solve +ψn 1 from ϕn and λn by using Eq. (10) as:

= ⎧
⎨⎩

∇ < ∇ ≥ ≤+ψ ϕ g α ϕ g λ g βx x x
0

if ( ) or ( ( )/ and ( ) ),
otherwise.

n
n n n

1 2
2

(17)

Here, α and β are positive constants. In general, α should be small. Combining the relations (10) and (11) together, we can find that if g(x) equals
zero, then ψ is given as ∇ϕ, which implies that Eq. (11) becomes an identical equation. Therefore, the reconstructed surface remains nearby the input
point cloud. On the other hand, if g(x) is not zero and ∇ϕn

2
2 is smaller than g(x)/λn, then ψ is set as zero, which implies that Eq. (11) becomes a

Poisson equation at x, i.e., =ϕ xΔ ( ) 0. Solution of the Poisson equation will make the surface be smooth. If the point x is far from the input point
cloud, g(x) is large and its contribution is small in reconstructing the surface. Therefore, to speed up the computation, we assume that the regions far
from the input point cloud are smooth. Combining the above reasons, we propose to use Eq. (17) instead of Eq. (10).

Step 3. Solve +ϕ n 1 from +ψn 1 by using Eq. (11):

F

F F F F F F

F F F F F F

⎜ ⎟

=

⎛

⎝

⎜
⎜
⎜⎜

∂ ∘ + ∂ ∘ ⎛
⎝

⎞
⎠

+ ∂ ∘

∂ ∘ ∂ + ∂ ∘ ∂ + ∂ ∘ ∂

⎞

⎠

⎟
⎟
⎟⎟

+ −

+ + +

ϕ
ψ ψ ψ( )* ( ) ( )* ( )* ( )

( )* ( ) ( )* ( ) ( )* ( )
,n

x x
n

y y
n

z z
n

x x y y z z

1 1

1 1 1

(18)

where F and F−1 are the fast Fourier transform (FFT) and inverse FFT operators, respectively. The symbols * and ○ denote the complex conjugate
and component-wise multiplication, respectively. Note that we have diagonalized derivative operators after FFT for speedup. This yields the above
solution.

Step 4. Reinitialize +ϕn 1 by the following process:

= ⎛

⎝
⎜

−

−
⎞

⎠
⎟ −+

+ +

+ +ϕ
ϕ ϕ

ϕ ϕ
2 1.n

n n

n n
1

1
min

1

max
1

min
1

(19)

Here, +ϕ n
max

1 and +ϕ n
min

1 are the maximum and minimum values of +ϕ ,n 1 respectively. From Eq. (11), we can find that if +ϕ n 1 is the solution of Eq. (11),
then +ϕn 1 is also its solution, which implies the solution of Eq. (11) is not unique. Therefore, we should use the processing (19) to project the range of

+ϕn 1 into −[ 1, 1].
Step 5. Update =+λ ηλ ,n n1 where η is larger than 1 to make λ increase with each iteration.
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These complete the one time step. This alternating minimization algorithm is effective at speeding up convergence and stops if λ is larger than a
given value λmax .

Parameter setting
For an equilibrium phase field profile, =φ r r( ) tanh( /( 2 ϵ)), of Eq. (5), the phase field varies from − 0.95 to 0.95 over −2 2 ϵ tanh (0.95)1 .

Therefore, if we want this to be approximately 2mh, i.e., = −mh2 2 2 ϵ tanh (0.95),1 then the ϵ value needs to be taken as = −mhϵ /[ 2 tanh (0.95)]m
1 .

Here h is the uniform grid size. Furthermore, by denoting = =φ φ r kh( ),k we can obtain = −φ k mtanh[ tanh (0.95)/ ]k
1 . In this paper, we choose

=α φ0.5 and =β φ ,m0.9 which implies that if the distance between the original point cloud is less than 0.5h, the surface will be much similar with the
original point cloud. If its distance is larger than 0.9mh, the contribution of that point is considered to be small. Unless otherwise specified, for other
parameters, we take =m 10, =l 5, =λ h10 ,0

2 =η 2, and =λ h1000max
2 (Fig. B.1).

Complexity analysis
We use a linear time method (Calvin et al., 2003) to compute the distance function and closest point information. In this algorithm, for each grid,

the distance transform assigns a number that is the distance between that grid and the nearest point cloud. Its computational complexity for distance
function and nearest point information is O(M). To compute the inner product field, we only need to use the whole grid once. The time for computing
the weighted function g x( ) for each grid point is O(N), where N is the whole grid size, i.e., =N N N Nx y z. In our implementation, for each iteration, the
complexities for Steps 2 and 4 in the algorithm are linear with respect to the grid size, i.e., O(N). For Step 3, the complexity is O(Nlog (N)) because the
FFT is an efficient O(Nlog (N)) algorithm. In summary, the complexity of our whole processing is O(Nlog (N)). Since our initialized surface is close to
the correct surface, only a few iterations are required. The total iterations can be approximatively computed as the smallest integer not smaller than
logη(λmax /λ0).
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