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Abstract. In this paper, we reformulate the diffuse interface model of the tu-

mor growth (S.M. Wise et al., Three-dimensional multispecies nonlinear tumor
growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524–543).

In the new proposed model, we use the conservative second-order Allen–Cahn

equation with a space–time dependent Lagrange multiplier instead of using
the fourth-order Cahn–Hilliard equation in the original model. To numerically

solve the new model, we apply a recently developed hybrid numerical method.

We perform various numerical experiments. The computational results demon-
strate that the new model is not only fast but also has a good feature such as

distributing excess mass from the inside of tumor to its boundary regions.

1. Introduction. The morphological evolution of a growing tumor is the result
of many factors, such as cell–cell and cell–matrix adhesion, mechanical stress, cell
motility, and transport of oxygen, nutrients, and growth factors [3]. Mathemati-
cal modeling of cancer gives unique and important insights into tumor progression,
helps explain experimental and clinical observations, and helps provide optimal
treatment strategies [24]. In the past several years, a considerable amount of re-
search on mathematical models of cancer has been conducted, and numerical sim-
ulations of tumor growth have been performed [6, 10, 15, 25, 26, 29, 31, 34, 36, 38,
40, 41, 47, 49, 52, 54, 55, 56, 59, 63]. A variety of modeling strategies are avail-
able to investigate one or more aspects of cancer. Discrete cell-based models (e.g.,
cellular automata [2, 9, 30, 44, 46, 62] and agent-based models [7, 43, 50]), where
individual cells are tracked and updated according to a specific set of biophysical
rules, are particularly useful for studying carcinogenesis, natural selection, genetic
instability, and interactions of individual cells with each other and the microen-
vironment. In larger-scale systems, continuum methods provide a good modeling
alternative [14, 16, 17, 18, 19, 27, 37, 39, 48]. The governing equations are typically
of the reaction–diffusion type. Recently, nonlinear continuum modeling has been
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performed to study the effects of shape instabilities on avascular, vascular, and an-
giogenic solid tumor growth. Cristini et al. [27] performed the first fully nonlinear
simulations of a continuum model of avascular and vascularized tumor growth in
two dimensions using a boundary integral method. Li et al. [48] extended this
model to three dimensions using an adaptive boundary integral method. Zheng
et al. [65] also extended this model to include a hybrid continuum discrete model
of angiogenesis (based on earlier work of Anderson and Chaplain [5]) and investi-
gated the nonlinear coupling between growth and angiogenesis in two dimensions
using finite element/level-set method. Wise et al. simulated tumor growth [64] and
angiogenesis [35] in three dimensions using a diffuse interface, multiphase mixture
model. Chen et al. [24] extended the model of Wise et al. and incorporated the
effect of a stiff membrane to model tumor growth in a confined microenvironment.

Here, we reformulate the diffuse interface continuum model of multispecies tu-
mor growth of Wise et al. [64]. The model consists of fourth-order nonlinear
advection–reaction–diffusion equations of Cahn–Hilliard-type (CH) [21] for the cell
species volume fractions coupled with reaction–diffusion equations for the substrate
components. Because the original model involves fourth-order equations, it is chal-
lenging to develop accurate and efficient numerical methods. For example, explicit
methods suffer from severe time step restrictions (∆t < C(∆x)4) and thus are
computationally expensive to handle large systems. Therefore, in the new pro-
posed model, we use the conservative second-order Allen–Cahn (AC) equation with
a space–time dependent Lagrange multiplier instead of using the fourth-order CH
equation in the original model. The classical AC equation was originally intro-
duced as a phenomenological model for antiphase domain coarsening in a binary
alloy [4], but does not conserve mass of the mixture. Rubinstein and Sternberg
[57] introduced a nonlocal AC equation with a time dependent Lagrange multiplier
to enforce conservation of mass. However, with their model, it is difficult to keep
small features since they dissolve into the bulk region. One of the reasons for this is
that mass conservation is realized by a global correction using the time-dependent
Lagrange multiplier. To resolve the problem, we use a space–time dependent La-
grange multiplier to preserve the mass of the mixture. And, to numerically solve
the new model, we use a recently developed hybrid numerical method [45].

This paper is organized as follows. In Section 2, we reformulate the diffuse
interface model of Wise et al. [64] by using the conservative second-order AC
equation with a space–time dependent Lagrange multiplier. A numerical algorithm
using an operator splitting method is described in Section 3. Various numerical
experiments are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Mathematical model. In this section, we present a mathematical model of tu-
mor growth. We begin by recalling the nondimensional tumor growth model from
Wise et al. [64], where a thermodynamically consistent diffuse interface continuum
model of multispecies tumor growth was developed, analyzed, and simulated. The
authors take into account mechanical interactions, mainly focused on cell–cell ad-
hesion between a tumor and host. The dimensionless dependent variables defined
in a bounded tissue domain Ω ⊂ Rd (d = 2 or 3) are as follows: φ, ψ, and ξ are the
volume fractions of tumor cells, dead tumor cells, and host tissue, respectively (see
Figure 1). Here, we note that φ − ψ is the volume fraction of viable tumor cells.
Hence, φ is the sum of the volume fractions of viable and dead tumor cells. u, p,
and n are the tumor velocity, pressure, and nutrient concentration, respectively.
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Figure 1. Schematic of a growing tumor. φ and ψ are the volume
fractions of the tumor and dead tumor cells, respectively. ξ is the
volume fraction of the host tissue.

The original governing equations for the tumor growth in [64] are

∂φ

∂t
= M∇ · (φ∇µ)−∇ · (φu) + φST , (1)

µ = F ′(φ)− ε2∆φ, (2)

∂ψ

∂t
= M∇ · (ψ∇µ)−∇ · (ψu) + φSD, (3)

u = −∇p− γ

ε
φ∇µ, (4)

∇ · u = ST , (5)

0 = ∇ · (D(φ)∇n) + TC(φ, n)− νUn(φ− ψ), (6)

where M > 0 is a mobility, µ is the chemical potential, F (φ) = φ2(1 − φ)2/4 is a
double well bulk energy, ε > 0 is a parameter related to the thickness of the diffuse
interface that separates the tumor and host domains, and γ is a parameter related
to the cell–cell adhesion force. ST and SD are the net sources of tumor and dead
cells, respectively, and are defined as

ST = λMn(φ− ψ)− λLψ and SD = (λA + λNH(nN − n)) (φ− ψ)− λLψ,

where λM , λL, λA, and λN are the rates of volume gain or loss due to cellular
mitosis, lysing, apoptosis, and necrosis, respectively, H is a Heaviside step function,
and nN is the nutrient limit for cell viability. The diffusion coefficient D(φ) and
nutrient capillary source term TC(φ, n) are, respectively,

D(φ) = DH(1−Q(φ)) +Q(φ)

and TC(φ, n) =
(
νHp (1−Q(φ)) + νTp Q(φ)

)
(nc − n),

where DH is the nondimensional nutrient diffusion coefficient in the host domain,
νHp and νTp denote the nutrient transfer rates for preexisting vascularization in the
host and tumor domains, respectively, and nc is the nutrient level in the capillaries.
Q(φ) is an interpolation function and is defined as

Q(φ) =

 1 if 1 ≤ φ
3φ2 − 2φ3 if 0 < φ < 1
0 if φ ≤ 0,
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with Q(1) = 1, Q(1/2) = 1/2, and Q(0) = 0. νU is the nutrient uptake rate by
the viable tumor cells. Eqs. (1)–(6) are valid on the whole domain Ω and not just
on the tumor volume. There are no boundary conditions required for φ and ψ at
the tumor boundary. At the outer boundary, we choose the following boundary
conditions

n · ∇φ = n · ∇ψ = µ = n · ∇p = 0, n = 1 on ∂Ω,

where n is the unit normal vector to ∂Ω.
The diffuse interface model of Wise et al. [64] involves the fourth-order CH Eq.

(1) and (2) with a source term. In this paper, we propose an alternative model for
Eqs. (1) and (2). The proposed model consists of the following two equations and
Eqs. (3)–(6):

∂φ

∂t
= −∇ · (φu) + φST , (7)

∂φ

∂t
= Mφ

(
−F ′(φ) + ε2∆φ+ β(t)F (φ)

)
. (8)

First, we update φ according to Eq. (7), and then we relax φ using Eq. (8). In Eq.
(8),

∂φ

∂t
= −F ′(φ) + ε2∆φ

is the classical AC equation which was originally introduced as a phenomenological
model for antiphase domain coarsening in a binary alloy [4]. Since the classical
AC equation does not have the mass conservation property, Brassel and Bretin
[11] introduced a nonlocal AC equation with a space–time dependent Lagrange

multiplier (β(t)
√
F (φ)) to enforce conservation of mass. Here, β(t) satisfies β(t) =∫

Ω
F ′(φ) dx/

∫
Ω
F (φ) dx. The proposed model involves a second-order equation and

we will apply the recently developed hybrid numerical method [45] to numerically
solve it.

3. Numerical solution. In this section, we describe an operator splitting algo-
rithm for solving Eqs. (3)–(8). For simplicity and clarity of exposition, we shall
discretize Eqs. (3)–(8) in two-dimensional space, i.e., Ω = (a, b) × (c, d). Three-
dimensional discretization is defined analogously. Let the computational domain be
partitioned into a uniform mesh with mesh spacing h. The center of each cell, Ωij ,
is located at (xi, yj) = ((i − 0.5)h, (j − 0.5)h) for i = 1, . . . , Nx and j = 1, . . . , Ny.
Nx and Ny denote the number of cells in the x- and y-directions, respectively. Cell
vertices are located at (xi+ 1

2
, yj+ 1

2
) = (ih, jh). In this paper, tumor and dead cells,

pressures, and nutrients are stored at the cell centers and velocities at cell faces.
Let φkij be the approximations of φ(xi, yj , k∆t), where ∆t = T/Nt is the time step,
T is the final time, and Nt is the total number of time steps. The other terms are
similarly defined.

In this paper, we use an operator splitting method, in which we numerically solve
Eqs. (7) and (8) by solving successively a sequence of simpler problems:

∂φ

∂t
= −∇ · (φu) + φST , (9)

∂φ

∂t
= Mφε2∆φ, (10)

∂φ

∂t
= −MφF ′(φ), (11)
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∂φ

∂t
= Mφβ(t)F (φ). (12)

First, we solve Eq. (9) by applying the explicit Euler’s method:

φk+1,1
ij − φkij

∆t
= −∇d · (φkuk)ij + φkijST

k
ij ,

where ∇d· is the discrete divergence operator. Next, we solve Eq. (10) by applying
the explicit Euler’s method:

φk+1,2
ij − φk+1,1

ij

∆t
= Mkε2∆dφ

k+1,1
ij ,

where Mk = Mφkij and ∆d is the discrete Laplacian operator. And Eq. (11) is
solved analytically using the method of separation of variables [60] and the solution
is given as

φk+1,3
ij = 0.5 +

φk+1,2
ij − 0.5√

e−0.5Mk∆t + (2φk+1,2
ij − 1)2

(
1− e−0.5Mk∆t

) .
Finally, we discretize Eq. (12) as

φk+1
ij − φk+1,3

ij

∆t
= Mkβk+1,3F (φk+1,3

ij ). (13)

By Eq. (13), we get φk+1
ij = φk+1,3

ij + ∆tMkβk+1,3F (φk+1,3
ij ), then by the property

of mass conservation

Nx∑
i=1

Ny∑
j=1

φk+1,1
ij =

Nx∑
i=1

Ny∑
j=1

φk+1
ij =

Nx∑
i=1

Ny∑
j=1

(
φk+1,3
ij + ∆tMkβk+1,3F (φk+1,3

ij )
)
.

Thus,

βk+1,3 =
1

∆t

Nx∑
i=1

Ny∑
j=1

(
φk+1,1
ij − φk+1,3

ij

)/ Nx∑
i=1

Ny∑
j=1

MkF (φk+1,3
ij ).

Eqs. (3)–(6) are discretized as

ψk+1
ij − ψk

ij

∆t
= ∇d · (Mψk∇dµ

k+1)ij −∇d · (ψkuk)ij + φkijSD
k
ij ,

uk+1
i+ 1

2 ,j
= −Dxp

k+1
i+ 1

2 ,j
− γ

ε
(φk+1Dxµ

k+1)i+ 1
2 ,j
, (14)

vk+1
i,j+ 1

2

= −Dyp
k+1
i,j+ 1

2

− γ

ε
(φk+1Dyµ

k+1)i,j+ 1
2
, (15)

∇d · uk+1
ij = ST

k+1
ij ,

0 = ∇d · (D(φk+1)∇dn
k+1)ij + TC(φk+1

ij , nk+1
ij )

−νUnk+1
ij (φk+1

ij − ψk+1
ij ), (16)

where u and v are the horizontal and vertical components of u, respectively. The
discrete differentiation operators are

Dxpi+ 1
2 ,j

=
pi+1,j − pij

h
and Dypi,j+ 1

2
=
pi,j+1 − pij

h
,
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and ∇d is the discrete gradient operator. Apply the divergence operator to Eqs.
(14) and (15) and get a Poisson equation for pk+1

ij :

∆dp
k+1
ij = −γ

ε
∇d · (φk+1∇dµ

k+1)ij − ST
k+1
ij . (17)

The resulting linear systems of Eqs. (16) and (17) are solved by a fast solver, such
as a linear multigrid method [12, 61].

4. Numerical experiments.

4.1. Time scaling between the Cahn–Hilliard and conservative Allen–
Cahn models. In this paper, we use the conservative second-order Allen–Cahn
(CAC) equation with a space–time dependent Lagrange multiplier instead of using
the fourth-order Cahn–Hilliard (CH) equation in the original model. The CAC,
constant mobility CH, and variable mobility CH equations provide an approxima-
tion to motion by the volume preserving mean curvature flow [8, 11, 13, 42, 58], the
Mullins–Sekerka flow [1, 22, 23, 28, 33, 53], and the surface diffusion flow [20, 32, 51],
respectively. Thus, there is a need for a time scaling to consider a difference be-
tween the motion of the interface for the CAC, constant mobility CH, and variable
mobility CH equations. To evaluate a time scaling between the CH (Eqs. (1) and
(2)) and CAC (Eqs. (7) and (8)) models, we consider the following initial condition:

φ(x, y, 0) =
1

2

[
1 + tanh

(
4−

√
(x− 10)2/1.4 + (y − 10)2

2
√

2ε

)]
on a domain Ω = [0, 20] × [0, 20], with h = 20/128, ∆t = 0.01, and ε = 0.1

√
2. In

this test, the effects of velocity u and net source of tumor cells ST are negligible
and we consider a constant mobility case. The numerical solution is computed to
time T = 200.

Figures 2 (a) and (b) show the time evolutions of y = 10 of 0.5-level of φ obtained
by solving the CH and CAC equations without and with time scaling, respectively.
Here, a time scaling factor is about 3.2, that is, MCAC = 3.2MCH, where MCH and
MCAC are constant mobilities of the CH and CAC equations, respectively. Note
that the time scaling factor depends on the initial morphology of the interface.
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Figure 2. Time evolutions of y = 10 of 0.5-level of φ obtained by
solving the CH and CAC equations.
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4.2. Comparison between the Cahn–Hilliard and conservative Allen–C-
ahn models. To compare the dynamics between the CH and CAC models, we take
the following initial condition:

φ(x, y, 0) =
1

2

[
1 + tanh

(
2−

√
(x− 10)2/1.4 + (y − 10)2

2
√

2ε

)]
(18)

on a domain Ω = [0, 20] × [0, 20]. Here, we use h = 20/128, ∆t = 0.01, and

ε = 0.1
√

2. In this simulation, we solve Eqs. (1)–(6) (the CH model) and (3)–
(8) (the CAC model) with the following parameters: M = 10 for the CH model,
M = 32 for the CAC model, γ = 0.0, νU = 1.0, λM = 8.0, λL = 1.0, λA = 0.0,
λN = 3.0, nN = 0.6, DH = 1.0 × 103, νHp = 0.0, νTp = 0.0, and nc = 1.0. Note
that we take the same parameter values as in [64] except for λM . To investigate
the difference in distributing excess mass, we choose 8 times larger than the value
in [64].

Figures 3 and 4 show the time evolutions of tumor cells obtained by solving the
CH and CAC models, respectively. As we can see in Figure 3, the CH model does
not distribute well excess mass from the inside of tumor to its boundary regions and
thus excess mass builds up inside and the volume fraction of tumor cells becomes
much larger than one. On the other hand, in the CAC model, excess mass (obtained
by solving Eq. (9)) diffuses according to Eq. (10) and then the volume fraction
of tumor cells becomes close to one according to Eq. (11). Finally, mass (changed
by the AC step (10) and (11)) is corrected in the interfacial region by the mass
correction step (12). Therefore, excess mass is well distributed to boundary regions
of tumor cells.

(a) φ40
ij (b) φ50

ij

Figure 3. Time evolutions of tumor cells obtained by solving the
CH model.

4.3. Two-dimensional tumor growth. In this section, we present two-dimen-
sional simulations of tumor growth using the parameters given in Table 1. Because
the diffusivity of the nutrient in the host medium is 1000 times larger than that in
the tumor interstitium, we use D(φ) as in [64]

D(φ) = 1 + (DH − 1)(1− φ)8.

To validate our new model and numerical algorithm, we take the same initial con-
dition (18) as in the previous section on a domain Ω = [0, 20]× [0, 20]. h = 20/256,
∆t = 0.01, and ε = 0.1 are used.
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(a) φ40
ij (b) φ50

ij

Figure 4. Time evolutions of tumor cells obtained by solving the
CAC model.

Table 1. Nondimensional parameters used in the two-dimensional
numerical simulations.

M 10 γ 0.0 νU 1.0 λM 1.0
λL 1.0 λA 0.0 λN 3.0 nN 0.6
DH 1.0× 103 νHp 0.0 νTp 0.0 nc 1.0

Figure 5 shows the evolution of the tumor. Initially, there are no dead cells in
the tumor. But, as the nutrient concentration falls below level needed for viability,
dead cells quickly begin to accrue. At time t = 5, the tumor has a fully developed
necrotic core. One can observe a slight bulge oriented along the x-direction. At
later times, the instability becomes more pronounced and the tumor develops buds
that elongate into protruding fingers. The instability enables the tumor to increase
its exposure to nutrient as its surface area increases relative to its volume. This
allows the tumor to overcome the diffusional limitations to growth. The tumor
will grow indefinitely as the instability repeats itself on the buds and protruding
fingers. This result is in good agreement with the result in [64]. Furthermore,
during the simulation, our new model (3)–(8) and numerical method take 500.624s
CPU time, whereas the CH-type model (1)–(6) and numerical method in [24] take
3034.718s CPU time. Since our new model involves a second-order equation and we
use the recently developed hybrid numerical method for solving the model, we save
significant computational time. In the following subsections, we will investigate the
effect of biophysical parameters given in Table 1.
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Figure 5. Evolution of the contours φ − ψ = 0.5 during growth.
The viable tumor cells are primarily contained between the inner
and outer contours. The biophysical parameters are given in Table
1.
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4.3.1. Effect of λL. In the net sources ST and SD of tumor and dead cells, λL is
the rate of volume loss due to cellular lysing. Thus, more tumor and dead cells
are lysed as λL increases, and the more lysed tumor and dead cells translate to
the host tissue. To investigate the effect of λL, we take the same initial condition
(18) and parameter values used to create Figure 5 except for λL. We vary λL as
λL = 0.4, 3.0 and λL = 1.0 (see Figure 5). Figure 6 shows the time evolutions of
the tumor for different λL values. From the results, we observe that the growth of
tumor is inhibited as λL increases.
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(a) λL = 0.4
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(b) λL = 3

Figure 6. Effect of λL: Time evolutions of the contours φ− ψ =
0.5 during growth.

4.3.2. Effect of nN . The net source SD of dead cells is defined as

SD = (λA + λNH(nN − n)) (φ− ψ)− λLψ,

where nN is the nutrient limit for cell viability. When n falls below nN , tumor
cells are dead proportional to λN . Thus, more tumor cells translate to dead cells
as nN decreases. To investigate the effect of nN , we take the same initial condition
(18) and parameter values used to create Figure 5 except for nN . We vary nN as
nN = 0.4, 0.8, 0.9 and nN = 0.6 (see Figure 5). Figure 7 shows the time evolutions
of the tumor for different nN values. As we expected, we can see more and more
dead cells as nN decreases.

4.3.3. Effect of νHp and νTp . The nutrient capillary source term TC(φ, n) is defined
as

TC(φ, n) =
(
νHp (1−Q(φ)) + νTp Q(φ)

)
(nc − n),

where νHp and νTp denote the nutrient transfer rates for preexisting vascularization

in the host and tumor domains, respectively. As νHp and νTp increase, more nutrients
are supplied in the host and tumor domains. In this test, we take the same initial
condition (18) and parameter values used to create Figure 5 except for νHp and

νTp . Figure 8 shows the evolution of the tumor with νHp = νTp = 0.4. Since more
nutrients are supplied in the host and tumor domains, the tumor grows bigger.
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(a) nN = 0.4
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(b) nN = 0.8
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(c) nN = 0.9

Figure 7. Effect of nN : time evolutions of the contours φ−ψ = 0.5
during growth.
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Figure 8. Effect of νHp and νTp : evolution of the contours φ−ψ =

0.5 during growth with νHp = νTp = 0.4.

4.3.4. Effect of initial condition. To examine the effect of initial condition, we take
the following initial conditions

φ(x, y, 0) =
1

2

[
1 + tanh

(
2 + 0.1 cos(rθ)−

√
(x− 10)2 + (y − 10)2

2
√

2ε

)]
with r = 3, 4. Here,

θ =

 tan−1
(

y−10
x−10

)
if x > 10

π + tan−1
(

y−10
x−10

)
otherwise.

We choose the parameter values used to create Figure 5. Figure 9 shows the time
evolutions of the tumor for different r values. Depending on the initial condition,
we can see various patterns of tumor growth.
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Figure 9. Effect of initial condition φ(x, y, 0) = 0.5[1 + tanh((2 +

0.1 cos(rθ)−
√

(x− 10)2 + (y − 10)2)/(2
√

2ε))]: time evolutions of
the contours φ− ψ = 0.5 during growth.

4.4. Three-dimensional tumor growth. In this paper, we also perform a three-
dimensional simulation of tumor growth using the parameters given in Table 1. The
initial condition is

φ(x, y, z, 0) =
1

2

[
1 + tanh

(
2−

√
(x− 10)2/1.4 + (y − 10)2 + (z − 10)2

2
√

2ε

)]
on a domain Ω = [0, 20]× [0, 20]× [0, 20]. h = 20/128, ∆t = 0.02, and ε = 0.1

√
2 are

used. Figure 10 shows the evolution of the tumor. This simulation demonstrates
the capability of feasibly simulating complex tumor progression in three dimensions.

5. Conclusions. In this paper, we reformulated the diffuse interface model of the
tumor growth of Wise et al. [64]. In the new proposed model, we used the conser-
vative second-order Allen–Cahn equation with a space–time dependent Lagrange
multiplier instead of using the fourth-order Cahn–Hilliard equation in the original
model. To numerically solve the model, we applied a recently developed hybrid
numerical method. Through numerical examples, we observed that the new model
is not only fast but also has a good feature such as distributing excess mass from
the inside of tumor to its boundary regions. We also performed various numerical
experiments varying the biophysical parameters.
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Figure 10. Evolution of the contours φ−ψ = 0.5 during growth.
The viable cells are primarily contained between the inner and
outer surfaces.
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