
Hybrid phase-field and immersed boundary methods

By

Yibao Li

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

KOREA UNIVERSITY

Approved:

Committee Member 1

Committee Member 2

Committee Member 3

Committee in Charge

2010

-i-

Contents

Abstract iv
Acknowledgments v

Chapter 1. Introduction 1
1.1. Motivation and Objectives 1
1.2. Outline of the thesis 1

Chapter 2. An unconditionally stable hybrid numerical method for the Allen-Cahn
equation 4

2.1. Introduction 4
2.2. Proposed operator splitting algorithm 6
2.3. Numerical experiments 8
2.4. Conclusions 18

Chapter 3. An unconditionally stable hybrid method for image segmentation 20
3.1. Introduction 20
3.2. Description of the previous models 20
3.3. Numerical solution 22
3.4. Experimental results 25
3.5. Conclusion 29

Chapter 4. A fast and accurate numerical method for medical image segmentation 31
4.1. Introduction 31
4.2. Modified Allen-Cahn equation 31
4.3. Proposed numerical solution 32
4.4. Computational examples 33
4.5. Conclusion 35

Chapter 5. Multiphase image segmentation using a phase-field model 37
5.1. Introduction 37
5.2. Description of the proposed model 38
5.3. Description of the numerical algorithms 39
5.4. Numerical experiments 41
5.5. Conclusion 45

Chapter 6. A fast, robust, and accurate operator splitting method for phase-field simulations
of crystal growth 46

6.1. Introduction 46

-ii-

6.2. The phase-field model 47
6.3. Numerical solution 47
6.4. Numerical results 49
6.5. Conclusion 55

Chapter 7. Numerical studies of the fingering phenomena for the thin film equation 57
7.1. Introduction 57
7.2. Governing Equation 58
7.3. Numerical Method 60
7.4. Numerical Experiment 61
7.5. Conclusions 72

Chapter 8. Conservative immersed boundary methods for two-phase fluid flows 73
8.1. Introduction 73
8.2. Numerical method 74
8.3. Numerical examples 81
8.4. Conclusions 85

Chapter 9. An immersed boundary model of the growth and division of cell 87
9.1. Introduction 87
9.2. Mathematical formulation 87
9.3. Numerical method 89
9.4. Numerical examples 94

Chapter 10. Conclusions 97

Bibliography 98

-iii-

Abstract

This thesis describes various numerical methods for hybrid phase-field and immersed bound-
ary methods. Hybrid method is a useful and powerful method in numerical computation. In
the first part of this thesis, we present an unconditionally stable second-order hybrid numer-
ical method for solving the Allen-Cahn equation representing a model for antiphase domain
coarsening in a binary mixture. Then, we apply this hybrid method to the application of binary
image segmentation, geometric image segmentation, multiphase image segmentation, and the
simulation of crystal growth. In the second part, we consider the simulations of thin film based
on Navier-Stokes flows by implicit ENO (essentially non-oscillatory) type scheme which has
a good stability property. Secondly, an immersed boundary method (IBM) for two-phase fluid
flows is considered. Since the interface between two fluids is moved in a discrete manner, this
can result in a lack of volume conservation. We propose a volume correction scheme. The
idea of area preserving correction scheme is to correct the interface location normally to the
interface so that the area remains constant. Finally, we consider the cytokinesis of an animal
cell using the IBM.

-iv-

Acknowledgments

I am very grateful for my advisor, Prof. Junseok Kim, for his guidance, encouragement
and assistance to my professional development. My appreciation also goes to Prof. Woonjae
Hwang and Prof. Donggyun Kim for serving on my committee. I would also like to thank my
colleagues and friends for their help and friendship in our research group, In particular, I thank
Hyun Geun Lee, Darea Jeong, and Prof. Junseok Kim for making the research group pleasant
and very productive environment for research. In addition, I would like to thank my parents
and grandparents for their support and love. Finally, I want to thank my wife, Binhu Xia, for
her love and understanding.

-v-

1

Chapter 1

Introduction

1.1. Motivation and Objectives

This dissertation consists of published and working papers
1. An unconditionally stable hybrid numerical method for solving the Allen-Cahn equa-

tion... Yibao Li, Hyun Geun Lee, Darae Jeong, and Junseok Kim, Computers and Math-
ematics with Applications, Vol. 60, No. 6, pp. 1591–1606, 2010.

2. Numerical studies of the fingering phenomena for the thin film equation ... Yibao Li,
Hyun Geun Lee, Woonjae Hwang, Daeki Yoon, Suyeon Shin, Youngsoo Ha, and Jun-
seok Kim, in press, International Journal for Numerical Methods in Fluids, 2010

3. A fast and accurate numerical method for medical image segmentation ... Yibao Li and
Junseok Kim, J. KSIAM Vol 14, No. 4, pp. 201–210, 2010

1.2. Outline of the thesis

In Chapter 2, we present an unconditionally stable second-order hybrid numerical method
for solving the Allen-Cahn equation representing a model for antiphase domain coarsening in
a binary mixture. The proposed method is based on operator splitting techniques. The Allen-
Cahn equation was divided into a linear and a nonlinear equation. First, the linear equation was
discretized using a Crank-Nicolson scheme and the resulting discrete system of equations was
solved by a fast solver such as a multigrid method. The nonlinear equation was then solved
analytically due to the availability of a closed-form solution. Various numerical experiments
are presented to confirm the accuracy, efficiency, and stability of the proposed method. In
particular, we show that the scheme is unconditionally stable and second-order accurate in
both time and space.

In Chapter 3, we propose a new unconditionally stable hybrid numerical method for mini-
mizing the piecewise constant Mumford-Shah functional of image segmentation. The model is
based on the Allen-Cahn equation and an operator splitting technique is used to solve the model
numerically. We split its numerical solution algorithm into two linear equations and one non-
linear equation. One of the linear equations and the nonlinear equation are solved analytically
due to the availability of closed-form solutions. The other linear equation is discretized using
an implicit scheme and the resulting discrete system of equations is solved by a fast numerical
method such as a multigrid method. We analyze and prove the unconditional stability of the
scheme. Various numerical results on real and synthetic images with noises are presented to
demonstrate the efficiency, robustness, and accuracy of the proposed method.

In Chapter 4, We propose a new robust and accurate method for the numerical solution of
medical image segmentation. The modified Allen-Cahn equation is used to model the bound-
aries of the image regions. Its numerical algorithm is based on operator splitting techniques.

1.2. OUTLINE OF THE THESIS 2

In the first step in the splitting scheme, we implicitly solve the heat equation with the variable
diffusive coefficient and a source term. Then, in the second step, using a closed-form solution
for the nonlinear equation, we get an analytic solution. We overcome the time step constraint
associated with most numerical implementations of geometric active contours. We demonstrate
performance of the proposed image segmentation algorithm on several artificial as well as real
image examples.

In Chapter 5, we present a new unconditionally stable hybrid numerical method for mini-
mizing the piecewise constant Mumford-Shah functional of image segmentation with a novel
multiphase segmentation model. The proposed model outputs a single multiphase distribution
from which each individual segment or phase can be easily extracted. Theoretical analysis is
developed for the -convergence behavior of the proposed model and the existence of its min-
imizers. Since the model is neither quadratic nor convex, for computation we adopted the
convex-concave procedure that has been developed in the literatures of both computational
nonlinear PDEs and neural computation. Numerical details and experiments on both synthetic
and natural images are presented.

In Chapter 6, we propose a fast, robust, and accurate operator splitting method for the
crystal growth phase-field simulation of binary alloy solidification in both two- and three-
dimensional space. The proposed method is based on operator splitting techniques. We split
the governing phase-field equation into three parts. The first equation is calculated explicitly.
The second one is a heat equation with source term and is solved by a fast solver such as a
multigrid method. The third one is evaluated using a closed form solution. We also present a
set of representative numerical experiments for crystal simulation to demonstrate the accuracy
of the proposed method. Our simulation results are also consistent with previous numerical
experiments.

We present in Chapter 7, a new interpretation of the fingering phenomena of the thin liq-
uid film layer through numerical experiments. The governing partial differential equation is
ht + (h2 − h3)x = −ϵ3∇ · (h3∇∆h), which arises in the context of thin liquid films driv-
en by a thermal gradient with a counteracting gravitational force, where h = h(x, y, t) is the
liquid film height. A robust and accurate finite difference method is developed for the thin
liquid film equations. For the advection part (h2 − h3)x, we use an implicit ENO (essentially
non-oscillatory) type scheme and get a good stability property. The resulting nonlinear dis-
crete system is solved by an efficient nonlinear multigrid method. Our numerical experiments
indicate that higher the film thickness, the faster the film front evolves. The concave front has
higher film thickness than the convex front. Combined these two effects cause the fingering
phenomena.

In Chapter 8, we propose a simple area preserving correction scheme for the two-phase im-
miscible incompressible Navier-Stokes flows with an immersed boundary method (IBM). The
IBM was originally developed to model blood flow in the heart and has been widely applied to
biofluid dynamics problems with complex geometries and immersed elastic membranes. The
main idea of IBM is to use a regular Eulerian computational grid for the fluid mechanics to-
gether with a Lagrangian representation of the immersed boundary. Using the discrete Dirac
delta function and the indicator function, we can include surface tension force, variable vis-
cosity and mass density, and gravitational force effects. The principal advantage of IBM for
two-phase fluid flows is its inherent accuracy due in part to the ability to use a large number of

1.2. OUTLINE OF THE THESIS 3

the interfacial marker points on the interface. However, because the interface between two flu-
ids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of
area preserving correction scheme is to correct the interface location normally to the interface
so that the area remains constant. Various numerical experiments are presented to illustrate the
efficiency and accuracy of the proposed conservative IBM for two-phase fluid flows.

In Chapter 9, cytokinesis is the process of cell division which has been extensively studied.
The site of cleavage and the functional response of cytoplasm have been controversial issues.
We present more realistic model for the site of cleavage using the aster relaxation theory. We
use an immersed boundary model of the axisymmetric eukaryotic cell division.

Finally, conclusions are drawn in Chapter 10.

4

Chapter 2

An unconditionally stable hybrid numerical method for the
Allen-Cahn equation

2.1. Introduction

This Chapter presents an unconditionally stable second-order hybrid numerical method for
the Allen-Cahn (AC) equation

∂c(x, t)

∂t
= −M

(
F ′(c(x, t))

ϵ2
−∆c(x, t)

)
, x ∈ Ω, 0 < t ≤ T, (2.1)

where Ω ⊂ Rd (d = 1, 2, 3) is a domain [1]. The quantity c(x, t) is defined as the difference
between the concentrations of the two components in a mixture. The coefficient, M , is a
constant mobility and M ≡ 1 is taken for convenience. The function, F (c) = 0.25(c2 − 1)2,
is the Helmholtz free-energy density, as shown in Fig. 2.1 [113]. The small positive constant ϵ
is the gradient energy coefficient related to the interfacial energy.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

composition, c

F
(c

)

FIGURE 2.1. A double well potential, F (c) = 0.25(c2 − 1)2.

The boundary condition is

∂c

∂n
= 0 on ∂Ω, (2.2)

where ∂
∂n denotes the normal derivative on ∂Ω. Let us define the Ginzburg-Landau free energy,

E(c) :=
∫
Ω

(
F (c)

ϵ2
+

|∇c|2

2

)
dx. (2.3)

2.1. INTRODUCTION 5

The AC equation can then be derived as the L2-gradient flow of the total free energy, E(c) [29].
The AC equation was introduced originally as a phenomenological model for antiphase domain
coarsening in a binary alloy [1]. The AC equation and its various modified forms have been
applied to a range of problems, such as phase transitions [1], image analysis [7, 41], motion
by mean curvature [15, 49, 52, 74, 87, 122], two-phase fluid flows [164], and crystal growth
[38, 158]. Therefore, an efficient and accurate numerical solution of this equation is needed to
better understand its dynamics.

In [7], the authors proposed the two-level semi-implicit finite-difference scheme. They
observed that their scheme is dominated by the second-order difference operator. In [23], the
authors proposed an unconditionally gradient stable scheme, which means that the discrete en-
ergy of Eq. (2.3) is decreasing regardless of time step sizes. Decreasing discrete energy implies
the pointwise boundedness of the numerical solution for the AC equation. They showed that
their scheme is indeed second-order accurate in space and first-order accurate in time. In [55],
the authors proposed an adaptive finite element approximations of the AC equation. In [56],
the authors proposed a new numerical scheme that combines the adaptive moving mesh method
with the semi-implicit Fourier spectral algorithm. By maintaining a similar accuracy, the pro-
posed method was shown to be far more efficient than the existing methods for microstructures
with small ratios of interfacial widths to the domain size. In [116], the authors used an adaptive
mesh refinement with a second-order L0−stable scheme. In [46], they used the exponential
time differencing method [28]. Eyre reported that the AC equation becomes an unconditional-
ly gradient stable algorithm if the free energy functional is split appropriately into contractive
and expansive parts,

E(c) =

∫ b

a

(
F (c)

ϵ2
+

c2x
2

)
dx

=

∫ b

a

(
c4 + 1

4ϵ2
+

c2x
2

)
dx−

∫ b

a

c2

2ϵ2
dx = Ec(c)− Ee(c) (2.4)

and the contractive part Ec(c) and expansive part −Ee(c) are treated implicitly and explicitly,
respectively [47]. The nonlinearly stabilized splitting scheme that involves a semi-implicit time
and centered difference space discretizations of Eq. (2.1) is

cn+1
i − cni

∆t
=

cni − (cn+1
i)3

ϵ2
+∆hc

n+1
i for i = 1, · · · , N ; n = 0, · · · , Nt − 1, (2.5)

where the discrete notations are defined in the following section. In [23], the authors reported
the energy decreasing property for the corresponding discrete problem by using the eigenvalues
of the Hessian matrix of the energy functional. An implicit Euler’s scheme is

cn+1
i − cni

∆t
=

cn+1
i − (cn+1

i)3

ϵ2
+∆hc

n+1
i . (2.6)

This scheme is much better than the simple explicit Euler’s scheme. However, the implicit
Euler’s scheme suffers from instability if a large time step is used [48]. Eq. (2.5) can be
reformulated as

cn+1
i − cni

∆tϵ2

∆t+ϵ2

=
cn+1
i − (cn+1

i)3

ϵ2
+∆hc

n+1
i .

2.2. PROPOSED OPERATOR SPLITTING ALGORITHM 6

This suggests that the unconditionally gradient stable scheme can be considered a time step
rescaling of the implicit Euler’s scheme. In addition,

∆tequiv =
∆tϵ2

∆t+ ϵ2
≤ min(∆t, ϵ2). (2.7)

That is, the scaled equivalent time step ∆tequiv is bounded by ϵ2, which is a small value. In
[31, 108], authors addressed unconditional stability of AC algorithms given by Eyre [48] and
showed that the equivalent time step is bounded.

As Eyre noticed, the explicit Euler’s scheme is not gradient stable and it was found that the
stable time steps are severely restricted. The implicit Euler’s scheme is conditionally gradient
stable and it suffers from uniqueness problem of solution with large time steps. It turns out
that the allowed time step sizes are just less than twice the explicit Euler’s step. The Crank-
Nicolson scheme also suffers from the solvability restriction. The semi-implicit Euler’s scheme
is much better compared to the explicit Euler’s scheme, but still not gradient stable [48]. Eyre’s
scheme Eq. (2.5) has also the equivalent time step limitation. In this paper, we propose an un-
conditionally stable and accurate numerical method for solving the AC equation. The proposed
method is based on operator splitting techniques. The AC equation was divided into a linear
and a nonlinear equation. The linear equation was solved using a Crank-Nicolson scheme and
the nonlinear equation was then solved analytically due to the availability of a closed-form
solution. The main benefit of operator splitting methods is that the stability depends on the
minimum of each term rather than the stability of all terms combined. The proposed scheme
for the AC equation involves two steps. First, ct = ∆c is solved numerically using a Crank-
Nicolson method. Second, ct = (c− c3)/ϵ2 is solved analytically.

This Chapter is organized as follows. In section 2.2, we propose an unconditionally stable
second-order hybrid numerical method for the AC equation. The numerical results showing the
accuracy, efficiency, and stability of the proposed method are presented in section 2.3. Finally,
conclusions are drawn in section 2.4.

2.2. Proposed operator splitting algorithm

In this section, an unconditionally stable second-order hybrid numerical method is pro-
posed for the AC equation. The unconditional stability means that arbitrarily large time steps
can be used in the numerical algorithm. For simplicity, we shall discretize the AC equation in
one-dimensional space, i.e., Ω = (a, b). Two and three-dimensional discretizations are defined
analogously. Let N be a positive even integer, h = (b − a)/N be a uniform grid size, and
Ωh = {xi = (i− 0.5)h, 1 ≤ i ≤ N} be the set of cell-centers. Let cni be the approximations
of c(xi, n∆t), where ∆t = T/Nt is the time step, T is the final time, and Nt is the total num-
ber of time steps. The zero Neumann boundary condition, Eq. (2.2), is first implemented by
requiring that for each n,

∇hc
n
1
2
= ∇hc

n
N+ 1

2
= 0,

where the discrete differentiation operator is ∇hc
n
i+ 1

2

= (cni+1 − cni)/h. We then define a

discrete Laplacian operator as ∆hci = (∇hci+ 1
2
−∇hci− 1

2
)/h and a discrete l2 inner product

2.2. PROPOSED OPERATOR SPLITTING ALGORITHM 7

as

⟨c,d⟩h = h

N∑
i=1

cidi,

where c = (c1, c2, · · · , cN). We also define the discrete l2 and maximum norms, respectively,
as ||c||h =

√
⟨c, c⟩h and ∥c∥∞ = max

1≤i≤N
|ci|. We propose the following operator splitting

scheme, which is an unconditionally stable second-order accurate hybrid scheme.
c∗i − cni
∆t

=
1

2
(∆hc

∗
i +∆hc

n
i), (2.8)

cn+1
i − c∗i
∆t

=
cn+1
i − (cn+1

i)
3

ϵ2
. (2.9)

Eq. (2.8) is a Crank-Nicolson scheme for ct = ∆c with an initial condition cn. Using a von
Neumann stability analysis [45], it can be seen that this scheme is unconditionally stable. The
resulting implicit discrete system of equations can be solved by a fast solver such as a multigrid
method [11, 153]. Eq. (2.9) can be considered as an approximation of the equation

ct =
c− c3

ϵ2
(2.10)

by an implicit Euler’s method with the initial condition c∗. We can solve Eq. 2.10 analytically
by the method of separation of variables [143]. The solution is given as follows:

cn+1
i =

c∗i e
∆t
ϵ2√

1 + (c∗i)
2(e

2∆t
ϵ2 − 1)

=
c∗i√

e−
2∆t
ϵ2 + (c∗i)

2(1− e−
2∆t
ϵ2)

.

The proposed operator splitting algorithm is shown schematically in Fig. 2.2.

cn+1

cn
ct = ∆c

(multigrid method)

//

99t
t

t
t

t
t

t
t

t
t

t
c∗

ct =
c− c3

ϵ2
(analytical solution)

OO

FIGURE 2.2. A hybrid numerical method for the AC equation.

Finally, the proposed scheme can be written as follows:
c∗i − cni
∆t

=
1

2
(∆hc

∗
i +∆hc

n
i) for i = 1, · · · , N and n = 0, · · · , Nt − 1

cn+1
i =

c∗i√
e−

2∆t
ϵ2 + (c∗i)

2(1− e−
2∆t
ϵ2)

.

2.3. NUMERICAL EXPERIMENTS 8

2.3. Numerical experiments

In this section, the following numerical tests were performed: finding the relationship
between the ϵ value and the width of the transition layer, traveling wave solutions, convergence
test, stability and accuracy test, motion by the mean curvature, and the AC equation with a
logarithmic free energy. From the results of these numerical tests, it was confirmed that the
proposed scheme is second-order accurate in space and time and has unconditional stability.

2.3.1. The relationship between the ϵ value and the width of the transition layer.
Across the interfacial regions, the concentration field varies from −0.9 to 0.9 over a distance
of approximately 2

√
2ϵ tanh−1(0.9). Therefore, if we want this value to be approximately

m(> 0) grid points, the ϵ value needs to be taken as follows:

ϵm =
hm

2
√
2 tanh−1(0.9)

.

To confirm this, a simulation was run with the initial condition c(x, 0) = 0.01rand(x) on the
unit domain Ω = (0, 1) with h = 1/128, ∆t = E-5, and ϵ4. Here, rand(x) is a random number
between −1 and 1. In Fig. 2.3, the transition layer (from c = −0.9 to c = 0.9) is approximately
4 grid points at time t =3E-3 (circled line).

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.0

t=3E−4

t=3E−3

FIGURE 2.3. The evolution of an initial random distribution of concentration,
c(x, 0) = 0.01rand(x). The concentration profile is shown at t = 0, 3E-4,
and 3E-3.

2.3.2. Traveling wave solutions. Traveling wave solutions of Eq. (2.1) were obtained in
the following form:

c(x, t) =
1

2

(
1− tanh

x− st

2
√
2ϵ

)
, (2.11)

2.3. NUMERICAL EXPERIMENTS 9

where s = 3/(
√
2ϵ) is the speed of the traveling wave [23]. In Fig. 2.4, the numerical traveling

wave solutions (where the lines with symbols ‘∗’, ‘+’, and ‘·’ represent 128, 256, and 512
grids, respectively) with an initial profile (dashed line), c(x, 0) = 1

2(1 − tanh x
2
√
2ϵ
), on a

computational domain, Ω = (−0.5, 5.5). The following are selected: final time T = 2/s, time
step ∆t = T/16, and ϵ = 0.0197. The analytic final profile is c(x, T) = 1

2(1 − tanh x−2
2
√
2ϵ
).

The convergence of the results with grid refinement is qualitatively evident.

0 1 2 3 4 5
0

0.5

1

initial profile
128
256
512
exact solution

FIGURE 2.4. Numerical traveling wave solutions with an initial profile
(dashed line), c(x, 0) = 1

2(1 − tanh x
2
√
2ϵ
). The final time is T = 2/s. The

analytic solution at T is a solid line. Lines with symbols, ‘∗’, ‘+’, and ‘·’
represent 128, 256, and 512 grids, respectively.

2.3.3. Convergence test. The rate of convergence of the scheme is difficult to prove an-
alytically. However, numerical experimentation suggests that the scheme is second order ac-
curate in space and time. A quantitative estimate of the rate of convergence was obtained by
performing a number of simulations for the same initial profile on a set of increasingly finer
space grids and time steps. The initial conditions are

c(x, 0) =
1

2

(
1− tanh

x

2
√
2ϵ

)
, (2.12)

c(x, y, 0) =
1

2

(
1− tanh

x

2
√
2ϵ

)
, and (2.13)

c(x, y, z, 0) =
1

2

(
1− tanh

x

2
√
2ϵ

)
(2.14)

for one-, two-, and three-dimensional tests, respectively. The numerical solutions with initial
condition Eqs. (2.12)-(2.14) were calculated on the computational domain Ω = (−0.5, 1.5),
Ω = (−0.5, 1.5) × (−0.5, 1.5), and Ω = (−0.5, 1.5) × (−0.5/8, 1.5/8) × (−0.5/8, 1.5/8),
respectively. For one- and two- dimensional simulations, the parameters are h = 21−n, ϵ =
0.015, and s = 3/(

√
2ϵ) for n = 7, 8, 9, and 10. For each grid we integrate to time T = 1/s

with ∆t = h/(16s). Note that as we refine the space step we also refine the time step. The
error of the numerical solution was defined as eNt = (eNt

1 , eNt
2 , · · · , eNt

N), where eNt
i = cNt

i −
c(xi, T) for i = 1, · · · , N . Tables 2.1, 2.2, and 2.3 show the discrete l2 and maximum norms
of the errors and rates of convergence in one-, two-, and three- dimensions, respectively. These
results suggest that the scheme is indeed second-order accurate in space and time.

2.3. NUMERICAL EXPERIMENTS 10

TABLE 2.1. Convergence results in one dimension.

Case 128 Rate 256 Rate 512 Rate 1024
∥eNt∥2 3.444E-2 1.973 8.775E-3 1.962 2.252E-3 1.924 5.937E-4
∥eNt∥∞ 1.424E-1 1.969 3.637E-2 1.957 9.365E-3 1.915 2.483E-3

TABLE 2.2. Convergence results in two dimensions.

Case 128× 128 Rate 256× 256 Rate 512× 512 Rate 1024× 1024

∥eNt∥2 4.872E-2 1.973 1.241E-2 1.962 3.185E-3 1.929 8.367E-4
∥eNt∥∞ 1.425E-1 1.969 3.639E-2 1.960 9.351E-3 1.924 2.465E-3

TABLE 2.3. Convergence results in three dimensions.

Case 64× 82 Rate 128× 162 Rate 256× 322 Rate 512× 642

∥eNt∥2 3.218E-2 1.902 8.612E-3 1.973 2.193E-3 1.969 5.601E-4
∥eNt∥∞ 4.909E-1 1.785 1.424E-1 1.969 3.638E-2 1.967 9.304E-3

(a)

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Initial profile
Unconditional scheme
Implicit Euler’s scheme
New hybrid scheme
Exact solution

(b)

0 2 4 6 8 10 12 14 16
0

0.5

1

New hybrid scheme
Exact solution

FIGURE 2.5. (a) One step evolutions with three different schemes with a time
step ∆t = 1/s. (b) A numerical solution with new hybrid scheme at t = 10∆t.

2.3.4. Stability and accuracy tests. The stability of the proposed numerical algorithm
was compared with other methods. Fig. 2.5 (a) shows one step evolutions with three different

2.3. NUMERICAL EXPERIMENTS 11

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(a) ∆t = 100

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(b) ∆t = 10000

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(c) ∆t = 1000000

FIGURE 2.6. Snapshots after ten time step iterations with three different time steps.

schemes with a time step ∆t = 1/s and ϵ7, on the computational domain, Ω = (−0.5, 8.5),
with a 256 grid. The dashed line is the initial configuration, c(x, 0) = 1

2(1 − tanh x
2
√
2ϵ7

)

and the solid line is the exact solution c(x,∆t) = 1
2(1 − tanh x−1

2
√
2ϵ7

) at time t = ∆t. The
lines denoted with the star, circle, and diamond symbols are the numerical solutions with the
unconditional scheme, implicit Euler’s scheme and new hybrid scheme, respectively. The result
with the unconditional scheme traveled with the wrong speed, as was expected from the time
step rescaling property, Eq. (2.7). In this case, the equivalent time step of the unconditional
scheme is ∆tequiv ≈ 0.1115∆t. The implicit Euler’s scheme is unstable and reaches a wrong
profile. The new hybrid scheme is closest to the exact solution and is stable with respect to
a relatively large time step, ∆t = 1/s. Fig. 2.5 (b) shows a numerical solution with new
hybrid scheme at t = 10∆t. We can see that the new hybrid scheme is stable with a long time
evolution.

Next, we perform a numerical experiment with an example of spinodal decomposition of
a binary mixture in order to demonstrate the unconditionally stability of the scheme. In this
simulation, the initial condition was random perturbation with the maximum amplitude 0.02.

c(x, y, 0) = 0.02rand(x, y).

A 64 × 64 mesh was used on the computational domain Ω = (0, 1) × (0, 1) and differ-
ent time steps, ∆t = 100, ∆t = 10000, and ∆t = 1000000 were employed for the time
integration. We took the simulation parameters, h = 1/64 and ϵ7. In Fig. 6.2, we display
snapshots after ten time step iterations with three different time steps. These results suggest
that the scheme is indeed unconditionally stable.

The effect of the equivalent time step was compared with the proposed numerical algorith-
m. Fig. 2.7 shows 200-step evolutions using two different schemes with a time step ∆t = ϵ27, a
1024 grid and ϵ7 on the computational domain, Ω = (−0.5, 8.5). The dashed line is the initial
configuration, c(x, 0) = 1

2(1 − tanh x
2
√
2ϵ7

) and the solid line is the exact solution calculated
by Eq. (2.11) at time t = 200∆t. The symbols denoted with the star and circle are the numer-
ical solutions with the unconditional scheme Eq. (2.5) and new hybrid scheme, respectively.
The result shows that while the numerical solution with the new hybrid scheme is close to the
exact solution, the one with the unconditional scheme is far from the exact solution since the
equivalent time step is ∆tequiv = ∆tϵ27/(∆t+ ϵ27) = 0.5∆t.

2.3. NUMERICAL EXPERIMENTS 12

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Initial profile
Unconditional scheme
New hybrid scheme
Exact solution

FIGURE 2.7. The comparison with equivalent unconditional scheme with
∆t = ϵ27 at time t = 200∆t.

2.3.5. Mean curvature flow. Numerical simulations of surfaces evolving according to
their mean curvature are presented. Eq. (2.1) can be rewritten in the following form:

ct =
c− c3

ϵ2
+∆c.

It was formally shown that, as ϵ → 0, the zero level set of c, which is denoted by Γϵ
t := {x ∈

Ω : c(x, t) = 0}, approaches a surface Γt that evolves according to the geometric law

V = −κ = −
(

1

R1
+

1

R2

)
, (2.15)

where V is the normal velocity of the surface, Γt, at each point, κ is its mean curvature, and
R1 and R2 are the principal radii of curvatures at the point of the surface [1, 5, 51]. In d-
dimensions, with the same radii of curvature, Eq. (2.15) becomes

V =
1− d

R
. (2.16)

If the initial radius of the circular region is set to R0 and the radius at time t is denoted as
R(t), then Eq. (2.16) becomes dR(t)/dt = (1− d)/R(t). Its solution is given as follows:

R(t) =
√

R2
0 + 2(1− d)t. (2.17)

Hence the analytic area A(t) at time t is

A(t) = π(R2
0 + 2(1− d)t).

First, a two-dimensional test was performed with the following initial condition

c(x, y, 0) = tanh
0.25−

√
(x− 0.5)2 + (y − 0.5)2√

2ϵ
(2.18)

2.3. NUMERICAL EXPERIMENTS 13

0

0.5

1

0

0.5

1
−1

0

1

(a) t = 0

0

0.5

1

0

0.5

1
−1

0

1

(b) t = 0.0075

0

0.5

1

0

0.5

1
−1

0

1

(c) t = 0.015

(d)

0 0.005 0.01 0.015

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

A(t)

Exact
ε

10

ε
100

ε
300

FIGURE 2.8. (a), (b), and (c) show the evolution of the initial concentration
c(x, y, 0) given by Eq. (2.18). The times are shown below each figure. (d)
illustrates evolution of the radius with three different ϵ. Lines with the ‘+’,
‘∗’, and ‘◦’ symbols denote ϵ300, ϵ100, and ϵ10, respectively.

on the computational domain, Ω = (0, 1) × (0, 1) with a 512 × 512 mesh and a time step,
∆t = 0.0015h. Fig. 2.8 (a), (b), and (c) show the evolution of the initial concentration
c(x, y, 0) given by Eq. (2.18). The times are shown below each figure. Fig. 2.8 (d) shows that
as the ϵ size decreases from ϵ300 (‘+’) to ϵ100 (‘∗’) and ϵ10 (‘◦’), the numerical area A(t) of the
circle with time approaches the asymptotic value (solid line) given by Eq. (2.17).

Next, a three-dimensional test was performed with the following initial condition

c(x, y, z, 0) = tanh
0.4−

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2√

2ϵ

on the computational domain, Ω = (0, 1) × (0, 1) × (0, 1) with a 256 × 256 × 256 mesh and
a time step ∆t = 7E-6. Fig. 2.9 presents snapshots of the zero isosurface of the solution in
three-dimensional space. The times are shown below each figure. At time t = 0.0175, the
numerical radii of the sphere are 0.2999 (ϵ20), 0.2991 (ϵ40), and 0.2990 (ϵ60), respectively. The
analytic radius from Eq. (2.17) is 0.3. From these two- and three-dimensional numerical tests,
it was confirmed that Γϵ

t → Γt as ϵ → 0.

2.3. NUMERICAL EXPERIMENTS 14

(a) t = 0 (b) t = 0.0175

FIGURE 2.9. (a) and (b) are initial and final isosurfaces.

0.1 0.3 0.5 0.7 0.9
0.1

0.3

0.5

0.7

0.9

(a) t = 0
0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

(b) t = 0.001
0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

(c) t = 0.005
0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

(d) t = 0.020

FIGURE 2.10. Evolution of a star-shaped interface in a curvature-driven flow.
The tips of the star move inward, while the gaps between the tips move out-
ward.

Fig. 2.10 shows the evolution of a star-shaped interface in a curvature-driven flow on the
computational domain, Ω = (0, 1)× (0, 1), with a 128× 128 mesh and ∆t = 5E-5. The initial
configuration is defined as follows:

c(x, y, 0) = tanh
0.25 + 0.1 cos(7θ)−

√
(x− 0.5)2 + (y − 0.5)2√
2ϵ4

,

where

θ =

 tan−1
(
y−0.5
x−0.5

)
if x > 0.5

π + tan−1
(
y−0.5
x−0.5

)
otherwise.

The tips of the star move inward, while the gaps between the tips move outward. Once it
deforms to a circular shape, the radius of the circle shrinks with increasing speed.

Fig. 2.11 shows the evolution of a sphere perturbed with a spherical harmonic in curvature-
driven flow on the computational domain, Ω = (0, 1)× (0, 1)× (0, 1) with a 256× 256× 256
mesh and ∆t =E-5. The initial configuration is defined as follows

c(x, y, z, 0) = tanh
0.25 + 0.1Y10,7(θ, ϕ)− r√

2ϵ8
,

2.3. NUMERICAL EXPERIMENTS 15

(a) t = 0 (b) t = 0.003 (c) t = 0.012 (d) t = 0.015

FIGURE 2.11. Evolution of a sphere perturbed with a spherical harmonic in a
curvature-driven flow.

where r =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2, Y10,7(θ, ϕ) is a spherical harmonic [26],

θ =

 tan−1
(
y−0.5
x−0.5

)
if x > 0.5

π + tan−1
(
y−0.5
x−0.5

)
otherwise

is a polar angle, and ϕ = cos−1
(
z−0.5

r

)
is the azimuthal angle. As in the two-dimensional case,

once it deforms to a spherical shape, the radius of the sphere shrinks with increasing speed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

FIGURE 2.12. Temporal evolution of the two-dimensional dumbbell shape.
The computation was performed on a 512 × 256 mesh with h = 1/256, ϵ15,
∆t = 8E-5, and T = 0.072. The thicker line represents the initial config-
uration and the succeeding contour lines are increased by the time interval,
4.8E-3.

Fig. 2.12 shows the temporal evolution of the two-dimensional dumbbell shape. The initial
configuration is given by a dumbbell where the inner strip is centered on y = 0.5, and has a
width of 0.2, and the circles at either end of the strip have centers at (0.3, 0.5), (1.7, 0.5)
with a radius of 0.2. The computation is performed on a 512 × 256 mesh with h = 1/256,
ϵ15, ∆t = 8E-5, and T = 0.072. The thicker line represents the initial configuration and the
succeeding contour lines are incremented by the time interval, 4.8E-3.

Fig. 2.13 shows the temporal evolution of a three-dimensional dumbbell shape. The
initial configuration is given by a dumbbell where the inner cylinder, which is centered on

2.3. NUMERICAL EXPERIMENTS 16

(a) t = 0 (b) t = 0.004

(c) t = 0.0052 (d) t = 0.010

FIGURE 2.13. Temporal evolution by the mean curvature of the three-
dimensional dumbbell shape. (a) The initial surface. The times are shown
below each figure. The computation was performed on a 256×128×128 grid.

(x, 0.5, 0.5), has a radius of 0.1, and the spheres at either end of the cylinder have center-
s at (0.3, 0.5, 0.5), (1.7, 0.5, 0.5) with a radius 0.2. The computation was carried out on a
256× 128× 128 mesh with h = 1/128, ϵ8, and ∆t = 4E-5. Initially the radius of the handle
was much smaller than that of the spheres on the end. Therefore, the handle was expected to
shrink at a faster rate so that the handle would pinch off after some time. The handle pinches
off at approximately t = 0.005, and the two spheres disappear at approximately t = 0.0106.

0
0.5

1

0
0.5

1
−1

0

1

0
0.5

1

0
0.5

1
−1

0

1

0
0.5

1

0
0.5

1
−1

0

1

0
0.5

1

0
0.5

1
−1

0

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) t = 0
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) t = 0.0294
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) t = 0.0534
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d) t = 0.0780

FIGURE 2.14. Evolution of the double circles in a curvature-driven flow on
the domain Ω = (0, 1)× (0, 1) with a 128× 128 mesh, ∆t = 6E-5, and ϵ8.

Fig. 2.14 shows the evolution of the double circles on the computational domain Ω =
(0, 1) × (0, 1) with a 128 × 128 mesh and ∆t = 6E-5. The initial configuration is defined as

2.3. NUMERICAL EXPERIMENTS 17

follows:

c(x, y, 0) = tanh
0.4−

√
(x− 0.5)2 + (y − 0.5)2√

2ϵ

− tanh
0.3−

√
(x− 0.5)2 + (y − 0.5)2√

2ϵ
− 1.

The smaller circle has a larger curvature, and shrinks faster than the larger circle. After the
smaller circle disappears, the larger one also decreases in size.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.5 1 1.5

0.2

0.4

0.6

0.8

(a) t = 0
0.5 1 1.5

0.2

0.4

0.6

0.8

(b) t = 0.016
0.5 1 1.5

0.2

0.4

0.6

0.8

(c) t = 0.0208

FIGURE 2.15. Evolution of the torus in curvature-driven flow on the domain
Ω = (0, 2) × (0, 2) × (0, 1) with a 256 × 256 × 128 mesh, ∆t = 4E-5, and
ϵ8. The times are shown below each figure.

Fig. 2.15 (a) shows the evolution of the torus in a curvature-driven flow on the computa-
tional domain, Ω = (0, 2)× (0, 2)× (0, 1) with a 256× 256× 128 mesh, ∆t = 4E-5, and ϵ8.
Fig. 2.15 (b) and (c) show the horizontal and vertical sections of the torus, respectively. Unlike
the two-dimensional case, the inner circle increases in size because the mean curvature drives
the motion into the inside of the torus. This is a three-dimensional phenomenon.

2.3.6. The Allen-Cahn equation with a logarithmic free energy. Our proposed method
can be applied to a class of potentials F (c). For example, let us consider the logarithmic free
energy, i.e., F (c) = θ

2 [(1+ c) ln(1+ c)+ (1− c) ln(1− c)]− θc
2 c

2, where θ and θc are positive

2.4. CONCLUSIONS 18

constants with θ < θc. Fig. 2.16 shows the logarithmic free energy F (c) with θ = 1.0 and
θc = 1.2.

−1 −0.5 0 0.5 1

−0.02

−0.01

0

0.01

0.02

0.03

composition, c

F
(c

)

FIGURE 2.16. A logarithmic free energy, F (c) = θ
2 [(1 + c) ln(1 + c) + (1−

c) ln(1− c)]− θc
2 c

2, with θ = 1.0 and θc = 1.2.

In this case, we propose the following operator splitting scheme:
c∗i − cni
∆t

=
1

2
(∆hc

∗
i +∆hc

n
i), (2.19)

cn+1
i − c∗i
∆t

= − 1

2ϵ2
(F ′(cn+1) + F ′(c∗)). (2.20)

Since a closed form solution is not available for ct = −F ′(c)/ϵ2 with a logarithmic free
energy, we apply Newton’s method [8] to solve Eq. (2.20). It turns out that Newton’s algorithm
typically requires only one or two iterations to achieve acceptable accuracy.

As a test problem, we consider spinodal decomposition of a binary mixture. The initial
condition was random perturbation with the maximum amplitude 0.1

c(x, y, 0) = 0.1rand(x, y)

on the computational domain Ω = (0, 1)× (0, 1). In this test, a 64× 64 mesh and a time step
∆t = 5E-5 were used. We took the simulation parameters, h = 1/64, ϵ = 0.0075, θ = 1.0,
and θc = 1.2. In Fig. 2.17, we display the evolution of the phase-field at different times.
From the results it can be seen that our proposed scheme is applicable to the AC equation with
potentials other than F ′(c) = c3 − c.

2.4. Conclusions

As Eyre noticed, the explicit Euler’s scheme for the CH equation is not gradient stable
and the stable time steps are severely restricted. The implicit Euler’s scheme is conditionally
gradient stable and it suffers from uniqueness problem of solution with large time steps. It turns
out that the allowed time step sizes are just less than twice the explicit Euler’s step. The Crank-
Nicolson scheme also suffers from the solvability restriction. The semi-implicit Euler’s scheme
is much better compared to the explicit Euler’s scheme, but still not gradient stable [48]. Eyre’s

2.4. CONCLUSIONS 19

0
0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(a) t = 0

0
0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(b) t = 0.001

0
0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(c) t = 0.002

0
0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

(d) t = 0.02

FIGURE 2.17. The evolution of the phase-field at different times. The times
are shown below each figure.

scheme has also the equivalent time step limitation. In this Chapter, an unconditionally stable
second-order hybrid numerical method was developed to solve the AC equation. The proposed
method was based on operator splitting techniques. The linear equation was solved using a
Crank-Nicolson scheme and the nonlinear equation was then solved analytically. A variety
of numerical experiments were presented to confirm the accuracy, efficiency, and stability of
the proposed method. In particular, the scheme was shown to be unconditionally stable and
second-order accurate in both time and space.

This Chapter is published in Computers and Mathematics with Applications, Vol. 60,
No. 6, pp. 1591–1606, 2010.

20

Chapter 3

An unconditionally stable hybrid method for image segmentation

3.1. Introduction

Image segmentation is one of the fundamental tasks in automatic image analysis. Its goal
is to partition a given image into regions that contain distinct objects. For example, the seg-
mentation of structures from images is an important first step for object recognition [14], in-
terpretation [119], and image inpainting [12, 19, 33]. The most common form of segmentation
is based on the assumption that distinct objects in an image have different and approximately
constant colors. A natural approach is therefore to decompose an image domain into approx-
imately homogeneous regions that are separated by sharp changes in image features. One
of the general approaches for image segmentation is the minimizer of the piecewise constant
Mumford-Shah functional [118]. Chan-Vese [36, 154] solved the minimization problem by the
level set method proposed by Osher and Sethian[123]. The level set method is used to trace in-
terfaces separating a domain into subdomains and contour the image in the zero level set of the
interface. Recently, the Allen-Chan equation [1] has been used in solving the image segmen-
tation problems [7, 22, 50, 104]. Esedoḡlu and Tsai [50] proposed the Allen-Cahn equation,
also known as the phase field model, as a method to solve the reduced Mumford-Shah problem
with the Chan-Vese fitting terms.

In this Chapter, we propose an unconditionally stable hybrid numerical method which con-
sists of the Allen-Cahn equation and a fitting term. An operator splitting technique is used to
solve the model numerically. We describe its numerical solution algorithm and give a proof of
the unconditional stability of the scheme. We also present various numerical results on real im-
ages and synthetic images with various types and levels of noise to demonstrate the efficiency,
robustness, and accuracy of the proposed numerical method.

This Chapter is organized as follows. In section 3.2, three models for image segmentation
are briefly reviewed. In section 3.3, we describe the proposed unconditionally stable hybrid
operator splitting method and provide a proof of the unconditional stability of the scheme. In
section 3.4, we perform some characteristic numerical experiments for image segmentation.
Finally, conclusions are given in section 3.5.

3.2. Description of the previous models

In this section, we briefly review three approaches such as Mumfor-Shah, Chan-Vese, and
phase-field models for image segmentation.

3.2.1. Mumford-Shah model. With a given image f0 on the image domain Ω and its
segmenting curve C, Mumford and Shah [118] proposed that the segmentation of an image
can be obtained through the minimization of the following Mumford-Shah energy functional:

3.2. DESCRIPTION OF THE PREVIOUS MODELS 21

EMS(f, C) = µLength(C) +

∫
Ω
|f0(x)− f(x)|2dx+ ν

∫
Ω\C

|∇f(x)|2dx, (3.1)

where µ, ν are positive parameters and f is the piecewise smooth approximation to f0. Howev-
er, in practice it is not easy to minimize this functional because of the unknown set C of lower
dimension than f .

3.2.2. Chan-Vese model. Chan and Vese proposed an algorithm for decomposing the im-
age into two regions with piecewise constant approximations by minimizing the energy of the
Mumford and Shah functional

ECV(c1, c2,C) = µLength(C) + λ1

∫
inside(C)

|f0(x)− c1|2dx

+ λ2

∫
outside(C)

|f0(x)− c2|2dx, (3.2)

where µ, λ1 and λ2 are positive parameters [67, 113]. The constants c1 and c2 are the averages
of f0 inside and outside of C, respectively. To avoid the same problem as the Mumform and
Shah model, Chan and Vese [36] replaced the unknown curve C by the level-set function ϕ(x),

ϕ(x)

 > 0 if x ∈ inside C,
= 0 if x ∈ C,
< 0 if x ∈ outside C.

(3.3)

Then the energy functional ECV (c1, c2, C) can be rewritten by ECV (c1, c2, ϕ) as

ECV (c1, c2, ϕ) = µ

∫
Ω
δϵ(ϕ(x)) |∇ϕ(x)| dx+ λ1

∫
Ω
|f0(x)− c1|2Hϵ(ϕ(x))dx

+λ2

∫
Ω
|f0(x)− c2|2(1−Hϵ(ϕ(x)))dx, (3.4)

where Hϵ and δϵ are the regularized approximations of the Heaviside function and the Dirac
delta function, respectively, and are defined as

Hϵ(z) =
1

2
+

1

π
arctan

(z
ϵ

)
and δϵ(z) =

ϵ

π(ϵ2 + z2)
(3.5)

and the constants c1 and c2 represent the mean intensity value of their own regions and are
defined by

c1 =

∫
Ω f0(x)Hϵ(ϕ(x))dx∫

ΩHϵ(ϕ(x)))dx
and c2 =

∫
Ω f0(x)(1−Hϵ(ϕ(x)))dx∫

Ω (1−Hϵ(ϕ(x)))dx
. (3.6)

By using the gradient descent method, we get the following:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇ ·

(
∇ϕ

|∇ϕ|

)
− λ1(f0(x)− c1)

2 + λ2(f0(x)− c2)
2

]
. (3.7)

The level set based algorithm of Chan and Vese can be used to process the image with a large
amount of noise and detect objects whose boundaries can not be defined by gradient.

3.3. NUMERICAL SOLUTION 22

3.2.3. Phase-field model. A phase-field approximation for minimizing the Mumford-Shah
functional, by using Allen-Cahn equation to replace the length of the segmenting curve C, is
given by the following energy functional:

E(ϕ) =
∫
Ω

(
F (ϕ)

ε2
+

|∇ϕ|2

2
+G(ϕ, f0)

)
dx, (3.8)

where F (ϕ) = 0.25(ϕ2 − 1)2 is a double-well potential as shown in Fig. 2.1, ϵ is the gradient
energy coefficient related to the interfacial energy, and Ω is the image domain. The third term
in the functional is defined as

G(ϕ, f0) =
λ

2

[
(1 + ϕ)2(f0 − c1)

2 + (1− ϕ)2(f0 − c2)
2
]
.

Here, λ is a nonnegative parameter and f0 is the given image. Also c1 and c2 are the averages
of f0 in the regions (ϕ ≥ 0) and (ϕ < 0), respectively:

c1 =

∫
Ω f0(x)(1 + ϕ(x))dx∫

Ω (1 + ϕ(x))dx
and c2 =

∫
Ω f0(x)(1− ϕ(x))dx∫

Ω (1− ϕ(x))dx
. (3.9)

Once ϕ reaches a steady state, the zero level set of ϕ becomes the contour that separates
the object from the background. For this purpose, we seek a law of evolution in the form [34]:

ϕt = −gradE(ϕ).

The symbol ‘grad’ here denotes the gradient in the space L2(Ω). Let ϕ, φ ∈ D = {c ∈
H2(Ω)| ∂c∂n = 0 on ∂Ω}. Then, we have

(gradE(ϕ), φ)L2 = lim
h→0

E(ϕ+ hφ)− E(ϕ)
h

=

∫
Ω

(
F ′(ϕ)

ε2
−∆ϕ+ λ[(1 + ϕ)(f0 − c1)

2 − (1− ϕ)(f0 − c2)
2]

)
φdx

=

(
F ′(ϕ)

ε2
−∆ϕ+ λ[(1 + ϕ)(f0 − c1)

2 − (1− ϕ)(f0 − c2)
2], φ

)
L2

.

Therefore, we get the following gradient descent flow equation:

ϕt = −F ′(ϕ)

ε2
+∆ϕ− λ[(1 + ϕ)(f0 − c1)

2 − (1− ϕ)(f0 − c2)
2]. (3.10)

3.3. Numerical solution

In this section, we propose a new unconditionally stable hybrid numerical method for min-
imizing the piecewise constant Mumford-Shah functional of image segmentation. An operator
splitting technique is used to solve the governing partial differential equations numerically. We
split its numerical solution algorithm into two linear equations and one nonlinear equation. One
of the linear equations and the nonlinear equation are solved analytically due to the availability
of closed-form solutions. The other linear equation is discretized using an implicit scheme
and the resulting discrete system of equations is solved by a fast numerical method such as a
multigrid method. We analyze and prove the unconditional stability of the scheme.

3.3. NUMERICAL SOLUTION 23

3.3.1. Proposed numerical scheme. We shall discretize Eq. (3.10) in a two dimensional
space, i.e.,Ω = (a, b) × (c, d). Let Nx and Ny be positive even integers, h = (b − a)/Nx be
the uniform mesh size, and Ωh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤
Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let ϕn

ij be approximations of ϕ(xi, yj , n∆t),
where ∆t = T/Nt is the time step, T is the final time, and Nt is the total number of time steps.
Then we propose the following operator splitting numerical algorithm:

ϕn+1 − ϕn

∆t
= − F ′(ϕn+1)

ϵ2
+∆dϕ

n+1,2

− λ[(1 + ϕn+1,1)(f0 − cn1)
2 − (1− ϕn+1,1)(f0 − cn2)

2], (3.11)

where F ′(ϕ) = ϕ(ϕ2−1) and ϕn+1,k for k = 1, 2 are defined in the following operator splitting
scheme.

ϕn+1,1 − ϕn

∆t
= −λ[(1 + ϕn+1,1)(f0 − cn1)

2 − (1− ϕn+1,1)(f0 − cn2)
2], (3.12)

ϕn+1,2 − ϕn+1,1

∆t
= ∆dϕ

n+1,2, (3.13)

ϕn+1 − ϕn+1,2

∆t
= −F ′(ϕn+1)

ϵ2
, (3.14)

where cn1 and cn2 are defined as follows:

cn1 =

Nx∑
i

Ny∑
j
f0,ij(1 + ϕn

ij)

Nx∑
i

Ny∑
j
(1 + ϕn

ij)

and cn2 =

Nx∑
i

Ny∑
j
f0,ij(1− ϕn

ij)

Nx∑
i

Ny∑
j
(1− ϕn

ij)

. (3.15)

We can consider Eq. (3.12) is an approximation of the equation

ϕt = −λ[(f0 − c1)
2 + (f0 − c2)

2]ϕ− λ[(f0 − c1)
2 − (f0 − c2)

2] (3.16)

by an implicit Euler’s method with an initial condition ϕn. We can solve Eq. (3.16) analytically
since it is a first-order linear differential equation and the solution at t = ∆t is given as

ϕn+1,1 = e−λ[(f0−cn1)
2+(f0−cn2)

2]∆tϕn

+ (e−λ[(f0−cn1)
2+(f0−cn2)

2]∆t − 1)
(f0 − cn1)

2 − (f0 − cn2)
2

(f0 − cn1)
2 + (f0 − cn2)

2
. (3.17)

Next the implicit discrete Eq. (3.13) can be solved by a multigrid method [11, 153] with
the initial condition ϕn+1,1. Finally we can consider Eq. (3.14) as an approximation of the
equation

ϕt =
ϕ− ϕ3

ϵ2
(3.18)

3.3. NUMERICAL SOLUTION 24

by an implicit Euler’s method with the initial condition ϕn+1,2. Then the solution at t = ∆t of
Eq. (3.18), solved by the method of separation of variables [143], is given as

ϕn+1 =
ϕn+1,2√

e
−2∆t
ϵ2 + (ϕn+1,2)2(1− e

−2∆t
ϵ2)

.

Finally, our proposed scheme is written as

ϕn+1,1 = e−λ[(f0−cn1)
2+(f0−cn2)

2]∆tϕn

+(e−λ[(f0−cn1)
2+(f0−cn2)

2]∆t − 1)
(f0 − cn1)

2 − (f0 − cn2)
2

(f0 − cn1)
2 + (f0 − cn2)

2
,(3.19)

ϕn+1,2 − ϕn+1,1

∆t
= ∆dϕ

n+1,2, (3.20)

ϕn+1 =
ϕn+1,2√

e
−2∆t

ϵ2 + (ϕn+1,2)2(1− e
−2∆t

ϵ2)

. (3.21)

The solutions of Eqs. (3.19) and (3.21) are explicitly defined. Eq. (3.20) is a heat equation
and we apply a fast solver such as a multigrid method to solve the equation.

3.3.2. Stability analysis for the proposed scheme. When we solve time-dependent par-
tial differential equations, stability of the numerical scheme to the equations is very important.
Explicit time integration schemes are generally only conditionally stable and require small time
steps to be employed to insure numerical stability. And the step size restriction is often more
severe than accuracy considerations require. However, our proposed hybrid splitting method is
an unconditionally stable scheme. For simplicity, let us define

α = e−λ[(f−cn1)
2+(f−cn2)

2]∆t and β =
(f0 − cn1)

2 − (f0 − cn2)
2

(f0 − cn1)
2 + (f0 − cn2)

2
.

Then, Eq. (3.19) can be rewritten as follows:

ϕn+1,1 = αϕn + (α− 1)β.

Now, we get

|ϕn+1,1| ≤ α|ϕn|+ (1− α)|β| ≤ α+ 1− α = 1. (3.22)

Here we have used 0 < α ≤ 1, |β| ≤ 1, and |ϕn| ≤ 1. For Eq. (3.20), a von Neumann stability
analysis [45] shows that an implicit Euler’s method is unconditionally stable. The inequality
|ϕn+1,2| ≤ ∥ϕn+1,1∥∞ is satisfied by the discrete maximum principle for the heat equation
[117]. Then by Eq. (3.22), we get |ϕn+1,2| ≤ 1. And for the Eq. (3.21):

|ϕn+1| =
∣∣ϕn+1,2

∣∣√
e

−2∆t
ϵ2 + (ϕn+1,2)2(1− e

−2∆t
ϵ2)

=
1√

1 +
(

1
(ϕn+1,2)2

− 1
)
e

−2∆t
ϵ2

≤ 1.

3.4. EXPERIMENTAL RESULTS 25

Therefore, if |ϕn| ≤ 1, then we get |ϕn+1| ≤ 1. Therefore the proposed scheme is uncondi-
tionally stable for any time step. And we also define the numerical quadrature for the energy
functional, Eq. (5.1).

E(ϕ) =
Nx∑
i

Ny∑
j

h2
(
F (ϕij)

ε2
+

|∇ϕij |2

2
+

λ

2
(1 + ϕij)

2(f0,ij − c1)
2

+
λ

2
(1− ϕij)

2(f0,ij − c2)
2

)
. (3.23)

3.4. Experimental results

In this section, we present numerical results using the proposed numerical algorithm on
various synthetic and real images. We show that a very fast and accurate minimization can be
achieved by the proposed algorithm. In our numerical experiments, we normalize the given
image f as f0 = f−fmin

fmax−fmin
, where fmax and fmin are the maximum and the minimum values

of the given image, respectively. Across the interfacial regions, the phase field varies from
−0.9 to 0.9 over a distance of approximately 2

√
2ϵ tanh−1(0.9). Therefore, if we want this

value to be approximately m grid points, then the ϵ value needs to be taken as follows:

ϵm =
hm

2
√
2 tanh−1(0.9)

.

Since solutions with the proposed numerical scheme are almost insensitive to the initial con-
figuration of ϕ, we simply initialize ϕ0 = 2f0 − 1.

(a) (b)

(c) (d)

FIGURE 3.1. (a) Original image with 10% salt-and-pepper noise. (b), (c), and
(d) are the contours at times t = 0, 2E-5 (1 iteration), and 8E-5 (4 iterations),
respectively.

3.4.1. Salt-and-pepper noise. We start with an example with a synthetic image. In Fig.
3.1, (a) is the image named ‘Allen-Cahn’ with ‘Brush Script MT’ Font and deblurring in 10%
salt-and-pepper noise [2] on the computational domain, Ω = (0, 4) × (0, 1) with a 512 × 128
mesh. Interface parameter ϵ8, ∆t = 2E-5, and λ = 1E4 are used. Salt-and-pepper noise is
defined as randomly occurring white and black pixels. The given probability r% means setting
a fraction of (r/2)% randomly selected pixels to black and the other (r/2)% randomly to white.
(b), (c), and (d) are zero-level filled contours at times t = 0, 2E-5 (1 iteration), and 8E-5 (4
iterations), respectively. We also note that we can segment the enclosed holes in the letters. Fig.
3.2 is an image segmentation for a fingerprint on the computational domain Ω = (0, 1)× (0, 1)

3.4. EXPERIMENTAL RESULTS 26

with a 256 × 256 mesh. Interface parameter ϵ2, time step ∆t = 5E-6, and λ = 5E4 are used.
We can observe that the proposed model fully segments the image after only 4 iterations.

FIGURE 3.2. Finger print. From left to right: (The first row : Initial image,
10% salt-and-pepper noise is superposed over the original, contour of the ini-
tial image with noise, The second row : t = 4E-6, t = 8E-6, t = 2E-5).

3.4.2. Gray-scale noise. Fig. 3.3 shows characters with gray-scale noise. r% gray-scale
noise means that r% of the pixels in the image are replaced with random numbers chosen from
a uniform distribution between 0 and 1. The computational domain is set to Ω = (0, 4)× (0, 1)
with a 512× 128 mesh. Interface parameter ϵ10, time step ∆t = 5E-5, and λ = 5E3 are used.
The left column consists of the original images with 10%, 25%, 50% noise respectively, and
the right column consists of the restored images. The proposed model segments the image with
10% and 25% gray-scale noise. It should be noticed that, since the noise is so much higher,
the result for the 50% noise-blurred image cannot completely contour the image. But on the
whole, our proposed model has done successfully.

3.4.3. Contours without gradient. In this example, we show that our proposed model
can be used to detect cognitive contours from objects which cannot be defined by a gradient.
We want to test our method on a very challenging image with scattered data, i.e., a satellite
image of Europe showing clusters of light. In Fig. 3.4, the segmentation of Europe night-lights
is shown. The computational domain is set to Ω = (0, 1) × (0, 1) with a 256 × 256 mesh.
Interface parameter ϵ600, time step ∆t = 1.25E-4, and λ = 7.5E4 are used. The method
produces visually clear results. It only took 20 iterations, which is one order of magnitude
smaller than the previous methods [36, 104].

3.4. EXPERIMENTAL RESULTS 27

(a)

10% noise Restored

(b)

25% noise Restored

(c)

50% noise Restored

FIGURE 3.3. The same image with gray-scale noise. (a) (left) Initial image
with 10% gray-scale noise and (right) reconstructed values with only 4 itera-
tions. (b) (left) Initial image with 25% gray-scale noise and (right) reconstruct-
ed values with only 5 iterations. (c) (left) Initial image with 50% gray-scale
noise and (right) reconstructed values with only 8 iterations.

(a) (b) (c) (d)

FIGURE 3.4. Europe night-lights. (a) initial image, (b) contour of the initial
image, (c) t = 2.5E-4 (2 iterations), and (d) t = 2.5E-3 (20 iterations).

3.4.4. Blood vessel image. Fig. 3.5 shows the segmentation results for two real blood
vessel (left anterior descending) images with inhomogeneous intensity via use of the proposed
numerical method. The computational domain in the first row is set to Ω = (0, 1)× (0, 1) with
a 256 × 256 mesh. Interface parameter ϵ20, time step ∆t = 1.6E-6, and λ = 1E6 are used.
And the second row is set to Ω = (0, 1)× (0, 1) with a 64× 64 mesh. Interface parameter ϵ6,
time step ∆t = 1.6E-6, and λ = 5E5 are used. It can be seen from the third column of Fig. 3.5
that the images are successfully segmented after 16 iterations.

3.4. EXPERIMENTAL RESULTS 28

(a) 0 iteration (b) 8 iterations (c) 16 iterations

(d) 0 iteration (e) 8 iterations (f) 16 iterations

FIGURE 3.5. The images with two left anterior descending vessels. The first
column contains initial images. The second and the third columns are images
with contours. The iteration numbers are shown below each figure.

(a) (b) (c) (d)

FIGURE 3.6. Segmentation of the image for a solid brain tumor. (a) Initial
image, (b) contour of the initial image, (c) contour the image (20 iteration),
and (d) contour is superposed over the initial image to show the accuracy.

3.4.5. Brain MR image. We show that our proposed model can be used to analyze medi-
cal images to provide necessary and useful information for medical treatment. In Fig. 3.6, the
segmentations of brain MR image are shown on the computational domain Ω = (0, 1)× (0, 1)
with a 256×256 mesh. Interface parameter ϵ5, time step ∆t = 5E-6, and λ = 1E4 are used. As

3.5. CONCLUSION 29

can be observed, the agreement between the area of the brain solid tumor and the segmentation
of image is obvious.

(a) Original image (b) 0 iteration

(c) 2 iterations (d) 6 iterations

FIGURE 3.7. Texture image. (a) Initial image, (b) contour of the initial image,
(c) t = 2E-4 (2 iterations), and (d) t = 6E-4 (6 iterations).

3.4.6. Texture image. Texture image, based on local spatial variations of intensity or col-
or to identify these types of homogeneous image regions, is one of the most important attributes
used in image analysis and pattern recognition. Fig. 3.7 shows that our proposed model can
be very useful in detecting texture image segmentation. The computational domain is set to
Ω = (0, 1)× (0, 1) with a 256× 256 mesh. Interface parameter ϵ50, time step ∆t = 1E-4, and
λ = 1E4 are used. As can be seen, our proposed method has performed well in texture image
segmentation with smoothing.

3.5. Conclusion

In this Chapter, we proposed an unconditionally stable hybrid numerical scheme for mini-
mizing the problems associated with the piecewise constant Mumford-Shah functional of image
segmentation. The model and its numerical scheme are based on the Allen-Cahn equation and

3.5. CONCLUSION 30

an operator splitting technique, respectively. We described the numerical solution algorithm
and gave a proof of the unconditional stability of the numerical scheme. Finally various exper-
imental results on real images and synthetic images with various types and levels of noise were
presented to demonstrate the accuracy and efficiency of the proposed method.

31

Chapter 4

A fast and accurate numerical method for medical image
segmentation

4.1. Introduction

Image segmentation is one of the fundamental tasks in automatic image analysis. Its goal
is to partition a given image into several regions in each of which the intensity is homogeneous.
Up to now, a great number of algorithms have been proposed to solve the image segmentation
problem. Among them, there are roughly two classical basic models based on the edges or
based on the regions, which are widely used with great efforts nowadays. For the geodesic
snake [3, 21, 25, 98, 85, 165] based on the edges, gradient flow is used as a stopping operator
to get accurate boundaries with high variation in gradient to attract the curve to object bound-
ary, while Chan-Vese method [36, 154], which is a representative model based on the regions
and widely applied for various applications in image aspects, may suffer from the intensity
inhomogeneity, since it only relies on the global information of homogeneous regions. For the
medical images are the kind of images, filled with multiple merging and splitting of contours,
geometric active contour model [3, 21, 25, 98, 165], which is a famous theory based on the
level set method [123] and acting as the most importance tools for simultaneously tracking
the edges of objects by geometric flows, may be the better choice to efficiently perform those
segmentations.

In this Chapter, we propose a robust and accurate geometric active contour model and its
numerical solution algorithm for image segmentation. The model is based on the modified
Allen-Cahn equation. An operator splitting technique is used to solve the model numerically.
In particular, we propose an initialization algorithm based on an edge stepping function for the
fast image segmentation. We present various numerical results on artificial and real images to
demonstrate the robustness, and accuracy of the proposed numerical method.

The outline of this Chapter is the following. In Section 4.2, the governing equation based
on Allen-Cahn equation is presented. In Section 4.3, we describe the proposed hybrid operator
splitting method. In Section 4.4, we perform some characteristic numerical experiments for
computational examples. Finally, in Section 4.5, conclusions are drawn.

4.2. Modified Allen-Cahn equation

For a given image f0(x), where x = (x, y), on the image domain Ω and its segmenting
curve C. By the level-set function ϕ(x),

ϕ(x)

 > 0 if x ∈ inside C,
= 0 if x ∈ C,
< 0 if x ∈ outside C.

(4.1)

4.3. PROPOSED NUMERICAL SOLUTION 32

The geometric active contour model based on the mean curvature motion is given by the fol-
lowing evolution equation [21]:

ϕt = g(f0)|∇ϕ|∇ ·
(

∇ϕ

|∇ϕ|

)
+ λg(f0)|∇ϕ|, (4.2)

where λ is a parameter and g is an edge stopping function. For example,

g(f0(x)) =
1

1 + |∇(Gσ ∗ f0)(x)|2
, (4.3)

where (Gσ ∗f0)(x), a smoother version of f0, is the convolution of the given image f0 with the
Gaussian function Gσ = 1

2πσ2 e
−(x2+y2)/(2σ2). The function g(f0(x)) is close to zero where

the gradient of the image is high and is close to one in homogeneous regions.
We propose a phase-field approximation for the geometric active segmentation by using

the modified Allen-Cahn equation. In a phase-field model, we introduce an order parameter, ϕ,
which is plus one (black) and minus one (white). Then, the governing equation is as follows:

ϕt = g(f0)

(
−F ′(ϕ)

ϵ2
+∆ϕ

)
+ λg(f0)F (ϕ), (4.4)

where F (ϕ) = 0.25(1 − ϕ2)2 is a double-well potential. Note that Eq. (4.4) is similar to the
model proposed in [1], however, the new one is more robust and efficient compared to previous
model.

4.3. Proposed numerical solution

In this section, we shall discretize Eq. (4.4) in a two dimensional space, i.e.,Ω = (a, b) ×
(c, d). The numerical convolution Gσ∗f0 can be computed as following using a 3×3 smoothing
kernel:

(Gσ ∗ f0)ij =
i+1∑

p=i−1

j+1∑
q=j−1

f0pq
2πσ2

e−
[(i−p)2+(j−q)2]h2

2σ2 . (4.5)

Then, the edge function can be calculated by

g(f0)ij =
1

1 + (Gσ ∗ f0)2x,ij + (Gσ ∗ f0)2y,ij
, (4.6)

where (Gσ ∗ f0)x,ij = [(Gσ ∗ f0)i+1,j − (Gσ ∗ f0)i−1,j]/(2h). Then we propose the following
operator splitting numerical algorithm for Eq (4.4) :

ϕ∗
ij − ϕn

ij

∆t
= gij∆dϕ

∗
ij + λgijF (ϕn

ij), (4.7)

ϕn+1
ij − ϕ∗

ij

∆t
= −gij

F ′(ϕn+1
ij)

ϵ2
, (4.8)

If we add these two equations, then we have

ϕn+1
ij − ϕn

ij

∆t
= gij

(
−
F ′(ϕn+1

ij)

ϵ2
+∆dϕ

∗
ij

)
+ λgijF (ϕn

ij). (4.9)

4.4. COMPUTATIONAL EXAMPLES 33

The implicit discrete Eq. (4.7) can be solved by a multigrid method [153] with the initial
condition ϕn. Since we can consider Eq. (4.8) as an approximation of the equation

ϕt = g
ϕ− ϕ3

ϵ2
(4.10)

by an implicit Euler’s method with the initial condition ϕ∗. Then the solution at t = ∆t of Eq.
(6.8), solved by the method of separation of variables [143], is given as

ϕn+1
ij =

ϕ∗
ij√

e−
2gij∆t

ϵ2 + (ϕ∗
ij)

2

(
1− e−

2gij∆t

ϵ2

) .

Finally, our proposed scheme is written as

ϕ∗
ij − ϕn

ij

∆t
= gij∆dϕ

∗
ij + λgijF (ϕn

ij), (4.11)

ϕn+1
ij =

ϕ∗
ij√

e−
2gij∆t

ϵ2 + (ϕ∗
ij)

2

(
1− e−

2gij∆t

ϵ2

) . (4.12)

4.4. Computational examples

In this section, we present numerical results using the proposed numerical algorithm on
various synthetic and real images. We show that a very fast and accurate minimization can be
achieved by the proposed algorithm. In our numerical experiments, we normalize the given
image f as f0 = f−fmin

fmax−fmin
, where fmax and fmin are the maximum and the minimum values

of the given image, respectively. Across the interfacial regions, the phase field varies from
−0.9 to 0.9 over a distance of approximately 2

√
2ϵ tanh−1(0.9). Therefore, if we want this

value to be approximately m grid points, then the ϵ value needs to be taken as follows:

ϵm =
hm

2
√
2 tanh−1(0.9)

.

To speed up simulation, we simply initialize ϕ0 with an edge stopping function g and a given
tolerance, tol. The initialization algorithm is listed as follows:

In our first example, we show that our proposed model can detect different objects. In Fig.
4.1, we show how our proposed initial algorithm works. (a) is the given image, (b), (c), (d),
and (e) are steps 1, 2, 3, and 4 in the initialization algorithm, respectively. In Fig. 4.2, the
computational domain is set to Ω = (0, 1) × (0, 1) with a 64 × 64 mesh. Interface parameter
ϵ4, time step ∆t = 4E-4, and λ = 1E4 are used. It only took 9 iterations, which is one order
of magnitude smaller than the method in [98].

Fig. 4.3 shows our proposed method is faster than the previous method, which also used
the Allen-Cahn equation for image segmentation [9]. The computational domain is set to Ω =
(0, 1) × (0, 1) with a 128 × 128 mesh. Interface parameter ϵ8, time step ∆t = 6E-4, and
λ = 2.5E4 are used. It took only 20 iterations, which is one order of magnitude smaller than
the previous method, which used 532 iterations.

4.4. COMPUTATIONAL EXAMPLES 34

Set a tolerance tol and ϕ0 = −1 everywhere in the computational domain. And take
the following steps (1–4):

Step 1 for (i=1; i≤Nx ; i++) for (j=Ny; j≥1 ; j- -) {
if (gij< tol) break ; else ϕ0

ij = 1 ;}
Step 2 for (j=1; j≤Ny ; j++) for (i=1; i≤Nx ; i++) {

if (gij< tol) break ; else ϕ0
ij = 1 ;}

Step 3 for (i=1; i≤Nx ; i++) for (j=1; j≤Ny ; j++) {
if (gij< tol) break ; else ϕ0

ij = 1 ;}
Step 4 for (j=1; j≤Ny ; j++) for (i=Nx; i≥1 ; i- -) {

if (gij< tol) break ; else ϕ0
ij = 1;}

(a) (b) (c) (d) (e)

FIGURE 4.1. Initial algorithm: (a) original image, (b) Step 1, (c) Step 2, (d)
Step 3, and (e) Step 4.

(a) (b) (c) (d)

FIGURE 4.2. (a) Original image, (b) 0 iteration, (c) 3 iterations, and (d) 9 iterations.

Next example image is from [70] and has varying illumination and highly concave shape
(see Fig. 4.4 (a)). The computational domain is set to Ω = (0, 1) × (0, 1) with a 128 × 128
mesh. Interface parameter ϵ8, time step ∆t = 3E-4, and λ = 2E4 are used. Fig. 4.4 (b) shows
the initial configuration using our proposed initialization algorithm. As can be seen from Fig.
4.4 (d), image segmentation is successfully done only after 10 iterations.

In Fig. 4.5, we show a numerical result on a real medical image, a hip joint. The compu-
tational domain is set to Ω = (0, 1) × (0, 1) with a 128 × 128 mesh. Interface parameter ϵ8,
time step ∆t = 3E-5, and λ = 2.5E4 are used. The method produces visually clear results
with only took 10 iterations. As can be seen, our proposed method has performed well in this
medical image segmentation.

4.5. CONCLUSION 35

(a) (b) (c) (d)

FIGURE 4.3. (a) Original image, (b) 0 iteration, (c) 8 iterations, and (d) 20 iterations.

(a) (b) (c) (d)

FIGURE 4.4. Form left to right: Image which has varying illumination and
highly concave shape, 0 iteration, 5 iterations, and 10 iterations.

(a)

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

0

0.5

1

(b)
(c) (d)

FIGURE 4.5. (a) Original image, (b) mesh image, (c) contour image (d) final iterations.

In Fig. 4.6, the segmentation of another hip joint image is shown on the computational
domain Ω = (0, 1)× (0, 1) with a 256×256 mesh. Interface parameter ϵ8, time step ∆t = 5E-
5, and λ = 1.5E4 are used. As can be observed, the agreement between the area of hip and the
segmentation of image is obvious.

4.5. Conclusion

We have shown that our proposed algorithm achieves faster segmentation of binary images
than the previous methods. The numerical method used a fast solver such as a multigrid method
for solving heat equation and an analytic solution for the nonlinear equation. To speed up
image segmentation, we developed the initialization algorithm which initialized ϕ0 with an

4.5. CONCLUSION 36

(a) (b)

(c) (d)

FIGURE 4.6. (a) Original image, (b) 0 iteration, (c) 4 iterations, and (d) 20 iterations.

edge stopping function g and a given tolerance, tol. We validated the proposed numerical
method by various numerical results on artificial and real images.

This Chapter is published in J. KSIAM Vol 14, No. 4, pp. 201-210, 2010.

37

Chapter 5

Multiphase image segmentation using a phase-field model

5.1. Introduction

Image segmentation is one of the fundamental tasks in image processing and computer
vision. It forms a crucial preliminary step for subsequent object recognition and interpretation
[119]. Its goal is to partition a given image into regions that contain distinct objects. The most
common form of segmentation is based on the assumption that distinct objects in an image have
different and approximately constant colors. A natural approach is therefore to decompose an
image domain into approximately homogeneous regions that are separated by sharp changes in
image features.

Chan and Vese (CV) proposed a multiphase level-set framework for image segmentation
using the Mumford and Shah model for piecewise constant and piecewise smooth optimal
approximations [37]. Their model can segment 2K phases of the image if K level-set functions
are used. Thus, the multiphase CV model evolves more regions than necessary whenever
the number of regions is not a power of two. Samson, Blanc-Feraud, Aubert, and Zerubia
partitioned K phases using K level-set functions for multiphase image classification [142].
Lie, Lysaker, and Tai proposed a variant of the level-set formulation for multiphase image
segmentation by introducing a piecewise constant level-set function and using each constant
value to represent a unique phase [105]. In [78], Jung, Kang, and Shen proposed a phase-
field method to solve the multiphase piecewise constant segmentation problem. The method is
based on the phase transition model of Modica-Mortola with a sinusoidal potential and a fitting
term. The proposed method is a variational partial differential equation approach that is closely
connected to the Mumford-Shah model.

The objective of this Chapter is to propose a new, fast, and stable hybrid numerical method
for multiphase image segmentation using a phase-field model which is based on the Allen-Cahn
equation [1] with a multiple well potential and a data-fitting term. We employ the operator
splitting method for the Allen-Cahn equation [99]. We split its numerical solution algorithm
into a linear diffusion equation with a source term and a nonlinear equation. The linear equation
is discretized using an implicit scheme and the resulting discrete system of equations is solved
by a multigrid method. The nonlinear equation is solved using a closed-form solution. We also
propose an initialization algorithm based on the target objects for the fast image segmentation.

This Chapter is organized as follows. In Section 5.2, the proposed model for multiphase
image segmentation is given. In Section 5.3, we describe the proposed unconditionally stable
hybrid operator splitting method. In Section 5.4, we perform some characteristic numerical
experiments for multiphase image segmentation to demonstrate the efficiency and robustness
of the proposed model and the numerical method. Finally, conclusions are given in Section 5.5.

5.2. DESCRIPTION OF THE PROPOSED MODEL 38

5.2. Description of the proposed model

A multi phase-field approximation (K+1 phase fields) for minimizing the Mumford-Shah
functional is given by the following energy functional:

E(ϕ) =
∫
Ω

(
F (⟨ϕ⟩)

ε2
+

|∇ϕ|2

2
+GK(ϕ, f0)

)
dx. (5.1)

Here ⟨ϕ⟩ = ϕ− [ϕ], where [ϕ] is the largest integer not greater than ϕ. F (ϕ) = 0.25ϕ2(ϕ−1)2

is a double-well potential and F (⟨ϕ⟩) is a periodic potential as shown in Fig. 5.1. ϵ is the
gradient energy coefficient related to the interfacial energy and Ω is the image domain. The
third term in the functional is defined as

GK(ϕ, f0) =
λ

2

K∑
k=0

(Ck − f0)
2sinc2(ϕ− k),

where λ is a nonnegative parameter, f0 is the given image, and Ck is the average of f0 in the
k-level (k = 0, 1, ...,K), i.e.,

Ck =

∫
Ω f0(x)sinc2(ϕ(x)− k)dx∫

Ω sinc2(ϕ(x)− k)dx
.

Functions sinc(ϕ) = sin(πϕ)/(πϕ) and sinc2(ϕ) are shown in Fig. 5.2. We note that our
model is similar to that of Jung et al. [78] except that they used a sinusoidal potential while
we use a periodic quartic polynomial as a potential. By using the polynomial potential, we can
derive a very efficient and accurate numerical scheme based on an operator splitting technique.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.03

0.06

0.09

0.12

composition φ

F (φ)
F (〈φ〉)

FIGURE 5.1. A double well potential, F (ϕ) = 0.25ϕ2(ϕ−1)2 and a periodic
potential, F (⟨ϕ⟩) = 0.25⟨ϕ⟩2(⟨ϕ⟩ − 1)2.

For a governing equation, we seek a law of evolution in the form [34]:

ϕt = −gradE(ϕ).

5.3. DESCRIPTION OF THE NUMERICAL ALGORITHMS 39

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−0.25

0

0.25

0.5

0.75

1

composition φ

sinc(φ)

sinc2(φ)

FIGURE 5.2. sinc(ϕ) = sin(πϕ)/(πϕ) and sinc2(ϕ).

The symbol ‘grad’ here denotes the gradient in the space L2(Ω). Therefore, we get the follow-
ing gradient descent flow equation:

ϕt = −gradE(ϕ)

= −F ′(⟨ϕ⟩)
ε2

+∆ϕ (5.2)

−λ

K∑
k=0

(Ck − f0)
2

(
sin(2π(ϕ− k))

π(ϕ− k)2
− 2 sin2(π(ϕ− k))

π2(ϕ− k)3

)
.

5.3. Description of the numerical algorithms

We propose the following operator splitting numerical algorithm.

ϕn+1 − ϕn

∆t
= −F ′(⟨ϕn+1⟩)

ϵ2
+∆dϕ

n+ 1
2 (5.3)

−λ

K∑
k=0

(Cn
k − f0)

2

(
sin(2π(ϕn − k))

π(ϕn − k)2 + δ
− 2(ϕn − k) sin2(π(ϕn − k))

π2(ϕn − k)4 + δ

)
,

(5.4)

where we added a small value δ in the denominators to avoid singularities and Cn
k is defined as

following

Cn
k =

Nx∑
i

Ny∑
j
f0,ijsinc2(ϕij − k)

Nx∑
i

Ny∑
j

sinc2(ϕij − k)

. (5.5)

We take the following two steps:

5.3. DESCRIPTION OF THE NUMERICAL ALGORITHMS 40

ϕn+ 1
2 − ϕn

∆t
= ∆dϕ

n+ 1
2 (5.6)

−λ

K∑
k=0

(Cn
k − f0)

2

(
sin(2π(ϕn − k))

π(ϕn − k)2 + δ
− 2(ϕn − k) sin2(π(ϕn − k))

π2(ϕn − k)4 + δ

)
and

ϕn+1 − ϕn+ 1
2

∆t
= −F ′(⟨ϕn+1⟩)

ϵ2
. (5.7)

We solve Eq. (5.6) by a multigrid method [11, 153]. We can consider Eq. (5.7) as an
implicit scheme for the following equation (6.8) with the initial condition ϕn+ 1

2 .

ϕt = −F ′(⟨ϕ⟩)
ϵ2

. (5.8)

The solution at t = ∆t of Eq. (6.8), solved by the method of separation of variables [143], is
given as

⟨ϕn+1⟩ = 0.5 +
⟨ϕn+ 1

2 ⟩ − 0.5√
e

−∆t

2ϵ2 + (2⟨ϕn+ 1
2 ⟩ − 1)2(1− e

−∆t

2ϵ2)

. (5.9)

Hence, the solution of Eq. (5.7) is

ϕn+1 = 0.5 +
⟨ϕn+ 1

2 ⟩ − 0.5√
e

−∆t
2ϵ2 + (2⟨ϕn+ 1

2 ⟩ − 1)2(1− e
−∆t
2ϵ2)

+ [ϕn+ 1
2]. (5.10)

Finally, our proposed scheme is written as

ϕn+ 1
2 − ϕn

∆t
= ∆dϕ

n+ 1
2 (5.11)

−λ

K∑
k=0

(Cn
k − f0)

2

(
sin(2π(ϕn − k))

π(ϕn − k)2 + δ
− 2(ϕn − k) sin2(π(ϕn − k))

π2(ϕn − k)4 + δ

)
,

ϕn+1 = 0.5 +
⟨ϕn+ 1

2 ⟩ − 0.5√
e

−∆t
2ϵ2 + (2⟨ϕn+ 1

2 ⟩ − 1)2(1− e
−∆t
2ϵ2)

+ [ϕn+ 1
2]. (5.12)

The homogeneous Neumann boundary condition is applied to the domain. However, it is
not restricted to the Neumann condition, we can use other boundary conditions such as periodic,
Dirichlet, and combinations of these. We note that the first Eq. (5.11) is the discrete implicit
diffusion equation with a source term. The second Eq. (5.12) is the analytic solution for the
logistic model equation. Both steps are unconditionally stable, which means that solutions
are stable regardless of time step sizes. The unconditional stability of the proposed numerical
schemes will be demonstrated numerically in the next section.

5.4. NUMERICAL EXPERIMENTS 41

5.4. Numerical experiments

In this section, we tested our proposed model and its computational algorithm on generic
numerical experiments such as piecewise constant images with and without noises, landscape
image, and MR images.

5.4.1. Proposed initialization. Regarding the initial guess for the phase-field ϕ, authors
in [78] have typically adopted random values between −0.5 and K + 0.5. In our numerical
experiments, we normalize a given image f as f0 = f−fmin

fmax−fmin
, where fmax and fmin are

the maximum and the minimum values of the given image, respectively. Across the interfa-
cial regions, the concentration field varies from 0.1 to 0.9 over a distance of approximately
4
√
2ϵ tanh−1(0.9). Therefore, if we want this value to be approximately m grid points, the ϵ

value needs to be taken as follows:

ϵm =
hm

4
√
2 tanh−1(0.9)

. (5.13)

In this chapter, we used ϵ2, ϵ3, and ϵ5 depending on test images and mesh sizes. We found the
results with different ϵm values make little differences. We use same computational domain
Ω = (0, 1)× (0, 1) throughout the chapter.

f
0

B
0
=0

B
1
=0.15

B
2
=0.4

B
3
=0.8

B
4
=1

0

1

2

3

4

φ0

FIGURE 5.3. Proposed initialization.

(a)
0.25 0.5 0.750.25

0.5
0.75

0

0.2

0.4

0.6

0.8

1

(b)
0 0.25 0.5 0.75 1

0
0.25

0.5
0.75
1
0

1

2

3

(c)
0 0.25 0.5 0.75 1

0
0.25

0.5
0.75
1
0

1

2

3

(d)

FIGURE 5.4. Multiphase image with uniform heights. (a): Original image
f0, (b): the value of original image f0, (c): initial phase-field ϕ0, and (d): at
convergence ϕ approaches 4 constant values.

5.4. NUMERICAL EXPERIMENTS 42

For the initial profile we propose the following:

ϕ0
ij = k − 1 +

fij,0 −Bk−1

Bk −Bk−1
if fij,0 ∈ [Bk−1, Bk] for k = 1, · · · ,K, (5.14)

where Bk for k = 0, · · · ,K are target levels of the image. For example, if we have five target
values, B0 = 0, B1 = 0.15, B2 = 0.4, B3 = 0.8, B4 = 1, then we have the initial phase-field
according to Eq. (5.14) and this is shown in Fig. 5.3.

(a)
0.25 0.5 0.750.25

0.5
0.75

0

0.2

0.4

0.6

0.8

1

(b)
0 0.25 0.5 0.75 1

0
0.25

0.5
0.75
1
0

1

2

3

(c)
0 0.25 0.5 0.75 1

0
0.25

0.5
0.75
1
0

1

2

3

(d)

FIGURE 5.5. Multiphase image with nonuniform heights. (a): Original image
f0, (b): the value of original image f0, (c): initial phase-field ϕ0, and (d): at
convergence ϕ approaches 4 constant values.

(a) (b) (c)

(d) (e) (f)

FIGURE 5.6. A complex synthetic image with multiple objects and several
generic visual structures (a) Original image and (b)-(f) the field contours for
each level from k = 0 to k = 4.

Fig. 5.4 shows a simple synthetic image that contains four level of colors. (a) and (b) are
the original image and the value of original image f0, respectively. (c) is the initial phase-field
ϕ0. (d) shows the converged phase-field after 4 iterations with ϵ3, ∆t = 5E-6, h = 1/128,
λ = 10, and target values B0 = 0, B1 = 0.3333, B2 = 0.6667, and B3 = 1.

5.4. NUMERICAL EXPERIMENTS 43

Next, we set nonuniform heights with 0, 0.1, 0.2, and 1 as shown in Fig. 5.5(a) and (b).
Fig. 5.5(c) and (d) are initial profile and converged solution with four iterations. Here we used
same parameters of previous test with B0 = 0, B1 = 0.1026, B2 = 0.2003, and B3 = 1.0. We
can confirm that the new initialization works well with nonuniform heights also.

(a) (b) (c)

f
0

B
0
=0

B
1
=0.124

B
2
=0.247

B
3
=0.634

B
4
=1

0

1

2

3

4

φ0

(d)

FIGURE 5.7. A complex synthetic image with multiple objects and several
generic visual structures (a) original image, (b) target image area, (c) result,
and (d) the proposed initialization.

5.4.2. Complex synthetic image. The next example is taken from [78]. Fig. 5.6(a) shows
a complex synthetic image with multiple objects and several generic visual structures. The
interface parameter ϵ5, time step ∆t = 5E-6, h = 1/256, and λ = 10 are used with the initial
value B0 = 0, B1 = 0.2471, B2 = 0.4980, B3 = 0.7529, and B4 = 1. Fig. 5.6(b)-(f) show
the filled contours for each level from k = 0 to k = 4. White regions are segmented areas.

(a)

0
0.5

1

00.51
0

0.25

0.5

0.75

1

(b) (c)
0

0.5
1

00.51
0

1

2

3

4

(d)

(e) (f) (g) (h)

FIGURE 5.8. (a) Original image f0, (b) the value of original image f0, (c) final
phase-field, (d) the value of the phase-field ϕ, and (e)-(h) the filled contours
with ϕ = 0.5, ϕ = 1.5, ϕ = 2.5, and ϕ = 3.5, respectively.

In many real applications the number of levels to detect is not known a priori. A robust
and reliable algorithm should find the correct segmentation even when the exact number of

5.4. NUMERICAL EXPERIMENTS 44

phases is not known. To see if our algorithm can handle such a case we choose only one phase
among multiple phases. Fig. 5.7 shows the application of the proposed model for segmenting
the region of image which we are interested. We get B2 = 0.2471 and set B0 = 0, B1 =
B0(1− tol)+B2tol, B3 = B2(1− tol)+B4tol, and B4 = 1, here we take a specific tolerance,
tol = 0.5. Fig. 5.7(d) shows the initialization with these values.

(a)

0 0.5 1
00.51

0

0.5

1

(b) (c)
0 0.5 1
00.51

0

1

2

3

4

5

(d)

FIGURE 5.9. Landscape image segmentation. (a) Original image. (b) The
value of original image. (c) Steady state filled contours. (d) The value of
steady state.

(a) (b) (c) (d)

FIGURE 5.10. Segmentation of a brain MRI using a three level phase-field.
(a) is a brain MRI. (b), (c), and (d) are filled contours at ϕ = 0, 1, and 2,
respectively.

5.4.3. Synthetic image with noise. To show the efficiency of our proposed numerical
scheme we choose a typical experiment from [105]. The example is a noisy synthetic image
containing 4 stars on 4 different backgrounds (see Fig. 5.8(a) and (b)). Interface parameter ϵ3,
∆t = 4E-6, h = 1/128, and λ = 10 are used with B0 = 0.0988, B1 = 0.3281, B2 = 0.5257,
B3 = 0.7190, and B4 = 0.9209. As can be seen, the method produces visually clear results
with the five phase fields after 15 iterations.

5.4.4. Real landscape image. Fig. 5.9 shows the application of the proposed model to
a real landscape image. The interface parameter ϵ3, ∆t = 4E-6, h = 1/128, and λ = 10
are used with B0 = 0.1127, B1 = 0.3146, B2 = 0.4128, B3 = 0.5264, B4 = 0.7167, and
B5 = 0.9643. We show the final five segments detected by our proposed algorithm after 10
iterations (see Fig. 5.9(c) and (d)).

5.5. CONCLUSION 45

5.4.5. Brain MRI. Fig. 5.10 shows the application of the proposed model to a brain MRI
segmentation with three levels. The interface parameter ϵ2, ∆t = 5E-6, h = 1/256, and
λ = 10 are used with B0 = 0.0348, B1 = 0.4286, and B2 = 0.8106. We can see how the
model can handle complex topologies. Fig. 5.10(a) is a brain MRI. Numerical results (b), (c),
and (d) are filled contours at ϕ = 0, 1, and 2, respectively. It only took 8 iterations.

(a) (b)

FIGURE 5.11. Segmentation of a brain MRI using a three level phase-field.
(a) is a brain MRI with a selected region. (b) is the segmentation result for the
selected region.

Final experiment shows the application of the proposed model for segmenting the selected
region of image. Suppose that we only want to segment the gray part (small square box) in
Fig. 5.11(a). We get the mean value inside the box as B2 = 0.4286. Then set B0 = 0,
B1 = B0(1 − tol) + B2tol, B3 = B2(1 − tol) + B4tol, and B4 = 1 with tol = 0.75. The
gray area of brain is segmented with bright color as shown the result in Fig. 5.11(b) after 10
iterations.

5.5. Conclusion

Inspired by the multiphase image segmentation via Modica-Mortola phase transition we
have proposed multiphase image segmentation using a phase-field model. We have shown that
our proposed algorithm achieves faster segmentation of images than the previous methods.
We used a fast solver such as a multigrid method for solving heat equation and an analytic
solution for the nonlinear equation. We also propose an initialization algorithm based on the
target objects for the fast image segmentation. We validated the proposed numerical method
by various numerical results on artificial and real images.

46

Chapter 6

A fast, robust, and accurate operator splitting method for
phase-field simulations of crystal growth

6.1. Introduction

Crystal growth is a classical example of phase transformations from the liquid phase to the
solid phase via heat transfer. In the past, to understand and simulate crystal growth, several
methods have been developed including boundary integral [102, 115, 141, 149], cellular au-
tomaton [106, 163, 167, 169], front-tracking [3, 73, 75, 151, 168], level-set [27, 58, 84, 159],
Monte-Carlo [130, 140], and phase-field [20, 26, 35, 44, 77, 89, 94, 93, 90, 125, 124, 134, 136,
144, 152, 161, 156, 162] methods. Among these various methods, the phase-field method are
popular and widely used. Its advantage is that the explicit tracking of the interface is unneces-
sary by introducing an order parameter, i.e., a phase-field variable. In this Chapter, we focus
the phase-field method for crystal growth problems which avoids difficulties associated with
tracking the interface and computes complex crystal shapes.

We consider here the solidification of a pure substance from its supercooled melt in both
two- and three-dimensional space. A great challenge in the simulation with various supercool-
ings is the large difference in time and length scales. In order to overcome this, many numerical
methods have been proposed such as explicit [75, 93, 134, 156, 79], mixed implicit-explicit
[124, 161, 162], and adaptive methods [26, 35, 125, 136, 144]. In the case of explicit methods,
which are widely used, the solutions become unstable for large time steps. For this reason, in
[75, 156], the authors suggested ∆t < h2/(4D) for stability of explicit methods. Here, ∆t is
the time step, h is the mesh size, and D is the thermal diffusivity. In [75], the time step is also
restricted to ∆t ≤ h/(10|Vmax|), where |Vmax| is the magnitude of the maximum value of the
interface velocity. Also, in [156], the authors showed that ∆t = h2/(5DL) works well through
numerical experiments, where DL = Mϕϵ

2, Mϕ is the kinetic mobility, and ϵ is the interface
energy anisotropy. Implicit methods allow relatively larger time steps, however they are com-
putationally more expensive per step than explicit ones. Another classical method [152] is a
multiple time-step algorithm that uses a larger time step for the flow-field calculations while
reserving a finer time step for the phase-field evolution. The use of mesh adaptivity, which is
based on the choice of a suitable time integration method, is a natural choice to overcome this
problem. However adaptive technology also suffers the time step restriction and crystal growth
simulation with various supercoolings is still very difficult. Therefore we need a scheme that
allows the use of a sufficiently large time step without the technical limitations. In this Chapter
we present a new, computationally efficient, and robust operator splitting algorithm for solving
the crystal growth phase-field simulation and demonstrate the accuracy of the method by a set
of representative numerical experiments.

6.3. NUMERICAL SOLUTION 47

This Chapter is organized as follows: in Section 6.2 the governing equations for crystal
growth based on the phase-field method are given. In Section 6.3 we describe the computa-
tionally efficient operator splitting algorithm. In Section 6.4 we present numerical results for
solving the crystal growth simulation both in 2D and 3D. Finally, conclusions are given in
Section 6.5.

6.2. The phase-field model

The basic equations of the phase-field model are derived from a single Lyapounov func-
tional [97]. We model the solidification in two and three dimensions using a standard form of
phase-field equations. The model is given by:

ϵ2(ϕ)
∂ϕ

∂t
= ∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕx

)
x

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕy

)
y

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕz

)
z

, (6.1)

∂U

∂t
= D∆U +

1

2

∂ϕ

∂t
, (6.2)

where ϕ is the order parameter, ϵ(ϕ) is the anisotropic function, λ is the dimensionless cou-
pling parameter, and U = cp(T −TM)/L is the dimensionless temperature field. Here cp is the
specific heat at constant pressure, TM is the melting temperature, L is the latent heat of fusion,
D = ατ0/ϵ

2
0, α is the thermal diffusivity, τ0 is the characteristic time, and ϵ0 is the character-

istic length. The order parameter is defined by ϕ = 1 in the solid phase and ϕ = −1 in the
liquid phase. The interface is defined by ϕ = 0 and λ is given as λ = D/a2 with a2 = 0.6267
[94, 93]. For the four-fold symmetry, ϵ(ϕ) is defined as:

ϵ(ϕ) = (1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

ϕ4
x + ϕ4

y + ϕ4
z

|∇ϕ|4

)
,

where ϵ4 is a parameter for the anisotropy of interfacial energy.

6.3. Numerical solution

In this section, we propose a robust hybrid numerical method for crystal growth simulation.
The discrete differentiation operator is ∇dϕij = (ϕi+1,j − ϕi−1,j , ϕi,j+1 − ϕi,j−1)/(2h). We
then define the discrete Laplacian by ∆dϕij = (ϕi+1,j + ϕi−1,j − 4ϕij + ϕi,j+1 + ϕi,j−1)/h

2.

6.3. NUMERICAL SOLUTION 48

We discretize Eqs. (6.1) and (6.2):

ϵ2(ϕn)
ϕn+1 − ϕn

∆t
= ϵ2(ϕn)∆dϕ

n+1,2 + 2ϵ(ϕn)∇dϵ(ϕ
n) · ∇dϕ

n

−F ′(ϕn+1)− 4λUnF (ϕn+1,1)

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n

x

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕy

)n

y

, (6.3)

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
, (6.4)

where F (ϕ) = 0.25(ϕ2 − 1)2 and F ′(ϕ) = ϕ(ϕ2 − 1). Here ϕn+1,k for k = 1, 2 are defined in
the operator splitting scheme. We propose the following operator splitting scheme:

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(ϕn)∇dϵ(ϕ

n) · ∇dϕ
n (6.5)

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n

x

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕy

)n

y

,

ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆t
= ϵ2(ϕn)∆dϕ

n+1,2 − 4λUnF (ϕn+1,1), (6.6)

ϵ2(ϕn)
ϕn+1 − ϕn+1,2

∆t
= −F ′(ϕn+1). (6.7)

In Eq. (6.5), we can simplify the following terms

|∇dϕ|2
∂ϵ(ϕ)

∂ϕx
=

16ϵ4ϕx(ϕ
2
xϕ

2
y − ϕ4

y)

|∇dϕ|4
, |∇dϕ|2

∂ϵ(ϕ)

∂ϕy
=

16ϵ4ϕy(ϕ
2
xϕ

2
y − ϕ4

x)

|∇dϕ|4
.

Eq. (6.7) can be considered as an approximation of the equation

ϕt =
ϕ− ϕ3

ϵ2
(6.8)

by an implicit Euler’s method with the initial condition ϕn+1,2. We can solve Eq. (6.8) analyt-
ically by the method of separation of variables [143]. The solution is given as follows:

ϕn+1 =
ϕn+1,2√

e
− 2∆t

ϵ2(ϕn) + (ϕn+1,2)2
(
1− e

− 2∆t
ϵ2(ϕn)

) . (6.9)

6.4. NUMERICAL RESULTS 49

Finally, the proposed scheme can be written as follows:

ϵ(ϕn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(ϕn)xϕ

n
x + 2ϵ(ϕn)yϕ

n
y (6.10)

+

(
16ϵ4ϕx(ϕ

2
xϕ

2
y − ϕ4

y)

|∇dϕ|4

)n

x

+

(
16ϵ4ϕy(ϕ

2
xϕ

2
y − ϕ4

x)

|∇dϕ|4

)n

y

,

ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆t
= ϵ2(ϕn)∆dϕ

n+1,2 − 4λUnF (ϕn+1,1), (6.11)

ϕn+1 =
ϕn+1,2√

e
− 2∆t

ϵ2(ϕn) + (ϕn+1,2)2
(
1− e

− 2∆t
ϵ2(ϕn)

) , (6.12)

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
. (6.13)

Eqs. (6.11) and (6.13) can be solved by a multigrid method [18, 153].

6.3.1. Calculation of the crystal tip position and velocity. The crystal tip position and
velocity are the important parameters in the phase field simulation. To calculate these pa-
rameters with a high degree of accuracy we use a method based on the quadratic polynomial
approximation. For simplicity, we only describe the procedure along the y-axis since the crys-
tal is symmetric. Let yk be the maximum y position on the interface at each time, and the
quadratic polynomial approximation be:

y = αx2 + βx+ γ.

Given three points: (xk−1, yk−1), (xk, yk), and (xk+1, yk+1) on the interface, where one of the
three y points is a maximum value along the interface points, we calculate the parameters α, β,
and γ from:  α

β
γ

 =

 x2k−1 xk−1 1
x2k xk 1
x2k+1 xk+1 1

−1 yk−1

yk
yk+1

 .

Then using α, β, and γ, we find the tip position y∗ which satisfies the following conditions:

dy

dx

∣∣∣∣
x∗

= 0 and y∗ = αx2∗ + βx∗ + γ.

Furthermore, the crystal tip velocity can be obtained from the difference of tip positions at
each time.

6.4. Numerical results

In this section we perform numerical experiments for two- and three-dimensional solid-
ification to validate that our proposed scheme is accurate, efficient, and robust. For two-
dimensional tests, unless otherwise specified, we take the initial state as:

ϕ(x, y, 0) = tanh

(
R0 −

√
x2 + y2√
2

)
and U(x, y, 0) =

{
0 if ϕ > 0
∆ else.

6.4. NUMERICAL RESULTS 50

The zero level set (ϕ = 0) represents a circle of radius R0. From the dimensionless variable
definition the value U = 0 corresponds to the melting temperature of the pure material, while
U = ∆ is the initial undercooling. The extension to three dimensions is straightforward. The
capillary length, d0, is defined as d0 = a1/λ [20, 136, 97] with a1 = 0.8839 [94, 93, 136] and
λ = 3.1913 [136]. And other parameter is chosen as follows: ϵ4 = 0.05.

−150 −50 50 150
−150

−50

50

150

(a) ∆t = 0.3
−150 −50 50 150

−150

−50

50

150

(b) ∆t = 0.6

FIGURE 6.1. (a) and (b) show the sequence of interfaces with different time
steps ∆t = 0.3 and ∆t = 0.6, respectively. The times are t = 0, 180, 360,
540, 720, and 900 (from inside to outside).

6.4.1. Stability of the operator splitting algorithm. As already mentioned in Section
6.1, the previous methods suffer from time step restrictions ∆t ≤ O(h2) for stability. In
order to show the stability of our proposed method we consider the evolution of an interface
with arbitrarily large time steps. In these simulations a 2048 × 2048 mesh is used on the
computational domain Ω = (−200, 200)2. We choose R0 = 14d0, ∆ = −0.55, and h =
0.1953. The calculations are run up to time T = 900 with different time steps ∆t = 0.3 and
∆t = 0.6. Note that both time steps are larger than h. Figs. 6.1 (a) and (b) show evolutions of
the interface with different time steps ∆t = 0.3 and ∆t = 0.6, respectively. In general, large
time steps may cause large truncation errors, however, as can be seen in Fig. 6.1 our proposed
scheme works well with large time steps.

Next, we perform a number of simulations on a set of increasingly finer grids to show that
our proposed method is restricted by the stability constraint ∆t ≤ 5.5h. The computational
domain is Ω = (−200, 200)2 and we take R0 = 14d0 and ∆ = −0.55. The numerical solutions
are computed on the uniform grids h = 400/2n with corresponding time steps ∆t = 5.5h for
n = 8, 9, and 10. Fig. 6.2 shows the crystal growth after time T = 85.94 with different time
steps. From these results it is clear that our scheme is stable for time steps ∆t ≤ 5.5h. And
we try to find the maximum ∆t corresponding to different spatial grid sizes h so that stable
solutions can be computed after 20 time step iterations. The results are shown in Table 6.1 and
we obtain stable solutions for all three mesh sizes. Note that there is a linear relation between
the time step and mesh sizes. Thus, for finer mesh sizes we may use larger time steps than
previous conventional methods.

6.4. NUMERICAL RESULTS 51

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

(a) ∆t = 8.60

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

(b) ∆t = 4.30

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

(c) ∆t = 2.15

FIGURE 6.2. The stability of crystal growth with different time steps: (a)
∆t = 8.60 (256 × 256 mesh), (b) ∆t = 4.30 (512 × 512 mesh), and (c)
∆t = 2.15 (1024× 1024 mesh).

TABLE 6.1. Stability constraint of ∆t for the proposed scheme.

Mesh size h = 400/256 h = 400/512 h = 400/1024

Time step ∆t ≤ 20h ∆t ≤ 15h ∆t ≤ 12h

6.4.2. Comparison of the dimensionless steady-state tip velocities. To verify the accu-
racy of our proposed scheme we compare the dimensionless steady-state tip velocities obtained
by our proposed scheme with phase-field simulations [93] and Green’s function calculations
[93]. A 1024× 1024 mesh is used on the domain Ω = (−200, 200)2. We choose R0 = 6.924,
W0 = 1, and λ = D/a2. The results are shown in Table 6.2, as can be seen the values obtained
by our proposed scheme are in good agreement with results of previous phase-field and Green’s
theory over the whole range of d0, ∆, and ϵ4 investigated here. Note that despite the relatively
large time step (∆t = 5∆tKR = 0.08) used in our scheme, the results are almost identical.

TABLE 6.2. Comparison of dimensionless steady-state tip velocities calculat-
ed by our proposed scheme (Vtip = V d0/D), calculated by phase-field simu-
lations (V KR

tip), and calculated by the Green function method (V GF
tip).

∆ ϵ4 D d0/W0 Vtip V KR
tip V GF

tip

0.65 0.05 1 0.554 0.0470 0.0465 0.0469
0.55 0.05 2 0.277 0.0171 0.0168 0.0170
0.55 0.05 3 0.185 0.0174 0.0175 0.0170
0.55 0.05 4 0.139 0.0172 0.0174 0.0170
0.50 0.05 3 0.185 0.01030 0.01005 0.00985
0.45 0.05 3 0.185 0.00599 0.00557 0.00545
0.45 0.05 4 0.139 0.00598 0.00540 0.00545

6.4.3. Effect of time step, mesh, radius, and undercooling. In the first experiment we
consider the evolution of the interface with different time steps in order to investigate the effect

6.4. NUMERICAL RESULTS 52

of time step. A 1024 × 1024 mesh is used on the domain Ω = (−400, 400)2 and we take
h = 0.7813, R0 = 14d0, and ∆ = −0.55. The simulations are run up to time T = 1800.
Figs. 6.3 (a) and (b) show the position and velocity of the tip versus time respectively, both
for different time steps ∆t = 0.6, 0.3, 0.15, and 0.075. Fig. 6.3 (c) shows evolutions of the
interface with time step ∆t = 0.15 at times t = 0, 225, 450, 675, 900, 1125, 1350, 1575, and
1800 (from inside to outside). For different time steps, the interfaces at time T = 1800 are
shown in Fig. 6.3 (d). The velocity of the tip at time T = 1800 versus time step is shown in
Fig. 6.4. The results suggest that the velocity of the tip is linear in the time step.

0 300 600 900 1200 1500 1800
0

50

100

150

200

250

Time

P
os

iti
on

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(a)

0 300 600 900 1200 1500 1800
0

0.1

0.2

0.3

Time
V

el
oc

ity

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(b)

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(c)
−250 −150 −50 50 150 250

−250

−150

−50

50

150

250

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(d)

FIGURE 6.3. (a) and (b) show the position and velocity of the tip versus time
respectively, for different time steps. (c) Evolutions of the interface with time
step ∆t = 0.15. (d) The interfaces at time T = 1800 for different time steps.

Total CPU times and average CPU times (CPU) of the simulations for different time steps
are listed in Table 6.3. The average CPU time is defined as the real computational time (ex-
cluding data printing times) divided by the total number of iterations, the results are shown in
Table 6.3, corresponding to data in Fig. 6.3. Table 6.3 suggests that our proposed scheme is
accurate and robust for different time steps.

In the second experiment we consider the evolution of the interface with different mesh
sizes in order to find an effective mesh size for our proposed method. 256 × 256, 512 × 512,
1024× 1024, and 2048× 2048 meshes are used on the domain Ω = (−200, 200)2, i.e., we use

6.4. NUMERICAL RESULTS 53

0.075 0.15 0.30 0.60
0.07

0.08

0.09

0.10

0.11

Time step

V
el

oc
ity

FIGURE 6.4. The final velocity of the tip versus time step.

TABLE 6.3. Total CPU times and average CPU times (CPU) for different time steps.

Case ∆t = 0.6 ∆t = 0.3 ∆t = 0.15 ∆t = 0.075

CPU time (h) 5.07 9.06 16.77 32.59
CPU time (s) 5.87 5.19 4.80 4.84

four different h = 1.5626, 0.7813, 0.3906, and 0.1953. The parameters used are R0 = 14d0,
∆ = −0.55, ∆t = 0.15, and T = 900. Figs. 6.5 (a), (b), (c), and (d) show sequences of
interface for different mesh sizes. The position and velocity of the tip versus time are shown
in Fig. 6.5 (e) and (f), respectively. From the results shown in Fig. 6.5 we can observe that
the spatial step size h = 0.3906 is enough to simulate accurately and robustly the evolution of
crystal growth in our proposed method.

In the third experiment we investigate the effects of radius and undercooling of the initial
solid seed. For each test a 1024× 1024 mesh is used on the domain Ω = (−400, 400)2 and we
choose ∆t = 0.15 and T = 1500. The top row of Fig. 6.6 shows sequences of interfaces with
different radii R0 = 15d0, 50d0, and 100d0 (from left to right). In this test we take ∆ = −0.55.
From the top row of Fig. 6.6 we can see that for an increase in the initial radius the dendrite
grows faster up to the fourfold symmetry. Sequences of interfaces with different undercooling
sizes ∆ = −0.45, ∆ = −0.55, and ∆ = −0.65 are presented in the bottom row of Fig. 6.6. In
this test we take R0 = 14d0. From the bottom row of Fig. 6.6 we observe that the large initial
undercooling causes the dendrite to grow faster.

6.4. NUMERICAL RESULTS 54

−150 −50 50 150
−150

−50

50

150

(a) h = 1.5626
−150 −50 50 150

−150

−50

50

150

(b) h = 0.7813
−150 −50 50 150

−150

−50

50

150

(c) h = 0.3906

−150 −50 50 150
−150

−50

50

150

(d) h = 0.1953

0 150 300 450 600 750 900
0

50

100

150

Time

P
os

iti
on

h=1.5626
h=0.7813
h=0.3906
h=0.1953

(e) Position

0 150 300 450 600 750 900
0

0.1

0.2

0.3

0.4

Time

V
el

oc
ity

h=1.5626
h=0.7813
h=0.3906
h=0.1953

(f) Velocity

FIGURE 6.5. Sequences of interfaces with different spatial step sizes: (a) h =
1.5626, (b) h = 0.7813, (c) h = 0.3906, and (d) h = 0.1953. (e) and (f) show
the position and velocity of the tip versus time, respectively.

6.4.4. Three-dimensional crystal growth. In this section we consider a three-dimensional
crystal growth. The initial conditions are:

ϕ(x, y, z, 0) = tanh

(
R0 −

√
x2 + y2 + z2√

2

)
,

U(x, y, z, 0) =

{
0 if ϕ > 0
∆ else

on the domain Ω = (−100, 100)3 with a mesh 256×256×256. The simulation parameters are
R0 = 14d0, ∆ = −0.55, ∆t = 0.15, and T = 270. Fig. 6.7 shows three-dimensional struc-
tures at different times. Structures with different undercooling sizes ∆ = −0.45, ∆ = −0.55,
and ∆ = −0.65 at time T = 200 are presented in Fig. 6.8 (a), (b), and (c), respectively. As
Figs. 6.7 and 6.8 show, our proposed scheme can straightforwardly deal with three-dimensional
crystal growth.

6.4.5. Tail morphology. Brener [5] derived a theory of the tail shape of a 3D needle
crystal with the assumption that the cross section of a 3D needle crystal should grow as the
time dependent 2D growth shapes away from the tip. In [93], Karma and Rappel compared the
steady-state growth velocities from simulation and theory derived by Brener.

6.5. CONCLUSION 55

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(a) R0 = 15d0

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(b) R0 = 50d0

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(c) R0 = 100d0

−400 −200 0 200 400
−400

−200

0

200

400

(d) ∆ = −0.45
−400 −200 0 200 400

−400

−200

0

200

400

(e) ∆ = −0.55
−400 −200 0 200 400

−400

−200

0

200

400

(f) ∆ = −0.65

FIGURE 6.6. Sequences of interfaces with different initial parameters. Top:
evolutions of the dendrite with R0 = 15d0, 50d0, and 100d0. Bottom: evolu-
tions of the dendrite with ∆ = −0.45, ∆ = −0.55, and ∆ = −0.65.

In this section we compare the velocities calculated by our scheme and those given in [93].
In 2D and 3D simulations, we choose h = 0.3906, R0 = 14d0, ∆t = 0.15, and two different
undercoolings ∆ = −0.65 and ∆ = −0.70. In the 2D test a 1024× 1024 mesh is used on the
domain Ω = (−200, 200)2 and the simulation time is T = 750. In the 3D test a 256×256×256
mesh is used on the domain Ω = (−50, 50)3 and the simulation time is T = 90. Results of
steady-state growth velocities obtained from 2D and 3D simulations are given in Table 6.4.
Our results show good agreement with those of Karma and Rappel.

TABLE 6.4. Results of steady-state growth velocities.

∆ ϵ4 V2D V3D V2D/V3D V KR
2D /V KR

3D Slope

−0.70 0.0294 0.0353 0.0813 0.434 0.44 0.43

−0.65 0.0294 0.0243 0.0620 0.392 0.39 0.40

6.5. Conclusion

In this Chapter we proposed a fast, robust, and accurate operator splitting method for crys-
tal growth phase-field simulation of dendritic growth in both two- and three-dimensional space.

6.5. CONCLUSION 56

(a) t = 0 (b) t = 54 (c) t = 108

(d) t = 162 (e) t = 216 (f) t = 270

FIGURE 6.7. Three-dimensional structures with R0 = 14d0 and ∆ = −0.55
at different times. The times are shown below each figure.

(a) ∆ = −0.45 (b) ∆ = −0.55 (c) ∆ = −0.65

FIGURE 6.8. Structures with different undercooling sizes (a) ∆ = −0.45, (b)
∆ = −0.55, and (c) ∆ = −0.65 at time T = 200.

The proposed method is based on operator splitting techniques. We split the governing phase-
field equation into three parts. The first equation is calculated explicitly, the second is a heat
equation with source term and is solved by a fast solver such as a multigrid method, and the
third is evaluated using a closed form solution. We also presented a set of representative nu-
merical experiments for crystal simulation to demonstrate the accuracy of the proposed method.
Our simulation results are also consistent with previous numerical experiments.

57

Chapter 7

Numerical studies of the fingering phenomena for the thin film
equation

7.1. Introduction

Thin coating flows are of great technical, scientific, and industrial interest. Coating pro-
cesses normally require an external driving force such as spinning to spread a liquid film along
a solid substrate. For situations in which the substrate cannot be moved, surface forces can be
manipulated to drive the spreading process. For example, thermal gradients provide a way to
direct thin films into small crevices requiring lubrication. A liquid film supported on a sub-
strate subject to a thermal gradient will experience a varying surface tension depending on the
local temperature since colder regions maintain a higher surface tension than the warmer re-
gions. This thermally induced Marangoni stress will force the liquid to spread [96]. In many
situations, for example, spin coating process [120, 148], the fronts become unstable, leading to
the formation of fingerlike patterns, which is undesirable in technological applications. From
a more fundamental point of view, one wishes to understand these strongly non-linear finger-
ing dynamics [43]. Thin film flows have been extensively studied experimentally [16, 139],
analytically [96, 6, 86, 143, 150], and numerically [88, 147, 69, 30, 156, 114, 42, 62, 63, 64,
110, 109, 145, 155, 81, 95]. Karlsen and Lie [88] proposed an unconditionally stable scheme
based on operator splitting combined with a front tracking method for a class of nonlinear
parabolic equations. Sellier and Panda [147] described a first-order PDE with non-constant co-
efficients, which involves fourth-order derivatives of the desired free surface profile and solved
the first-order PDE using the method of characteristics. Ha et al. [69] presented a comparison
of numerical schemes (Crank-Nicolson, fully implicit, Godunov, adapted upwind, and WENO
schemes) for the convection term of a fourth order thin film equation. An alternating direction
implicit (ADI) scheme, which split the n-dimensional problem into n one-dimensional implicit
problems, has been used to solve the thin film equation [30, 156, 114]. This approach is a more
popular alternative to explicit one which is extremely restrictive in the choice of time step.
Witelski and Bowen [156] constructed an ADI scheme for the solution of two-dimensional
higher-order linear and nonlinear diffusion equations, particularly including the fourth-order
thin film equation for surface tension driven fluid flows. Myers et al. [114] solved the flow of a
thin film, with and without solidification, on an arbitrary three-dimensional substrate by com-
bining an ADI scheme with a shock capturing method. Recently, a multigrid approach has been
developed as a more robust and efficient alternative to ADI scheme. Daniels et al. [42] showed
that a fully implicit multigrid solver is more robust, returns an order of magnitude improve-
ment in the rate of convergence, and requires low memory. Gaskell et al. applied a multigrid
approach to droplet spreading flows [62] and continuous film flows with [63] or without [64]
evaporation. Lee et al. [110] solved a thin film flow over a plane containing well-defined single

7.2. GOVERNING EQUATION 58

b

g
h

h
∞

α

τ
x

y
z

FIGURE 7.1. A schematic diagram of the physical problem. A thin layer of
thickness h on an inclined surface driven by Marangoni stresses created by a
temperature gradient on the plane. Gravity works against the stress to drive
fluid back down the plane.

and grouped topographic features using a full approximation storage (FAS) multigrid algorith-
m by employing automatic mesh adaptivity. Also the authors presented FILMPAR which is
a parallel multigrid algorithm for solving a three-dimensional gravity-driven continuous thin
film free-surface flow over substrates containing micro-scale topography in [109]. Sellier et al.
[145] used the multigrid and COMSOL solvers to solve the flow of thin liquid films on a plane
surface containing occlusions. Veremieiev et al. [155] modelled an inertial thin film flow on
inclined planar surfaces featuring topography via a depth-averaged form and solved using an
FAS algorithm and a full multigrid (FMG) technique. Kim [81] developed an adaptive finite
difference method for a class of fully nonlinear time-dependent thin liquid film equations. Kim
and Sur [95] constructed a hybrid scheme which combines ENO scheme for treating convec-
tion term and a nonlinear multigrid method for the diffusion term. For more details on the thin
film equation, see the review Chapter [28] and references therein. In this Chapter, we present a
new interpretation of the mechanism of fingering phenomena by splitting the thin film equation
into two parts: the advection part and diffusion part. It is the aim of this Chapter to investi-
gate the mechanism of the fingering formation of the thin liquid film layer through numerical
experiments.

This Chapter is organized as follows. In Section 7.2, we review the governing equation.
In Section 7.3, the fully discrete, nonlinear FAS multigrid scheme for the thin film equation is
given. In Section 7.4, we present numerical results. Conclusions are made in Section 7.5.

7.2. Governing Equation

We consider the dynamics of a thin layer of liquid of thickness h = h(x, y, t) on an inclined
surface driven by thermally created surface tension gradients and influenced by gravity. The
configuration is shown in Fig. 7.1. The spatial variables x and y denote the direction of the
flow and the direction normal to the flow, respectively. Let α, ρ, g, η, γ, and τ = dγ/dx denote
the angle from horizontal of inclination of the plane, the density, the gravitational constant, the
dynamic viscosity, the surface tension, and the surface tension gradient of the liquid [28, 17].

7.2. GOVERNING EQUATION 59

We model the dynamics of the draining film using the lubrication approximation with a
“depth averaged” velocity ū = (ū, v̄) [16, 155]:

ū =
1

h

∫ h

0
udz =

τh

2η
− ρgh2 sinα

3η
+

γh2∆hx
3η

− ρgh2hx cosα

3η
,

v̄ =
1

h

∫ h

0
vdz =

γh2∆hy
3η

− ρgh2hy cosα

3η
,

ū =

(
τh

2η
− ρgh2 sinα

3η

)
e⃗x +

γh2∇∆h

3η
− ρgh2∇h cosα

3η
, (7.1)

where e⃗x = (1, 0) and ∆ = ∇·∇ is the Laplacian operator. For example, from the experimental
setting in [139], the surface tension gradient τ is taken 0.11 Pa. In Eq. (7.1), the first term is due
to surface tension gradient, the second term is due to the tangential component of gravity, the
third term is due to curvature, and the fourth term is due to the normal component of gravity.
Coupling Eq. (7.1) with mass conservation, we obtain

ht +∇ · (hū) = 0. (7.2)

To non-dimensionalize Eq. (7.2), we employ the non-dimensional variables (denoted by hats)

h = Hĥ, x = Lx̂, y = Lŷ, and t = T t̂

to obtain

H

T
ĥt̂ +

1

L
∇̂ ·

[(
H2τ ĥ2

2η
− H3ρgĥ3 sinα

3η

)
e⃗x

+
H4γĥ3∇̂∆̂ĥ

3L3η
− H4ρgĥ3∇̂ĥ cosα

3Lη

]
= 0. (7.3)

Now we define the characteristic variables by balancing terms. First we balance the tangential
gravity and Marangoni terms to define H . Note that the independent and dependent variables
are all order 1. We obtain the following equation for H

H2τ

2η
=

H3ρg sinα

3η
, i.e., H =

3τ

2ρg sinα
.

Next we define L such that the Marangoni and surface tension effects balance:

H2τ

2η
=

H4γ

3L3η
, i.e., L =

(
3γτ

2ρ2g2 sin2 α

)1/3

.

Now choose the time scale T so that gravity, Marangoni, and surface tension forces balance:

H

T
=

H2τ

2Lη
, i.e., T =

2η

τ2

(
4γτρg sinα

9

)1/3

.

We substitute the expressions for H , L, and T into Eq. (7.3) and drop the ‘ˆ’ to obtain the
dimensionless thin film equation:

ht + (h2 − h3)x = D∇ · (h3∇h)−∇ · (h3∇∆h),

7.3. NUMERICAL METHOD 60

where D = TH3ρg cosα
3ηL2 . Since an inclined plane is close vertical to the surface, we take D = 0.

Thus we have derived the dimensionless thin film equation

ht + (h2 − h3)x = −∇ · (h3∇∆h). (7.4)

This equation is a fourth order nonlinear singular perturbation of the conservative law ht +
(h2 − h3)x = 0 [17].

7.3. Numerical Method

Firstly, we split the fourth order Eq.(7.4) into a system of second order equations

ht + fx(h) = ∇ · (M(h)∇µ), h = h(x, y, t), (7.5)
µ = −∆h, (x, y) ∈ Ω = (0, Lx)× (0, Ly), t > 0, (7.6)

where f(h) = h2 − h3 and M(h) = h3. Boundary conditions are given by

h(0, y, t) = h∞, h(Lx, y, t) = b, h(x, 0, t) = h(x, Ly, t),

µx(0, y, t) = µx(Lx, y, t) = 0, µ(x, 0, t) = µ(x, Ly, t),

where h∞ is a constant upstream height and b is a precursor film thickness.

7.3.1. Discretization of the proposed scheme. Now we present fully discrete schemes
for the Eqs.(7.5) and (7.6) in two dimensional space. A semi-implicit time and centered dif-
ference space discretization of Eqs. (7.5) and (7.6) is

hn+1
ij − hnij

∆t
= ∇d ·

(
M(h)n+1

ij ∇dµ
n+1
ij

)
− fx(h

n+1
ij), (7.7)

µn+1
ij = −∆dh

n+1
ij . (7.8)

fx(h
n+1
ij) is treated by using an implicit essentially non-oscillatory (ENO) type scheme [146].

Since f ′(h) = 2h− 3h2 > 0 if 0 < h < 2
3 , we define

fx(h
n+1
ij) := f ′(hn+1

ij)

(
hn+1
ij − hn+1

i−1,j

∆x

)
+ ℑ(hnij),

where ℑ(hn) is computed as follows:

a =
hnij − hni−1,j

∆x
, c =

hni+1,j − hnij
∆x

, dij =

{
a if |a| ≤ |c|
c otherwise.

Then we have ℑ(hnij) = 0.5(dij − di−1,j)f
′(hnij). We define the boundary condition as

h0,j = 2h∞ − h1,j , hNx+1,j = 2b− hNx,j , hi,0 = hi,Ny , hi,Ny+1 = hi,1,

µ0,j = µ1,j , µNx+1,j = µNx,j , µi,0 = µi,Ny , µi,Ny+1 = µi,1.

We use a nonlinear Full Approximation Storage (FAS) multigrid method to solve the non-
linear discrete system (7.7) and (7.8) at the implicit time level. A pointwise Gauss-Seidel
relaxation scheme is used as the smoother in the multigrid method. See the reference text
[153] for additional details and background. For a detailed description of the algorithm of the
nonlinear multigrid method for solving the discrete system, please refer to Refs. [81, 95, 110].

7.4. NUMERICAL EXPERIMENT 61

10
3

10
4

10
5

10
6

10
1

10
2

10
3

Number of unknowns, N

C
P

U
 ti

m
e,

 t

FIGURE 7.2. CPU time versus the number of unknowns. The multigrid solver
achieves the O(N) efficiency, where N is the number of unknowns.

7.4. Numerical Experiment

In this subsection, we perform numerical experiments such as efficiency and performance
of multigrid solver, comparison of different advection schemes, role of the diffusion term in the
thin film equation without the advection term, effect of h∞, fingering instability, comparison
with the experimental data, and long time evolution for the Marangoni-driven flow.

7.4.1. Efficiency of the multigrid solver. To investigate the efficiency of the multigrid
method, we measure CPU times needed to solve the following problem:

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 5) + rand(x, y))],

where h∞ = 0.175 and b = 0.002. 2n×2n−1 meshes are used on Ω = (0, 5·2n−3)×(0, 5·2n−4)
for n = 5, 6, 7, 8, 9, and 10. Each calculation is run up to time T = 50 with a time step
∆t = 0.5. Fig. 7.2 shows CPU times versus the number of unknowns. The results fit a
straight line. This implies that the multigrid solver achieves the O(N) efficiency, where N is
the number of unknowns.

7.4.2. Performance of smoothers and grid levels in the multigrid solver. In the multi-
grid method, a robust smoother is a necessary requirement to achieve grid independent conver-
gence. We compare the performance of Jacobi, Red-Black, and Gauss-Seidel relaxations as a
smoother. The initial condition is

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 2) + rand(x, y))], (7.9)

where h∞ = 0.225 and b = 0.002. A 64 × 64 mesh is used on Ω = (0, 10) × (0, 10).
Solutions are computed up to time T = 10 with a time step ∆t = 0.25. Each iteration is
run until the maximum error is less than 10−8. Table 7.1 shows CPU times for three different
relaxation schemes. We can see from Table 7.1 that the Gauss-Seidel method is the most
efficient smoother.

7.4. NUMERICAL EXPERIMENT 62

TABLE 7.1. CPU times for three different relaxation schemes.

Case Jacobi Red-Black Gauss-Seidel

CPU time (s) 201.80 17.67 16.49

Next, we compare the performance of coarse grid levels in the multigrid solver. The initial
condition is given by Eq. (7.9). A 128× 128 mesh is used on Ω = (0, 10)× (0, 10). We take
h∞ = 0.225, b = 0.002, ∆t = 0.25, and T = 10. In this test, the experiment is performed
using (3, 3), (4, 4), (5, 5), and (6, 6) V -cycles, where (ν1, ν2) indicates ν1 presmoothing and
ν2 postsmoothing iterations. Note that we use Gauss-Seidel relaxation in each V -cycle and
each iteration is run until the maximum error is less than 10−8. Table 7.2 shows CPU times
for different coarse grid levels. With increasing number of grid levels from V (4, 4) to V (6, 6),
we get only a slight increase of the CPU time. But, in the case of V (3, 3), many smoothings
are required since the coarsest grid is not sufficiently coarse to solve the problem. This causes
a dramatic increase in the CPU time. Therefore we need sufficiently coarse grid levels to
calculate fast.

TABLE 7.2. CPU times for different coarse grid levels.

Case V(3,3) V(4,4) V(5,5) V(6,6)

CPU time (s) 109.516 71.60 72.14 72.31

7.4.3. Stability test: comparison of different advection schemes. Now, we test the sta-
bility of proposed scheme with explicit ENO, explicit upwind, and implicit upwind schemes
for the advection term. For the diffusion term, we use the same implicit scheme. The initial
condition in one dimension is

h(x, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 10))],

where h∞ = 0.3 and b = 0.1 (see the thick solid line in Fig. 7.3(a)). A 1024 grid is used on
Ω = (0, 100). Solutions are computed up to time T = 200 with different time steps. Fig. 7.3
shows the stability of four different advection schemes. Fig. 7.3(a) shows numerical solutions
with four different schemes using a time step ∆t = 0.1. In Fig. 7.3(b) (the close-up view
of Fig. 7.3(a)), the dotted, dashed, dash-dot, and solid lines are results with explicit ENO,
our proposed, explicit upwind, and implicit upwind schemes, respectively. As can be seen, all
schemes seem well to describe the simulation of thin film by using a small time step. While,
Fig. 7.3(c) shows numerical solutions with four different schemes using a slightly larger time
step ∆t = 0.75. This result shows that the explicit ENO and explicit upwind schemes are
unstable. Our proposed and implicit upwind schemes are stable. However, in the case of the
implicit upwind scheme, the hump disappeared due to the numerical diffusion. Fig. 7.3(d)
shows numerical solutions with two different schemes using a time step ∆t = 2.5. The dotted
and solid lines are results with our proposed and implicit upwind schemes, respectively. This

7.4. NUMERICAL EXPERIMENT 63

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

x

h(x)

Initial
Explicit ENO
Proposed scheme
Explicit upwind
Implicit upwind

(a) ∆t = 0.1

56 58 60 62 64 66

0.1

0.2

0.3

0.4

x

h(x)

Explicit ENO
Proposed scheme
Explicit upwind
Implicit upwind

(b) a close-up view of (a)

50 52 54 56 58 60 62 64 66 68

0.1

0.2

0.3

0.4

0.5

x

h(x)

Explicit ENO
Proposed scheme
Explicit upwind
Implicit upwind

(c) ∆t = 0.75

54 56 58 60 62 64 66 68 70

0.1

0.2

0.3

0.4

x

h(x)

Proposed scheme
Implicit upwind

(d) ∆t = 2.5

FIGURE 7.3. The evolutions with three different time steps. (a) and (b) Us-
ing a small time step, all schemes are stable. (c) Using a slightly larger time
step, only our proposed and implicit upwind schemes are stable. (d) However,
in the case of the implicit upwind scheme, the hump disappeared due to the
numerical diffusion.

result suggests that if we use a large time step, the hump disappeared due to the numerical
diffusion. Therefore, to capture all phenomena of the solution, we need to use not only a fine
grid but also a sufficiently small time step.

7.4.4. Role of the diffusion term in the thin liquid film equation without the advec-
tion term. Next, we consider the role of diffusion in the thin liquid film equation without the
advection. The initial condition in one dimension is

h(x, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 110))],

where h∞ = 0.3. The computational domain is Ω = (0, 200). The uniform time step ∆t = 100
is used. Solutions are computed up to time T = 20000. Fig. 7.4(a) shows the evolutions of
the thin film height h with the precursor film thickness b = 0.1 and a grid size Nx = 1024. In
Fig. 7.4(b), the stared and circled lines represent the evolutions of hmax − h∞ and b − hmin,
respectively. Here, hmax = maxx∈Ω h(x) and hmin = minx∈Ω h(x). They start at zero and
converge quickly to constant values. Fig. 7.4(c), (d), and (e) show the thin film heights at time

7.4. NUMERICAL EXPERIMENT 64

T = 20000 with different precursor film thicknesses b = 0.01, 0.1, and 0.2 on three different
grids, respectively. The stared, circled, and plused lines represent the results on different grids
Nx = 256, 512, and 1024, respectively. The results show the convergence as we refine the
grids. Fig. 7.4(f) shows hmax−h∞ and b−hmin with different b values on the grids Nx = 256,
512, and 1024. This result shows that with fixed h∞ value, hmax − h∞ is decreasing and
b− hmin is concave with respect to b.

Now, let us consider the numerical result with the precursor film thickness b = 0.1. In
Fig. 7.5, the dashed and circled lines represent h(x, 50) and −(h3hxxx)x × 50 at t = 50,
respectively. The bright gray region represents −(h3hxxx)x > 0 and the dark gray region
represents −(h3hxxx)x < 0. Positive (or negative) value of −(h3hxxx)x implies that ht is
greater (or less) than zero, i.e., h(x, t) will increase (or decrease). As predicted, in the bright
gray region, h(x, 100) increased than h(x, 50) (see the solid line in Fig. 7.5).

We also perform a similar numerical experiment in two dimensions with the following
initial condition:

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 10)− 10 cos(πy/10))],

where h∞ = 0.3 and b = 0.01. A 256 × 256 mesh is used on Ω = (0, 20) × (0, 20). We
take ∆t = 0.5. Fig. 7.6(a1), (a2), and (a3) show h(x, y, t) at t = 0, 1, and 9, respectively. In
Fig. 7.6(b1), (b2), and (b3), filled contours of −∇ · (h3∇∆h) are shown. The bright region
represents −∇·(h3∇∆h) > 0 and the dark region represents −∇·(h3∇∆h) < 0. Positive and
negative values of −∇·(h3∇∆h) imply that h(x, y, t) will increase and decrease, respectively.

7.4.5. Convection with non-convex flux, f(h) = h2 − h3: the effect of h∞. As shown
in [17] Eq. (7.4) has a single Lax shock solution

h(x, t) =

{
h∞ if x < st,
b if x > st,

where the shock speed s is given by

s =
f(h∞)− f(b)

h∞ − b
= −h2∞ + (1− b)h∞ + b− b2

= −(h∞ − 1− b

2
)2 +

(1− b)(1 + 3b)

4
. (7.10)

As we can see from Eq. (7.10), the shock speed is an increasing function of h∞ until h∞ =
(1 − b)/2 (see Fig. 7.7(a)). To confirm this numerically, we consider the shock speed with
different h∞ values. The initial condition in one dimension is

h(x, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 5))],

where b = 0.05. A 1024 grid is used on Ω = (0, 40). Solutions are computed up to time
T = 80 with a time step ∆t = 0.5. Fig. 7.7(b) shows the evolutions of the film height with
h∞ = 0.1, 0.2, and 0.3. The result indicates that higher the film height, the faster the film front
evolves.

7.4. NUMERICAL EXPERIMENT 65

80 100 120 140
0.05

0.15

0.25

0.35

x

h(x)

t=0
t=100
t=1000
t=10000
t=20000

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.003

0.006

0.009

0.012

0.015

0.018

Time

h
max

−h∞
b−h

min

(b)

80 100 120 140
0

0.1

0.2

0.3

0.4

x

h(x)

N
x
=256

N
x
=512

N
x
=1024

(c) b = 0.01

80 100 120 140
0

0.1

0.2

0.3

0.4

x

h(x)

N
x
=256

N
x
=512

N
x
=1024

(d) b = 0.1

80 100 120 140
0

0.1

0.2

0.3

0.4

x

h(x)

N
x
=256

N
x
=512

N
x
=1024

(e) b = 0.2

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

b

(h
max

−h∞)
256

(h
max

−h∞)
512

(h
max

−h∞)
1024

(b−h
min

)
256

(b−h
min

)
512

(b−h
min

)
1024

(f)

FIGURE 7.4. (a) The evolutions of the thin film height h with b = 0.1 and
Nx = 1024. (b) The stared and circled lines represent evolutions of hmax−h∞
and b − hmin, respectively. (c), (d), and (e) show the thin film heights with
b = 0.01, 0.1, and 0.2 on the different grids, respectively. (f) hmax − h∞ and
b− hmin with different b values on the grids.

7.4. NUMERICAL EXPERIMENT 66

100 105 110 115
−0.1

0

0.1

0.2

0.3

0.4

x

h(x,50)
h(x,100)

−(h3h
xxx

)
x
×50

FIGURE 7.5. The bright gray region represents −(h3hxxx)x > 0 and the
dark gray region represents −(h3hxxx)x < 0. Positive (or negative) value
of −(h3hxxx)x implies that ht is greater (or less) than zero, i.e., h(x, t) will
increase (or decrease).

7.4.6. Fingering instability. In this section, we study the effect of h∞ on the finger shape
for Marangoni-driven flow. The initial condition is

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 5) + rand(x, y))],

where b = 0.002 and rand(x, y) is a random number in [−1, 1]. These perturbations model
deviations from the straight front in the experiments. A 256 × 128 mesh is used on Ω =
(0, 100) × (0, 50). Solutions are run up to time T = 600 with a time step ∆t = 0.5. Fig.
7.8(a), (b), and (c) show the evolutions of the fluid front with different h∞ = 0.175, 0.2,
and (c) h∞ = 0.225, respectively. The times are t = 300, 360, 450, and 600 from bottom
to top. The results show that the speed of the fluid front is an increasing function of h∞ until
h∞ = (1−b)/2. We note that the fingering phenomena occurs by two mechanisms. One is that
the concave front has higher film height than the convex front and the other is that higher the
film height, the faster the film front evolves. The first and second mechanisms were observed
from the numerical experiments in Fig. 7.6 and Fig. 7.7(b), respectively. By combination of
these two effects, the fingering phenomena happens.

7.4.7. Comparison with the experimental data. Next, we compare our results with two
experimental data. We consider the thin film experiments which were performed by Sur et al.
in [139]. In the first experiment, the initial condition is

h(x, 0) = 0.5[hf + b− (hf − b) tanh(3(x− 18))],

where hf = 0.75, h∞ = 0.025, and b = 0.005. A 1024 grid is used on Ω = (0, 50).
Calculation is run up to time T = 120 with a time step ∆t = 0.05. The result is shown in Fig.

7.4. NUMERICAL EXPERIMENT 67

0

10

20 0
5

10
15

20

0

0.1

0.2

0.3

0.4

(a1)
0 10 20

0

10

20

(b1)

0

10

20 0
5

10
15

20

0

0.1

0.2

0.3

0.4

(a2)
0 10 20

0

10

20

(b2)

0

10

20 0
5

10
15

20

0

0.1

0.2

0.3

0.4

(a3)
0 10 20

0

10

20

(b3)

FIGURE 7.6. (a1)-(a3): the thin film height h(x, y, t) at t = 0, 1, and 9,
respectively. (b1)-(b3): Filled contours of −∇ · (h3∇∆h) at t = 0, 1, and 9,
respectively. The bright region represents −∇ · (h3∇∆h) > 0 and the dark
region represents −∇ · (h3∇∆h) < 0.

7.4. NUMERICAL EXPERIMENT 68

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

h∞ =
1 − b

2

upstream height, h∞

sh
o

ck
 s

p
e

e
d

,
s

(a)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

x

Initial
h∞=0.1

h∞=0.2

h∞=0.3

(b)

FIGURE 7.7. (a) The upstream height and shock speed. (b) The shock speed
with different h∞ values. Higher the film height, the faster the film front
evolves.

(a) (b) (c)

FIGURE 7.8. The effect of h∞ on the finger shape for Marangoni-driven flow.
(a) h∞ = 0.175, (b) h∞ = 0.20, and (c) h∞ = 0.225. The evolution of the
fluid front is from bottom to top. The times are t = 300, 360, 450, and 600.

9.4(a). In the second experiment, the initial condition is

h(x, 0) = 0.5[hf + b− (hf − b) tanh(3(x− 15.4))],

7.4. NUMERICAL EXPERIMENT 69

(a)

0 10 20 30 40
0

0.5

1

numerical result
experimental data

(b)

0 10 20 30
0

0.4

0.8

1.2

numerical result
experimental data

FIGURE 7.9. Comparison with the experimental data [139]. (a) h(x, 0) =
0.5[hf + b − (hf − b) tanh(3(x − 18))], hf = 0.75, h∞ = 0.025, and b =
0.005. (b) h(x, 0) = 0.5[hf + b − (hf − b) tanh(3(x − 15.4))], hf = 0.75,
h∞ = 0.081, and b = 0.005.

where hf = 0.75, h∞ = 0.081, and b = 0.005. A 512 grid is used on Ω = (0, 40). Calculation
is run up to time T = 75 with a time step ∆t = 0.05. The result is shown in Fig. 9.4(b). These
results show that our computational results are in qualitative agreement with experimental data.

7.4.8. Long time evolution for Marangoni-driven flow. We perform a long time evo-
lution for Marangoni-driven flow. In [17], a reference frame moving with the speed of the
front was used to locally reduce the numerical diffusion. To calculate a long time evolution,
we designed a shifting mesh algorithm. The proposed automatic shifting algorithm is given
in Appendix. Here we shifted the mesh when the front of the flow reached nine-tenths of the
domain. The reason is that if we shift the mesh at early stage, then it is inefficient since we
shifted the mesh although the flow can evolve more. And if we shift the mesh at late stage,
then we can not see correctly evolutions of the flow by the effect of the boundary condition
b. And we did Steps 1-2 when the maximum of the film height is greater than (h∞ + 8b)/9.
Because if we consider that the maximum of the film height is greater than some position that
is higher than (h∞ + 8b)/9, for example, (h∞ + 4b)/5, then it is too late to shift the mesh
since the front of the flow can be influenced by the boundary condition b. The reason that we

7.4. NUMERICAL EXPERIMENT 70

Algorithm:
Given an integer k0 = [0.9Nx] and a tolerance tol = 10−5, where [x] is the
greatest integer not greater than x.

If
(

max
1≤j≤Ny

hk0j >
h∞ + 8b

9

)
then do Steps 1-2

Step 1 Set k1 = k0

While
(

max
1≤j≤Ny

|∇dhk1j |2 > tol

)
do

k1 = k1 − 1
End

Set k2 = [k1 − 0.05Nx]
Step 2 If (1 ≤ i ≤ Nx − k2 + 1 and 1 ≤ j ≤ Ny)

h̄ij = hk2+i−1,j

Else
h̄ij = b

End
We continue the calculation with h̄ij .

k
0

k
2

k
1

(a) (b)

FIGURE 7.10. The proposed automatic shifting algorithm. (a) and (b) are
before and after shifting, respectively.

set k2 = [k1 − 0.05Nx] is to give sufficiently mesh from h∞ to hump region. Fig. 7.10 shows
the proposed automatic shifting algorithm. The initial condition is

h(x, y, 0) = 0.5[h∞ + b− (h∞ − b) tanh(3(x− 7) + rand(x, y))],

7.4. NUMERICAL EXPERIMENT 71

(a) (b) (c) (d) (e)

FIGURE 7.11. The finger shape for Marangoni-driven flow at the following
times: (a) t = 800, (b) t = 1600, (c) t = 2400, (d) t = 3200, and (e)
t = 4000. The effective domain size is Ω = (0, 578)× (0, 50) and contours in
0.0019, 0.10, 0.15, 0.20, 0.25, 0.31, and 0.35, respectively.

where h∞ = 0.175 and b = 0.002. The computational domain using a spatial mesh of 256 ×
128 is Ω = (0, 100) × (0, 50). The uniform time step ∆t = 0.5 is used. Fig. 7.11 shows the
long time evolution with only took CPU time 3.34h.

7.5. CONCLUSIONS 72

7.5. Conclusions

We presented a new interpretation of the fingering phenomena of the thin liquid film layer
through numerical investigations. A robust and accurate finite difference method was devel-
oped for the thin liquid film equations. For the advection part (h2 − h3)x, we used an implicit
ENO type scheme and got a good stability property. The resulting nonlinear discrete system
was solved by an efficient nonlinear multigrid method. Numerical experiments indicated that
higher the film thickness, the faster the film front evolves. The concave front has higher film
thickness than the convex front. Therefore, the concave front has higher speed than the convex
front and this leads to the fingering phenomena.

This Chapter is accepted in International Journal for Numerical Methods in Fluids,
2010. (in press)

73

Chapter 8

Conservative immersed boundary methods for two-phase fluid
flows

8.1. Introduction

Many important industrial problems involve flows with multiple constitutive components.
Due to inherent nonlinearities and the complexity of dealing with unknown moving interfaces,
multiphase flows are challenging. There are many ways to model moving interfaces. The two
main approaches to simulating multiphase and multi-component flows are interface tracking
and interface capturing. In interface tracking methods (front-tracking [61], immersed interface
[137], and immersed boundary [126, 91]), Lagrangian particles are used to track the interfaces.
In interface capturing methods such as level-set [24, 59] and phase-field methods [81, 82], the
interface is implicitly captured by a contour of a particular scalar function. The numerical
method we will take is the immersed boundary method (IBM), which is originally developed
by Peskin [126]. IBM started to be applied to two-phase fluid flows [92, 53, 54]. The motion
of the fluid is influenced by the force generated by the interface and the interface moves at the
local fluid velocity. The strength of this method is that it can handle accurately the complicated
and time dependent geometry of the interface.

Consider a viscous incompressible fluid which fills a rectangular domain Ω and an interface
Γ which is contained in the domain. We shall now consider the mathematical formulation of
the equations of motion for the immiscible two-phase fluid. Let ρ be the variable density and
µ be the variable viscosity. The equations of motion of the mixture are then as follows:

ρ(I)

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t)

+ ∇ · [µ(I)(∇u(x, t) +∇u(x, t)T)] + F(x, t) + ρ(I)g, (8.1)
∇ · u(x, t) = 0,

F(x, t) =

∫
Γ
f(s, t)δ2(x−X(s, t))ds,

f(s, t) = σ
∂2X(s, t)

∂s2
,

∂X(s, t)

∂t
= U(s, t), (8.2)

U(s, t) =

∫
Ω
u(x, t)δ2(x−X(s, t))dx. (8.3)

The fluid velocity u(x, t), fluid pressure p(x, t), and singular surface tension force den-
sity F(x, t) are functions of (x, t), where x = (x, y) are Cartesian coordinates. t is the time

8.2. NUMERICAL METHOD 74

and g is the gravity. The configuration of the immersed boundary is described by the function
X(s, t), where 0 ≤ s ≤ L and L is the unstressed length of the boundary (see Fig. 8.1 (a)).
The boundary force density f(s, t) and the boundary velocity U(s, t) are also functions of s
and t. The core of the immersed boundary method is the delta function, which describes the in-
teraction between the fluid and the immersed boundary. Discontinuous material properties can
easily be accommodated through the numerical construction of an indicator function, I(x, t).
Let us define a gradient field,

∇I(x, t) =

∫
Γ
n(X(s, t))δ2(x−X(s, t))ds, (8.4)

which is zero except near the interface. To find the indicator function, the Poisson equation

∆I(x, t) = ∇ ·
∫
Γ
n(X(s, t))δ2(x−X(s, t))ds

is solved. Then, the variable fluid properties, ρ and µ, can be represented by

ρ(I(x, t)) = ρ1 + (ρ2 − ρ1)I(x, t) and µ(I(x, t)) = µ1 + (µ2 − µ1)I(x, t),

where ρi and µi for i = 1, 2 are density and viscosity of fluid i, respectively. There is no
guarantee that the advected immersed boundary preserves area in time. An area conservation
is an important issue in modeling free interface problems. If the area loss happens, it could
increase a local curvature of the interface and results in overestimating surface tension force.
Overestimated surface tension force induces a wrong velocity field which moves the interface
to wrong position.

When an exact projection method is used for solving the Navier-Stokes equations, the
velocity field on the Eulerian grid will be discretely divergence-free, but this does not guarantee
that the interpolated velocity field through the delta function is continuously divergence free.
This can result in the volume loss [121]. This is particularly problematic for interfaces under
tension, which have been shown to exhibit volume loss with the IB method [28, 103, 127, 132].
A solution for fixing the volume loss problem is using the modified divergence stencils of
Peskin and Printz. Peskin and Printz [132] made a dramatic improvement in the overall volume
conservation. The key idea is the introduction of a new finite difference divergence operator
which is constructed in such a way that the interpolated velocity field in which the immersed
boundary moves is more nearly divergence-free.

In this Chapter, we propose a simple area preserving correction scheme for the two-phase
immiscible incompressible Navier-Stokes flows with an immersed boundary method. The idea
of area preserving correction scheme is to correct the interface location normally to the inter-
face so that the area remains constant. The rest of the Chapter is organized as follows. In
Section 8.2, the numerical method will be introduced. The experimental results will be dis-
cussed in Section 8.3. Finally, some conclusions will be drawn in Section 8.4.

8.2. Numerical method

In this section, we present the numerical solution algorithm. A staggered marker-and-cell
(MAC) mesh of Harlow and Welch [71] is used in which pressure and indicator function are
stored at cell centers and velocities at cell interfaces (see Fig. 8.1(b)).

Let a computational domain be partitioned in Cartesian geometry into a uniform mesh
with mesh spacing h. The center of each cell, Ωij , is located at xij = (xi, yj) = ((i −

8.2. NUMERICAL METHOD 75

Ω

Γ

•
X(s, t)

•Xl+1

•Xl

∆sl+1

fluid 2

fluid 1

(a)

vi,j− 1

2

vi,j+ 1

2

vi+1,j− 1

2

vi+1,j+ 1

2

ui− 1

2
,j ui+ 1

2
,j

ui− 1

2
,j+1 ui+ 1

2
,j+1

pijIij

(b)

FIGURE 8.1. (a) Velocities are defined at cell boundaries while the pressure
and indicator function are defined at the cell centers. (b) Immersed boundary
points.

0.5)h, (j − 0.5)h) for i = 1, · · · , Nx and j = 1, · · · , Ny. Nx and Ny are the numbers of
cells in x- and y-directions, respectively. We use a set of M Lagrangian points Xn

l = (xnl , y
n
l)

for l = 1, . . . ,M to discretize the immersed boundary with the initial boundary mesh width
∆sl+1 =

√
(xl+1 − xl)2 + (yl+1 − yl)2.

At the beginning of each time step, given a divergence free velocity field un, a boundary
force Fn, and a given boundary configuration Xn, we want to find un+1, pn+1, and Xn+1

which solve the following semi-implicit scheme in time and space:

ρn
un+1 − un

∆t
= −ρnun · ∇du

n −∇dp
n+1 + µ∆du

n + Fn + ρng,

∇d · un+1 = 0,

where ρn = ρ1 + (ρ2 − ρ1)I
n and g = (0,−g).

Step 1. Find the force fn on the immersed boundary from the given boundary configuration
Xn. For l = 1, . . . ,M ,

fnl = σ
Xn

l+1 − 2Xn
l +Xn

l−1

∆s2l+1/2

, (8.5)

where ∆sl+1/2 = (∆sl + ∆sl+1)/2 and σ is a surface tension coefficient. Note that the sub-
script arithmetic on l in Eq. (8.5) has to be interpreted in a periodic sense, since the boundary
is closed: if l = M , then l + 1 = 1; if l = 1, then l − 1 = M .

Step 2. Spread the boundary force into the nearby lattice points of the fluid.

Fn
ij =

M∑
l=1

fnl δ
2
h(xij −Xn

l)∆sl+1/2 for i = 1, . . . , Nx and j = 1, . . . , Ny,

where δ2h is a smoothed approximation to the two-dimensional Dirac delta function:

δ2h(x) =
1

h2
ϕ
(x
h

)
ϕ
(y
h

)
,

8.2. NUMERICAL METHOD 76

where

ϕ(r) =


3−2|r|+

√
1+4|r|−4r2

8 if |r| ≤ 1,
5−2|r|−

√
−7+12|r|−4r2

8 if 1 < |r| ≤ 2,
0 if 2 < |r|.

One- and two-dimensional Dirac delta functions are shown in Fig. 8.2. The motivation for this
particular choice of ϕ(r) is given in [131].

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

r

(a)

−4
0

4

−4

0

4
0

0.05

0.1

0.15

0.2

0.25

x/hy/h

(b)

FIGURE 8.2. (a) One- and (b) Two-dimensional Dirac delta functions.

Step 3. Solve the Navier-Stokes equations on the rectangular lattice to get the update un+1

and pn+1 from un and Xn.
Solve an intermediate velocity field, ũ, which generally does not satisfy the incompressible

condition, without the pressure gradient term,

ũ− un

∆t
+ un · ∇du

n =
µ

ρn
∆du

n +
1

ρn
Fn + g.

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2
,j = un

i+ 1
2
,j
−∆t(uux + vuy)

n
i+ 1

2
,j
+

∆t

ρn
i+ 1

2
,j

F x−edge

i+ 1
2
,j

+
µ∆t

h2ρn
i+ 1

2
,j

(
un
i+ 3

2
,j
+ un

i− 1
2
,j
− 4un

i+ 1
2
,j
+ un

i+ 1
2
,j+1

+ un
i+ 1

2
,j−1

)
,

ṽi,j+ 1
2

= vn
i,j+ 1

2

−∆t(uvx + vvy)
n
i,j+ 1

2

+
∆t

ρn
i,j+ 1

2

F y−edge

i,j+ 1
2

− g∆t

+
µ∆t

h2ρn
i,j+ 1

2

(
vn
i,j+ 3

2

+ vn
i,j− 1

2

− 4vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

+ vn
i−1,j+ 1

2

)
,

8.2. NUMERICAL METHOD 77

where the advection terms, (uux + vuy)
n
i+ 1

2
,j

and (uvx + vvy)
n
i,j+ 1

2

, are defined by

(uux + vuy)
n
i+ 1

2
,j

= un
i+ 1

2
,j
ūnx

i+1
2 ,j

+
vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

4
ūny

i+1
2 ,j

,

(uvx + vvy)
n
i,j+ 1

2
= vn

i,j+ 1
2
v̄ny

i,j+1
2

+
un
i− 1

2
,j
+ un

i− 1
2
,j+1

+ un
i+ 1

2
,j
+ un

i+ 1
2
,j+1

4
v̄nx

i,j+1
2

.

The values ūnx
i+1

2 ,j
and ūny

i+1
2 ,j

are computed using the upwind procedure. The procedure

is

ūnx
i+1

2 ,j
=


un

i+1
2 ,j

−un

i− 1
2 ,j

h if un
i+ 1

2
,j
> 0

un

i+3
2 ,j

−un

i+1
2 ,j

h otherwise

and

ūny
i+1

2 ,j
=


un

i+1
2 ,j

−un

i+1
2 ,j−1

h if vn
i,j− 1

2

+ vn
i+1,j− 1

2

+ vn
i,j+ 1

2

+ vn
i+1,j+ 1

2

> 0
un

i+1
2 ,j+1

−un

i+1
2 ,j

h otherwise.

The quantities v̄nx
i,j+1

2

and v̄ny
i,j+1

2

are computed in a similar manner. Then, we solve the

following equations for the advanced pressure field at (n+ 1) time step.

un+1 − ũ

∆t
= − 1

ρn
∇dp

n+1, (8.6)

∇d · un+1 = 0. (8.7)

With application of the divergence operator to Eq. (8.6), we find that the Poisson equation
for the pressure at the advanced time (n+ 1).

∇d ·
(

1

ρn
∇dp

n+1

)
=

1

∆t
∇d · ũ, (8.8)

where we have made use of the Eq. (8.7) and the terms are defined as in the following.

∇d ·
(

1

ρn
∇dp

n+1
ij

)
=

1
ρn
i+1

2 ,j

pn+1
i+1,j +

1
ρn
i− 1

2 ,j

pn+1
i−1,j +

1
ρn
i,j+1

2

pn+1
i,j+1 +

1
ρn
i,j− 1

2

pn+1
i,j−1

h2

−

1
ρn
i+1

2 ,j

+ 1
ρn
i− 1

2 ,j

+ 1
ρn
i,j+1

2

+ 1
ρn
i,j− 1

2

h2
pn+1
ij ,

∇d · ũij =
ũi+ 1

2
,j − ũi− 1

2
,j

h
+

ṽi,j+ 1
2
− ṽi,j− 1

2

h
,

8.2. NUMERICAL METHOD 78

where ρn
i+ 1

2
,j

= (ρnij + ρni+1,j)/2 and the other terms are similarly defined. The boundary

condition for the pressure is

n · ∇dp
n+1 = n ·

(
−ρn

un+1 − un

∆t
− ρn(u · ∇du)

n + µ∆du
n + Fn + ρng

)
,

where n is the unit normal vector to the domain boundary. And also we get

n · ∇dp
n+1 = n · ρng.

The resulting linear system of Eq. (8.8) is solved using a multigrid method [153], specif-
ically, V-cycles with a Gauss-Seidel relaxation. Then the divergence-free normal velocities
un+1 and vn+1 are defined by

un+1 = ũ− ∆t

ρn
∇dp

n+1, i.e.,

un+1
i+ 1

2
,j

= ũi+ 1
2
,j −

∆t

ρn
i+ 1

2
,j
h
(pi+1,j − pij),

vn+1
i,j+ 1

2

= ṽi,j+ 1
2
− ∆t

ρn
i,j+ 1

2

h
(pi,j+1 − pij).

Step 4. Once the updated fluid velocity, un+1, has been determined, we can find the veloc-
ity, Un+1, and then the new position, Xn+1, of the immersed boundary points. This is done
using a discretization of Eqs. (8.2) and (8.3). That is, for l = 1, . . . ,M ,

Un+1
l =

Nx∑
i=1

Ny∑
j=1

un+1
ij δ2h(xij −Xn

l)h
2,

Xn+1
l = Xn

l +∆tUn
l . (8.9)

This completes the description of the process (Steps 1-4, above) by which the quantities u
and X are updated.

8.2.1. Discretization of the indicator function. In this section, we will present the nu-
merical method to calculate the indicator function. Let the discretization of the right hand side
of Eq. (8.4) be Gn

ij :

Gn
ij =

M∑
l=1

nn
l δ

2
h(xij −Xn

l)∆sl+ 1
2
.

For a given interface position Xl, the corresponding unit normal vector nl = (ml, nl) will
be calculated by using three points Xl−1 = (xl−1, yl−1), Xl = (xl, yl), Xl+1 = (xl+1, yl+1)
with the quadratic polynomial approximation. Let the quadratic polynomial approximation be

x(t) = α1t
2 + β1t+ γ1 and y(t) = α2t

2 + β2t+ γ2.

And assume Xl−1 = (x(0), y(0)), Xl = (x(∆sl), y(∆sl)), and Xl+1 = (x(∆sl +
∆sl+1), y(∆sl + ∆sl+1)), then the parameters α1, β1, γ1, α2, β2, and γ2 can be calculated
by the following equations.

8.2. NUMERICAL METHOD 79

 α1

β1
γ1

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 x(0)
x(∆sl)

x(∆sl +∆sl+1)

 ,

 α2

β2
γ2

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 y(0)
y(∆sl)

y(∆sl +∆sl+1)

 .

Now we get the unit normal vector as

nl = (ml, nl) =

 dy(∆sl)
dt√(

dx(∆sl)
dt

)2
+
(
dy(∆sl)

dt

)2 , −dx(∆sl)
dt√(

dx(∆sl)
dt

)2
+
(
dy(∆sl)

dt

)2
 .

Then, we solve the following Poisson equation using the multigrid method.

∆dI
n = ∇d ·Gn.

8.2.2. The area correction algorithm. For a given interface position X, the area and the
relative area error are defined as in the following.

A(X) =
1

2

M∑
l=1

(XlYl+1 − YlXl+1), Aerror(X) =
|A(X0)−A(X)|

A(X0)
.

For a given tolerance, tol, to find a solution X̄n+1 satisfying Aerror(X̄
n+1) < tol, we take the

following algorithm.
1) Update the interface Xn+1

l , Y n+1
l according to Eq. (8.9)

(Xn+1
l , Y n+1

l) = (Xn
l , Y

n
l) + ∆t(Un

l , V
n
l).

2) Compute the area A(Xn+1)
Check Aerror(X

n+1) < tol or not. If not, do the following 3) and 4).
3) Determine the parameter ϵ

ϵ =
−β ±

√
β2 − 4α(A(Xn+1)−A(X0))

2α
.

The parameter ϵ is a root of a quadratic equation from the area correction.

A(X0) = A(Xn+1) + αϵ2 + βϵ,

where

α =
1

2

M∑
l=1

(mlnl+1 − nlml+1) ,

β =
1

2

M∑
l=1

(
mlY

n+1
l+1 + nl+1X

n+1
l − (nlX

n+1
l+1 +ml+1Y

n+1
l)

)
,

8.2. NUMERICAL METHOD 80

where (ml, nl) is the unit normal vector at the l-th interface node at time level tn+1.
4) Update the interface X̄n+1

l , Ȳ n+1
l with area correction

(X̄n+1
l , Ȳ n+1

l) = (Xn+1
l , Y n+1

l) + ϵ(ml, nl).

The following two case statements are directly obtainable from the above definitions. Let
α > 0 and

ϵ1 =
−β +

√
β2 − 4α(A(Xn+1)−A(X0))

2α
,

ϵ2 =
−β −

√
β2 − 4α(A(Xn+1)−A(X0))

2α
.

If A(Xn+1) > A(X0), then ϵ2 < ϵ1 < 0 and we choose ϵ1. If A(Xn+1) < A(X0), then
ϵ2 < 0 < ϵ1 and we choose ϵ1. These provided reasons are illustrated in Figs. 8.3 and 8.4.
Therefore, we always choose ϵ1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 8.3. ϵ2 < ϵ1 < 0. Form left to right: Area correction with ϵ1 and
with ϵ2, respectively

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 8.4. ϵ2 < 0 < ϵ1. Form left to right: Area correction with ϵ1 and
with ϵ2, respectively.

8.3. NUMERICAL EXAMPLES 81

8.3. Numerical examples

It is well known that the immersed boundary method does not conserve the area enclosed
by the immersed boundary although the velocity field on the Eulerian grid satisfies a discrete
divergence free condition [121, 132, 111]. However, we overcome the area loss problem by
the area correction algorithm that described in Subsection 8.2.2. In this section, we perform a
number of numerical experiments to investigate the effect of our area correction algorithm for
the immersed boundary problem.

8.3.1. Relaxation to a circle. The perturbed surface of the droplet is given in polar coor-
dinates (r, θ) and the initial droplet boundary on the computational domain Ω = (0, 1)× (0, 1)
is

x = (x, y) = (0.5 + r cos(θ), 0.5 + r sin(θ)), 0 ≤ θ < 2π

where r = 0.25+0.1 cos(nθ) and n is the oscillation mode. It is well known that the boundary
will relax to a circle with the area unchanged. The computations are carried out for three
different modes n = 3, 5, and 8 (see the first row of Fig. 8.5). We take h = 1/128, ∆t = h/64,
ρ = 1, µ = 0.01, and σ = 130 as the initial parameters. As we expected all three models of
interfaces relaxed to a circle. We also see that the larger the mode is, the interface relaxes
quickly to a circle by the effect of the higher curvature of the interface.

8.3.2. Pressure difference of drop. In this section, we calculate theoretically and numer-
ically the pressure difference [p] with different radii and mesh sizes. In the absence of viscous,
gravitational, or other external forces, surface tension causes a static drop to become spherical.
Laplace’s formula for an infinite cylinder surrounded by a background fluid at zero pressure,
Eq. (8.1), gives the internal drop pressure

pdrop =
σ

r
,

where r is the drop radius.
In this experiment, the droplet is placed at the center of the unit square domain, and has

three different radii r = 0.1, 0.2, and 0.4. A 128× 128 mesh, h = 1/128, ∆t = h/64, ρ = 1,
σ = 10, and T = h/64 are employed. Fig. 8.6 (a) and (b) shows the pressure field with
r = 0.2 and the slice plot of p with three different radii on y = 0.5, respectively.

In the next experiment, the droplet is placed at the center of the unit square domain, and
has a radius of 0.1. The pressure differences are computed on the uniform grids, h = 1/2n,
and with corresponding time steps, ∆t = h/64 for n = 5, 6, 7, and 8. The calculations are
run up to time T = h/64, and ρ = 1 and σ = 20 are employed. In this test, the exact pressure
difference [p] is 200. As shown in Table 8.1, this sequence of events for the numerical pressure
difference [p] is qualitatively in agreement with the theoretical values by refining a mesh.

TABLE 8.1. The pressure difference [p] with σ = 20 and r = 0.1 for different
mesh sizes.

Mesh sizes 32× 32 64× 64 128× 128 256× 256

[p] 201.147 200.673 200.379 200.312

8.3. NUMERICAL EXAMPLES 82

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0.01
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.01
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0.05
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.05
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.05

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0.5
(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0.5
(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t = 0.5
(c)

FIGURE 8.5. The evolution of interface for three different modes (a) n = 3,
(b) n = 5, and (c) n = 8. The times are shown below each figure.

8.3.3. Area loss by spurious velocity fields induced by the surface tension. The static
circular drop is surrounded by a small amplitude velocity field due to the slight unbalance
between the stresses at the sites in the interfacial region. Such unphysical flow is a spurious
velocity. There are many studies for spurious velocities in incompressible flow problems [40,
66, 57, 65, 107, 128]. In order to estimate the effect of a spurious velocity, we consider the
static circular drop with zero initial velocity field. The initial drop has a radius of 0.3 and is
centered at (0.5, 0.5) in a unit square domain. The other parameters we choose are h = 1/128,

8.3. NUMERICAL EXAMPLES 83

0
0.5

1

0
0.5

1
0

25

50

xy

σ/r

(a)

0 0.2 0.4 0.6 0.8 1
0

25

50

75

100

x

σ/r

r=0.1
r=0.2
r=0.4

(b)

FIGURE 8.6. (a) The pressure field with r = 0.2. (b) The slice plot of the
pressure field on y = 0.5.

∆t = h/64, ρ = 1, µ = 0.01, σ = 130, and T = 3. Fig. 8.7 (a), (b), and (c) shows evolutions
of the static circular drop. The computational times are shown below each figure. Spurious
velocities near the interface (see amplitudes and directions of arrows in Fig. 8.7) lead to a
misinterpretation. As a result, we observe that the area does not conserve as predicted and the
area loss is as large as 18.34% when T = 3. Fig. 8.7 (d) illustrates the area loss rates with and
without correction.

8.3.4. Area change by advection. For an accurate calculation the time step ideally re-
mains zero for all times. But the time step is numerically not zero and this makes the area
change. We consider the static circular drop with the nonzero initial velocity field such as

u = (u, v) = (16π(y − 0.5),−16π(x− 0.5)). (8.10)

This velocity field is divergence free. The circle has a radius of 0.25 and is centered at the center
of the computational domain Ω = (0, 1) × (0, 1). We use the simulation parameters such as
h = 1/128, ρ = 1.0, µ = 0.01, σ = 0, and time step ∆t = h/64 within the computational
time T = 2. Fig. 8.8 (a), (b), and (c) show evolutions of the static circular drop following
the computational time. As can be seen, the area does not conserve as predicted. The larger
the time step is, the area change becomes severe. We will discuss this in Section 8.3.5. Fig.
8.7 (d) illustrates the area gain rates with and without correction. If we would like to solve
for the velocity field without correction, then the area gains as large as 36.13%. Even though
the velocity field is divergence free, the advected interface does not conserve the volume. The
reason is that we use a finite length of time step. In the continuous equation, the temporal
evolution of the interface is moved by a infinitesimally small time step.

8.3.5. Rotated circle by advection. We consider the static circular drop with the nonzero
initial velocity field such as in Eq. (8.10). The circle has a radius of 0.1 and is centered at
(0.5, 0.8) in a unit square domain. We take h = 1/128, ρ = 1.0, µ = 0.01, σ = 0, and
T = 1/8 with different time steps ∆t = h/128 and ∆t = h/16, respectively. For each time
step, evolutions are as shown in Fig. 8.9. As can be seen from the area error in Table 8.2, the

8.3. NUMERICAL EXAMPLES 84

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) t = 0.75
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) t = 1.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) t = 3

0 0.75 1.5 2.25 3
0.8

0.85

0.9

0.95

1

1.05

with correction
without correction

(d)

FIGURE 8.7. (a), (b), and (c) show evolutions of the static circular drop with
the surface tension. (d) illustrates the area loss rates with and without correc-
tion.

area is more conservative when the time step is smaller. While the simulation results for the
case with correction algorithm are more qualitatively similar to the theoretical values without
area errors.

TABLE 8.2. Area error without correction

Time step ∆t = h/128 ∆t = h/16

Aerror(X) 1.94% 16.61%

8.3.6. Buoyancy-driven flow. In this section, we consider the buoyancy-driven flow. The
initial bubble with radius r = 0.1 is positioned at (0.5, 0.5) in the computational domain
Ω = (0, 1) × (0, 2) with 128 × 256 mesh grids. The densities are ρ1 = 1000 and ρ2 = 500

8.4. CONCLUSIONS 85

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) t = 0.5
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) t = 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) t = 2
0 0.5 1 1.5 2

1

1.1

1.2

1.3

1.4

without correction
with correction

(d)

FIGURE 8.8. (a), (b), and (c) show evolutions of the static circular drop with
rotation. (d) illustrates the area change rates with and without correction.

(ρ1 and ρ2 are the densities outside and inside the bubble, respectively). Other parameters are
defined as following: µ = 0.01, σ = 0.1, g = 9.81e− 3, h = 1/128, and ∆t = 0.01. To solve
the buoyancy-driven flow, we use a periodic boundary condition described in above mentioned
to vertical boundaries and no slip boundary condition to the top and bottom domain. Therefore,

n · ∇dp
n+1 = n · ρng, i.e., py = −ρng at y = 0 and y = 2.

Fig. 8.10 shows that the bubble starts to rise due to the effect of buoyancy in the cylinder and
it eventually deforms to a steady-state shape. The times are shown below each figure and we
get the similar results with [135].

8.4. Conclusions

We proposed a simple area preserving correction scheme for the two-phase immiscible
incompressible Navier-Stokes flows with an immersed boundary method. The idea is to correct
the interface location normal to the interface so that the area remains a constant. Various

8.4. CONCLUSIONS 86

0.3 0.4 0.5 0.6 0.7
0.6

0.7

0.8

0.9

1

initial shape
with correction
without correction

(a)
0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

1

initial shape
with correction
without correction

(b)

FIGURE 8.9. A rotated circle with a time step (a) ∆t = h/16 and (b) ∆t = h/128.

0 0.5 1
0

0.5

1

1.5

2

(a) t = 0
0 0.5 1

0

0.5

1

1.5

2

(b) t = 7.5
0 0.5 1

0

0.5

1

1.5

2

(c) t = 15
0 0.5 1

0

0.5

1

1.5

2

(d) t = 22.5
0 0.5 1

0

0.5

1

1.5

2

(e) t = 30

FIGURE 8.10. Instantaneous bubble shapes at different time.

numerical tests were presented to illustrate the efficiency and accuracy of our proposed scheme
for two-phase fluid flows.

87

Chapter 9

An immersed boundary model of the growth and division of cell

9.1. Introduction

During the cell division process, cytokinesis is the final step to create the two daughter cells
in the mitosis. Before the mitosis, cell doubles its mass and duplicates its DNA. The mitosis
consists of prophase, metaphase, anaphase, and telophase. We mainly focus on the cytokinesis
of the eukaryotic cell occurring in the telophase. For the eukaryotic cells, the position of the
cleavage is usually decided at the end of the anaphase. Then the cleavage occurs with rings
which are known to bisect the cell. The physical division process of the cell is shown in Fig.
9.1.

FIGURE 9.1. The evolution of the cytokinesis

In this Chapter, we adapt the polar relaxation theory by means of a difference in surface
tension between the equatorial and polar regions using as surface forces [68]. This can be
achieved by either increasing the tension at the equator or reducing it at the poles and both
possibilities have been postulated for cleavage [133]. The idea expand to White and Borisy
[76] as the computer model based on astral relaxation theory. However, it has some restriction
that the shape of the cell obeys an inverse power law if it has spherically symmetric shape and
the stimulatory effect of the asters ceased by the time that cell deformation began. We propose
more realistic stimulus with axisymmetric three dimensional formula. Our model suggests the
stimulus as difference between distance from two asters to cell membrane. With the immersed
boundary method, numerical simulations show that the polar relaxation theory adapt to not
only a spherically symmetric cell shape but also an elliptic cell.

9.2. Mathematical formulation

The material inside and outside the cell is modeled as a homogeneous continuum with the
same constant density ρ and viscosity µ. The cell nuclei are represented by a finite set Ξ of

9.2. MATHEMATICAL FORMULATION 88

discrete material points Yk in which sources of fluid Sk(t) are located if the host cells are
growing.

ns

Y1•

Y2•

•X(s, t)

Ω

Γ

FIGURE 9.2. schematic of computational experiment.

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t)

+
(
ζ +

µ

3

)
∇(∇ · u(x, t)) + F (x, t), (9.1)

where u = (u,w) is the velocity, p is the pressure, F = (F1, F2) is the external force den-
sity. The configuration of the immersed boundary is described by the function X(s, t) =
(R(s, t), Z(s, t)), where 0 ≤ s ≤ L and L is the unstressed length of the boundary . If the
compressible effects of the fluid flow are negligible, ζ disappears. And also in [112], aiming to
the continuity for the mass of fluid flow, we have

∂ρ

∂t
+∇ · (ρu(x, t)) = S(x, t),

where S is the fluid source distribution. Since we assumed ρ is constant, we have

ρ∇ · u(x, t) = S(x, t).

Therefore, the governing equation is described as

9.3. NUMERICAL METHOD 89

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t)

+
µ

3ρ
∇S(x, t) + F (x, t), (9.2)

ρ∇ · u(x, t) = S(x, t), (9.3)

S(x, t) =
∑
k∈Ξ

Sk(x, t)δ
2(x− Yk(t)), (9.4)

F (x, t) =

∫
Γ
f(s, t)δ2(x−X(s, t))ds, (9.5)

U(X(s, t), t) =

∫
Ω
u(x, t)δ2(x−X(s, t)), (9.6)

∂X(s, t)

∂t
= U(s, t), (9.7)

U(Yk(t), t) =

∫
Ω
u(x, t)δ2(x− Yk(t))dx, (9.8)

∂Yk(t)

∂t
= U(Yk(t), t), (9.9)

f(s, t) = σ1κsns + σ2d(s)ns, (9.10)

κs =
1

2

(
RssZs −RsZss√

R2
s + Z2

s
3 − Zs

R
√
R2

s + Z2
s

)
(9.11)

d(s) =
1

ϵ+
∣∣|X(s, t0)−Y1| − |X(s, t0)−Y2|

∣∣ , (9.12)

where κs is mean curvature [100] and ns = (ms, ns) is the unit normal vector into the cell, Y1

and Y2 are these two centers, ϵ is the small positive parameter, σ1 is a stiffness constant for the
curvature force term and σ2 is the normal curvature force, respectively.

9.3. Numerical method

In this section, we consider only axisymmetric flows for the summary of the immersed
boundary method to find a numerical solution to the system of equations (9.2)–(9.10); there-
fore, there is no flow in the θ (azimuthal) direction, and all θ derivatives are identically zero.
Therefore, we consider only two variables, r the radial direction and z the axial direction, in the
two-dimensional axisymmetric domain Ω = {(r, z) : 0 < r < R, −H/2 < z < H/2}. We
define the fluid velocity by the vector u = (u,w), where u = u(r, z) is the radial component
of the velocity and w = w(r, z) is the component in the axial direction. Let the time proceed
in steps of duration ∆t, ∆r and ∆z as the fluid-lattice spacing, ∆s as the distance between
material points of the immersed boundary.
The fluid equations (9.2) and (9.3) in Eulerian form are discretized on a fixed rectangular lattice
at time t = n∆t: xn

ik = x(i∆r, k∆z, n∆t), where i = 0, . . . , Nr − 1, k = 0, . . . , Nz − 1,
and n = 0, 1, The immersed boundary equations (9.7) and (9.10) in Lagrangian form are
discretized on a collection of moving points in the immersed boundary at time t = n∆t:Xn

l =

9.3. NUMERICAL METHOD 90

X(l∆s, n∆t). Here, we use a set of M Lagrangian points Xn
l = (Rn

l , Z
n
l) for l = 1, . . . ,M to

discretize the immersed boundary with the initial boundary mesh width ∆snl+1 = |Xn
l+1−Xn

l |.
Our goal is to compute the update un+1, Xn+1, Y n+1

k from given un, Xn, Y n
k . This is done

as follows:
For simplicity, choose ∆r = ∆z = R/Nr = H/Nz = h.
Step 1. Find the force fn on the immersed boundary from the given boundary configuration

Xn. For l = 1, . . . ,M ,

fnl = σ1κlnl +
σ2nl

ϵ+
∣∣|Xn

l −Yn
1 | − |Xn

l −Yn
2 |
∣∣ , (9.13)

κl =
1

2

(
(Rn

l)ss(Z
n
l)s − (Rn

l)s(Z
n
l)ss√

(Rn
l)

2
s + (Zn

l)
2
s
3 −

(Zn
l)s

(Rn
l)
√

(Rn
l)

2
s + (Zn

l)
2
s

)
, (9.14)

where nl = (ml, nl) is the unit normal vector. It should be said that we will give a new effective
numerical method for computing unit normal vector in later subsection 9.3.2. And also

(Rn
l)s =

(
∆snl (R

n
l+1 −Rn

l)

2∆snl+1

+
∆snl+1(R

n
l −Rn

l−1)

2∆snl

)/
∆snl+1/2,

(Rn
l)ss =

(
Rn

l+1 −Rn
l

∆snl+1

−
Rn

l −Rn
l−1

∆snl

)/
∆snl+1/2.

Step 2. Spread the boundary force into the nearby lattice points of the fluid.

Fn
ik =

M∑
l=1

fnl δ
2
h(xik −Xn

l)∆snl+1/2 for i = 1, . . . , Nr and k = 1, . . . , Nz,

where δ2h is a smoothed approximation to the two-dimensional Dirac delta function. Step 3.
Solve the Navier-Stokes equations on the rectangular lattice to get un+1 and pn+1 from un

and F n.
A staggered marker-and-cell (MAC) mesh of Harlow and Welch [71] is used in which

pressure is stored at cell-centers and velocities at cell interfaces (see Figure 8.1(a)). Let a
computational domain be partitioned in Cartesian geometry into a uniform mesh with mesh
spacing h. The center of each cell, Ωik, is located at (ri, zk) = ((i − 0.5)h, (k − 0.5)h) for
i = 1, · · · ,M and k = 1, · · · , N . M and N are the numbers of cells in r and z-directions,
respectively. The cell vertices are located at (ri+ 1

2
, zk+ 1

2
) = (ih, kh).

At the beginning of each time step, given un and F n, we want to find un+1 and pn+1

which solve the following implicit first order scheme in time and space:

ρ

(
un+1 − un

∆t
+ un · ∇du

n

)
= −∇dp

n+1 + µ∆du
n +

µ

3ρ
∇dS

n + F n, (9.15)

ρ∇d · un+1 = Sn. (9.16)

The outline of the main procedures in one time step is:

1. Initialize u0 to be the divergence-free velocity field.

9.3. NUMERICAL METHOD 91

2. Solve an intermediate velocity field, ũ, which does not satisfy the incompressible condition,
without the pressure gradient term,

ρ

(
ũ− un

∆t
+ un · ∇du

n

)
= µ∆du

n +
µ

3ρ
∇dS

n + F n.

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2
,k = un

i+ 1
2
,k
−∆t(uur + wuz)

n
i+ 1

2
,k
+

µ

3ρh
(Sn

i+1,j − Sn
i,j) +

∆t

ρ
F r−edge

i+ 1
2
,k

+
µ∆t

ρh2

(
ri+ 1

2
(un

i+ 3
2
,k
− un

i+ 1
2
,k
)− ri− 1

2
(un

i+ 1
2
,k
− un

i− 1
2
,k
)

rih2
,

−
un
i+ 1

2
,k

r2i
+

un
i+ 1

2
,k+1

− 2un
i+ 1

2
,k
+ un

i+ 1
2
,k−1

h2

)
, (9.17)

ṽi,k+ 1
2

= wn
i,k+ 1

2

−∆t(uwr + wwz)
n
i,k+ 1

2

+
µ

3ρh
(Sn

i,j+1 − Sn
i,j) +

∆t

ρ
F z−edge

i,k+ 1
2

+
µ∆t

ρh2

(
ri+ 1

2
(wn

i,k+ 3
2

− wn
i,k+ 1

2

)− ri− 1
2
(wn

i,k+ 1
2

− wn
i,k− 1

2

)

rih2
,

+
wn
i+1,k+ 1

2

− 2wn
i,k+ 1

2

+ wn
i−1,k+ 1

2

h2

)
, (9.18)

where the advection terms, (uur + wuz)
n
i+ 1

2
,k

and (uwr + vwz)
n
i,k+ 1

2

, are defined by

(uur + wuz)
n
i+ 1

2
,k

= un
i+ 1

2
,k
ūnr

i+1
2 ,k

+
wn
i,k− 1

2

+ wn
i+1,k− 1

2

+ wn
i,k+ 1

2

+ wn
i+1,k+ 1

2

4
ūnz

i+1
2 ,k

,

(uwr + wwz)
n
i,k+ 1

2

= wn
i,k+ 1

2

w̄n
z
i,k+1

2

+
un
i− 1

2
,k
+ un

i− 1
2
,k+1

+ un
i+ 1

2
,k
+ un

i+ 1
2
,k+1

4
w̄n
r
i,k+1

2

.

The values ūnr
i+1

2 ,k
and ūnz

i+1
2 ,k

are computed using the upwind procedure. The procedure

is

ūnr
i+1

2 ,k
=


un

i+1
2 ,k

−un

i− 1
2 ,k

h if un
i+ 1

2
,k
> 0

un

i+3
2 ,k

−un

i+1
2 ,k

h otherwise

and

ūnz
i+1

2 ,k
=


un

i+1
2 ,k

−un

i+1
2 ,k−1

h if wn
i,k− 1

2

+ wn
i+1,k− 1

2

+ wn
i,k+ 1

2

+ wn
i+1,k+ 1

2

> 0
un

i+1
2 ,k+1

−un

i+1
2 ,k

h otherwise.

The quantities w̄n
r
i,k+1

2

and w̄n
z
i,k+1

2

are computed in a similar manner.

9.3. NUMERICAL METHOD 92

Then, we solve the following equations for the advanced pressure field at (n+1) time step.

ρ
un+1 − ũ

∆t
= −∇dp

n+1, (9.19)

ρ∇d · un+1 = Sn. (9.20)

With application of the divergence operator to (9.19), we find that the Poisson equation for the
pressure at the advanced time (n+ 1).

∆dp
n+1 =

1

∆t
(ρ∇d · ũ− Sn) , (9.21)

where we have made use of the Eq. (9.20). The terms are defined as in the following.

∆dp
n+1
ik =

ri+ 1
2
(pn+1

i+1,k − pn+1
ik)− ri− 1

2
(pn+1

i,k − pn+1
i−1,k)

rih2
+

pn+1
i,k+1 − 2pn+1

i,k + pn+1
i,k−1

h2
,

∇d · ũik =
ri+ 1

2
ũi+ 1

2
,k − ri− 1

2
ũi− 1

2
,k

rih
+

w̃i,k+ 1
2
− w̃i,k− 1

2

h
.

The resulting linear system of (9.21) is solved using a multigrid method, specifically, V-cycles
with a Gauss-Seidel relaxation. Then the updated velocities un+1 and wn+1 are defined by

un+1 = ũ− ∆t

ρ
∇dp

n+1, i.e.,

un+1
i+ 1

2
,k

= ũi+ 1
2
,k −

∆t

ρh
(pi+1,k − pik), w

n+1
i,k+ 1

2

= w̃i,k+ 1
2
− ∆t

ρh
(pi,k+1 − pik).

These complete the one time step.
Step 4. Once the updated fluid velocity, un+1, has been determined, we can find the veloc-

ity, Un+1, and then the new immersed boundary points, Xn+1, and the new center position,
Y n+1. The difference approximations to the interpolation equation and no-slip condition are
expressed as follows:

Un+1
l =

N−1∑
i=0

N−1∑
k=0

un+1
ik δ2h(xik −Xn

l)h
2, (9.22)

Xn+1
l = Xn

l +∆tUn+1
l , for l = 1, . . . ,M , (9.23)

Un+1
k =

N−1∑
i=0

N−1∑
k=0

un+1
ik δ2h(xik − Y n

k)h2, (9.24)

Y n+1
k = Y n

k +∆tUn+1
k , for k = 1, 2. (9.25)

Note that we use the same delta function in Eq.9.22 and Eq.9.24 as the one in the interaction
equation for the force term Eq.9.15. This completes the description of the process (Steps 1-4,
above) by which the quantities u, X and Yk are updated.

9.3.1. Boundary conditions. We next specify the boundary conditions. Due to the sym-
metry of the flow, at the column axis (r = 0), u(0, z) = 0, wr(0, z) = 0. At the rigid wall,
r = R, the no-slip conditions are applied, i.e., u(R, z) = w(R, z) = 0. We will denote the
domain containing the two materials as Ω and its boundary as ∂Ω.

9.3. NUMERICAL METHOD 93

9.3.2. Discretization of unit normal vector. In this section, we present the numerical
method to calculate the unit normal vector. For a given interface position Xl, the unit normal
vector nl = (ml, nl) will be calculated by using three points Xl−1, Xl, and Xl+1 with the
quadratic polynomial approximation. Let the quadratic polynomial approximation be

R(t) = α1t
2 + β1t+ γ1 and Z(t) = α2t

2 + β2t+ γ2.

And assume Xl−1 = (R(0), Z(0)), Xl = (R(∆sl), Z(∆sl)), and Xl+1 = (R(∆sl +
∆sl+1), Z(∆sl +∆sl+1)), then the parameters α1, β1, γ1, α2, β2, and γ2 can be calculated by
the following equations:

 α1

β1
γ1

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 R(0)
R(∆sl)

R(∆sl +∆sl+1)

 ,

 α2

β2
γ2

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 Z(0)
Z(∆sl)

Z(∆sl +∆sl+1)

 .

Now we get the unit normal vector as

nl = (ml, nl) =

 dZ(∆sl)
dt√(

dR(∆sl)
dt

)2
+
(
dZ(∆sl)

dt

)2 , −dR(∆sl)
dt√(

dR(∆sl)
dt

)2
+
(
dZ(∆sl)

dt

)2
 .

9.3.3. Discretization of interpolation. In this section, we present the numerical method
to calculate the unit normal vector. For a given interface position Xl which satisfied that
∆sl+1 > 0.5h , the wanted X̄l = 0.5(X̄1 + X̄2). X̄1 will be calculated by using three
points Xl−1, Xl, Xl+1 with the quadratic polynomial approximation. And in the same way,
X̄2 will be calculated by using three points Xl, Xl+1, Xl+2. For simplicity of exposition, we
only give the form of computing the first part X̄1 and X̄2 will computed with the same method.
Let the quadratic polynomial approximation be

R(t) = α1t
2 + β1t+ γ1 and Z(t) = α2t

2 + β2t+ γ2.

And assume Xl−1 = (R(0), Z(0)), Xl = (R(∆sl), Z(∆sl)), and Xl+1 = (R(∆sl +
∆sl+1), Z(∆sl +∆sl+1)), then the parameters α1, β1, γ1, α2, β2, and γ2 can be calculated by
the following equations:

 α1

β1
γ1

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 R(0)
R(∆sl)

R(∆sl +∆sl+1)

 ,

 α2

β2
γ2

 =

 0 0 1
∆s2l ∆sl 1

(∆sl +∆sl+1)
2 ∆sl +∆sl+1 1

−1 Z(0)
Z(∆sl)

Z(∆sl +∆sl+1)

 .

9.4. NUMERICAL EXAMPLES 94

Now we get

X̄1 =

(
dr(∆sl + 0.5∆sl+1)

dt
,
dz(∆sl + 0.5∆sl+1)

dt

)
,

with the same method, we compute these two polynomial approximations by assuming
Xl = (R(0), Z(0)), Xl = (R(∆sl+1), Z(∆sl+1)), and Xl+2 = (R(∆sl+1+∆sl+2), Z(∆sl+1+
∆sl+2)) and get

X̄2 =

(
dR(0.5∆sl+1)

dt
,
dZ(0.5∆sl+1)

dt

)
.

Then the wanted position X̄l = 0.5(X̄1+ X̄2) will be offered. And also the unit normal vector
for wanted position is provided as n̄l = 0.5(nl + nl+1).

9.4. Numerical examples

In this section, we perform a number of numerical experiments to investigate the effect
of our algorithm for simulating the growth of cell with the following stopping algorithm. We
stop the numerical computations when the distance between the two nearest boundary posi-
tions becomes less than a given tolerance, tol. The termination criterion algorithm is listed as
follows:

Set a maximum iteration number N , a tolerance tol, and n = 1.
While (n ≤ N) do Steps 1-2

Step 1 Do the above main procedures and compute Xn.
Step 2 Get the nearest two positions named α and β, respectively.

If ||Xα −Xβ|| < tol, then stop the calculation.
Else n = n+ 1.

9.4.1. Cell proliferation. A process of cell proliferation is modeled by introducing two
point sources inside the cell that correspond to two sets of sister chromatids (Fig. 9.3 (a)).
These sources are located along the cell’s longest axis. Fluid created by both sources causes
cell growth by pushing cell boundaries and by increasing the cell area (Fig. 9.3 (b) and (c)).
The sources are deactivated when the cell area is doubled. At this time, two opposite points on
the cell boundary are selected in such a way that a line provided between them separates the cell
into two parts of approximately equal areas, each with its own nucleus (former point sources).
The contractile ring is created by attaching the contractile forces to the opposite points on the
cell boundary. This results in a formation of the contractile furrow (Fig. 9.3 (d) and (e)) and
causes division of the cell into two daughter cells (Fig. 9.3 (f)). We use the simulation param-
eters computational domain (0, π) × (−π, π) with 64 × 128 mesh grids, time step ∆t = h2,
σ1 = 0.05, σ2 = 0.1, and ϵ = 0.01, respectively.

9.4. NUMERICAL EXAMPLES 95

(a) t = 0 (b) t = 10.842 (c) t = 21.685

(d) t = 22.889 (e) t = 24.094 (f) t = 26.503

FIGURE 9.3. Main phases of the cell cycle: (a) cell ready to proliferate, (b)
and (c) cell growth and elongation, (d) and (e) formation of the contractile
ring, (f) cellular division.

(a) t=1.204 (b) t=7.228 (c) t=22.890

FIGURE 9.4. The top row plots experimental data from [13]. In the second,
the numerical results are superposed with experimental data.

9.4.2. Comparison with the experimental data. Next, we compare our numerical sim-
ulation results with experimental data by E. Boucrot et al. [13]. We set σ1 = 5, σ2 = 0.1,
ϵ = 0.1, and Re = 0.5 on the computational domain Ω = (0, π) × (−π, π) with a 64 × 128
mesh. Calculation is run up to time T = 0.854 with a time step ∆t = 0.1h2. For this initial
shape, we use the technology of image segmentation to get the edge of cell as the initial shape
shown in the figure of 9.4(a). As can be seen, these results show that our computational results
are in qualitative agreement with experimental data.

9.4. NUMERICAL EXAMPLES 96

FIGURE 9.5. Evolution of the immersed boundary. The first row is the simu-
lation shown in two dimensions and the others is shown in three dimensions.

97

Chapter 10

Conclusions

This thesis described various numerical methods for hybrid phase-field and immersed
boundary methods. In the first part of this thesis, we present an unconditionally stable second-
order hybrid numerical method for solving the Allen-Cahn equation representing a model for
antiphase domain coarsening in a binary mixture. Then, we applied this hybrid method to the
application of binary image segmentation, geometric image segmentation, multiphase image
segmentation, and the simulation of crystal growth. In the second part, we considerd the sim-
ulations of thin film based on Navier-Stokes flows by implicit ENO type scheme with a good
stability property. Secondly, IBM for two-phase fluid flows was considered. Since the interface
between two fluids is moved in a discrete manner, this can result in a lack of volume conserva-
tion. We proposed a volume correction scheme. The idea of area preserving correction scheme
is to correct the interface location normally to the interface so that the area remains constant.
Finally, we considered the cytokinesis of an animal cell using the IBM.

98

Bibliography

[1] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to an-
tiphase domain coarsening, Acta Metall. 27 (1979) 1085–1095.

[2] G.R. Arce, J.L. Paredes, and J. Mullan, Nonlinear Filtering for Image Analysis and Enhancement, in Hand-
book of Image and Video Processing, Academic Press, 2000.

[3] B. Appleton and H. Talbot, Globally optimal geodesic active contours, Journal of Mathematical Imaging and
Vision, 23 (2005) 67–86.

[4] N. Al-Rawahi and G. Tryggvason, Numerical simulation of dendritic solidification with convection: two-
dimensional geometry, J. Comput. Phys. 180 (2002) 471–496.

[5] W. Bao, Approximation and comparison for motion by mean curvature with intersection points, Comput.
Math. App. 46 (2003) 1211–1228.

[6] A.L. Bertozzi and M.P. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids,
(1997) 530–539.

[7] M. Beneš, V. Chalupecký, and K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Appl.
Numer. Math. 51 (2004) 187–205.

[8] R.L. Burden and J.D. Faires, Numerical Analysis, Thomson, 2004.
[9] M. Beneš, V. Chalupecký, and K. Mikula, Geometrical image segmentation by the Allen-Cahn equation,

Applied Numerical Mathematics, 51 (2-3) (2004) 187–205.
[10] R.L. Burden and Faires, Numerical Analysis (4th Edition ed.) Prindle, Weber & Schmidt, London, UK.
[11] W.L. Briggs, A multigrid tutorial, SIAM, Philadelphia, PA, 1987.
[12] M. Burger, L. He, and C. Schöenlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images,

UCLA CAM report 08, 2008.
[13] E. Boucrot and K. Tomas, Endosomal recycling controls plasma membrane area during mitosis, 104 (19) 2007

7939–7944.
[14] V.G. Brunet and B. Lameyre, Object recognition and segmentation in videos by connecting heterogeneous

visual features, Comput. Vis. Image Underst. 111 (1) (2008) 86–109.
[15] M. Beneš and K. Mikula, Simulation of anisotropic motion by mean curvature-comparison of phase field and

sharp interface approaches, Acta Math. Univ. Comenian. 67 (1998) 17-42.
[16] A.L. Bertozzi, A. Münch, X. Fanton, and A.M. Cazabat, Contact line stability and “Undercompressive shocks”

in driven thin film flow. Physical Review Letters, 81 (1998) 5169–5172.
[17] A.L. Bertozzi, A. Münch, and M. Shearer, Undercompressive shocks in thin film flows, Physica D, 134 (1999)

431–464.
[18] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
[19] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proceedings of Siggraph 2000,New

Orleans (2000).
[20] G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev.

A 39 (1989) 5887–5896.
[21] V. Caselles, F. Catté, T. Coll, and F. Dibos, A geometric model for active contours in image processing,

Numerische Mathematik, 66 (1993) 1–31.
[22] T.F. Chan, S. Esedoḡlu, and M. Nikolova, Algorithms for finding global minimizers of image segmentation

and denoising models, SIAM J. Appl. Math. 66 (5) (2006) 1632–1648.
[23] J.-W. Choi, H.G. Lee, D. Jeong, and J. Kim, An unconditionally gradient stable numerical method for solving

the Allen-Cahn equation, Phys. A. 388 (2009) 1791–1803.

99

[24] Y. Chang, T. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturing methods
for incompressible fluid flows, J. Comput. Phys. 124 (1996) 449–464.

[25] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, International journal of computer vision, 22
(1) (1997) 61–79.

[26] V. Cristini and J. Lowengrub, Three-dimensional crystal growth-II: nonlinear simulation and control of the
Mullins-Sekera instability, J. Crystal Growth. 266 (2004) 552-567.

[27] S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problem, J.
Comput. Phys. 135 (1997) 8–29.

[28] S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002)
430-455.

[29] C. Cowan, The Cahn-Hilliard equation as a gradient flow, Simon Fraser University, Canada, 2005.
[30] C.I. Christov, J. Pontes, D. Walgraef, and M.G. Velarde, Implicit time-splitting for fourth-order parabolic

equations. Computer Methods in Applied Mechanics and Engineering, 148(1997)209–224.
[31] M. Cheng and A.D. Rutenberg, Maximally fast coarsening algorithms, Phys. Rev. E 72 (2005) 055701(R).
[32] T. Chinyoka, Y.Y. Renardy, M. Renardy, and D.B. Khismatullin, Two-dimensional study of drop deformation

under simple shear for Oldroyd-B liquids, J. Non-Newtonian Fluid Mech. 130 (2005) 45-56.
[33] T.F. Chan and J. Shen, Mathematical models for local non-texture inpaintings, SIAM J. Appl. Math. 62 (2001)

1019–1043.
[34] C. Cowan and M.S. Thesis, Simon Fraser University, Canada, 2005.
[35] C.C. Chen and Y.L. Tsai, C.W. Lan, Adaptive phase field simulation of dendritic crystal growth in a forced

flow: 2D vs. 3D morphologies, Int. J. Heat Mass Transfer 52 (2009) 1158–1166.
[36] T. Chan and L. Vese, Active contours without edges, IEEE Trans. Image Process. 10 (2) (2001) 266–277.
[37] T.F. Chan and L.A. Vese, A multiphase level set framework for image segmentation using the Mumford and

Shah model, Int. J. Comput. Vis., 50 (3) (2002) 271–293.
[38] M. Cheng and J.A. Warren, An efficient algorithm for solving the phase field crystal model, J. Comput. Phys.

227 (2008) 6241-6248.
[39] P.-R. Cha, D.-H. Yeon, and S.-H. Chung, Phase-field study for the splitting mechanism of coherent misfitting

precipitates in anisotropic elastic media, Scripta Mater. 52 (2005) 1241–1245.
[40] O. Dorok, Eine stabilisierte Finite-Elemente-Methode zur Lösung der Boussinesq-Approximation der Navier-

Stokes-Gleichungen, Ph.D. thesis, Otto-von-Guericke-Universitat, 1995.
[41] J.A. Dobrosotskaya and A.L. Bertozzi, A Wavelet-Laplace variational technique for image deconvolution and

inpainting, IEEE. Trans. Imag. Proc. 17 (2008) 657–663.
[42] N. Daniels, P. Ehret Gaskel, P.H. Thompson, and H.M. Decré M. Multigrid methods for thin liquid film

spreading flows. Proceedings of the first international conference on computational fluid dynamics, Springer,
(2001) 279–284.

[43] J.A. Diez and L. Kondic, Contact line instabilities of thin liquid films.Physical Review Letters 86 (2001)
632–635.

[44] J.-M. Debierre, A. Karma, F. Celestini, and R. Guérin, Phase-field approach for faceted solidification, Phys.
Rev. E 68 (2003) 041–604.

[45] D.J. Duffy, Finite difference methods in financial engineering: A partial differential equation approach, Wiley
Finance, West Sussex, England, 2006.

[46] Q. Du and W. Zhu, Stability analysis and applications of the exponential time differencing schemes, J. Comput.
Math. 22 (2004) 200–209.

[47] D.J. Eyre, Computational and mathematical models of microstructural evolution, The Materials Research
Society, Warrendale, 1998.

[48] D.J. Eyre, http://www.math.utah.edu/˜eyre/research/methods/stable.ps
[49] L.C. Evans, H.M. Soner, and P.E. Souganidis, Phase transitions and generalized motion by mean curvature,

Comm. Pure Appl. Math. 45 (1992) 1097–1123.
[50] S. Esedoḡlu and Y.H.R. Tsai, Threshold dynamics for the piecewise constant Mumford-Shah functional, J.

Comput. Phys. 211 (1) (2006) 367–384.
[51] P.C. Fife, Dynamics of internal layers and diffusive interfaces, SIAM, Philadelphia, PA, 1988.
[52] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature

flows, Numer. Math. 94 (2003) 33–65.

100

[53] M. Francois and W. Shyy, Computations of drop dynamics with the immersed boundary method, Part 1:
Numerical algorithm and buoyancy-induced effect, Numer. Heat Transfer B 44 (2003) 101–118.

[54] M. Francois, E. Uzgoren, J. Jackson, and W. Shyy, Multigrid computations with the immersed boundary
technique for multiphase flows, Int. J. Numer. Meth. Heat Fluid Flow 14 (2004) 98–115.

[55] X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn
equation and the mean curvature flow, J. Sci. Comput. 24 (2005) 121–146.

[56] W.M. Feng, P. Yu, S.Y. Hu, Z.K. Liu, Q. Du, and L.Q. Chen, Spectral implementation of an adaptive moving
mesh method for phase-field equations, J. Comput. Phys. 220 (2006) 498–510.

[57] J.-F. Gerbeau, C. le Bris, and M. Bercovier, Spurious velocities in the steady flow of an incompressible fluid
subjected to external forces, Int. J. Numer. Meth. Fluids 25 (1997) 679–695.

[58] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A level set approach for the numerical simulation of dendritic
growth, J. Sci. Comput. 19 (2002) 183–199.

[59] J. Grooss and J. Hesthaven, A level set discontinuous Galerkin method for free surface flows, Comput. Meth-
ods Appl. Mech. Engrg. 195 (2006) 3406–3429.

[60] E. Guyon, J.-P. Hulin, L. Petit, and C.D. Mitescu, Physical Hydrodynamics, Oxford University Press, 2001.
[61] J. Glimm, J. Grove, X. Li, K.-M. Shyue, Q. Zhang, and Y. Zeng, Three-dimensional front tracking, SIAM. J.

Sci. Comput. 19 (1998) 703–727.
[62] P.H. Gaskell, P.K. Jimack, M. Sellier, and H.M. Thompson, Efficient and accurate time adaptive multigrid

simulations of droplet spreading. International Journal for Numerical Methods in Fluids (45)(2004) 1161–
1186.

[63] P.H. Gaskell, P.K. Jimack, M. Sellier, M.C.T..Wilson, and H.M. Thompson, Gravity-driven flow of continuous
thin liquid films on non-porous substrates with topography. Journal of Fluid Mechanics (509) (2004) 253–280.

[64] P.H. Gaskell, P.K. Jimack, M. Sellier, and H.M. Thompson, Flow of evaporating, gravity-driven thin liquid
films over topography. Physics of Fluids (18)(2006) 031601-1–031601-14.

[65] P. Gresho, R. Lee, S. Chan, and J. Leone, A new finite element for incompressible or Boussinesq fluids, in:
Proc. Third Int. Conf. on Finite Elements in Flow Problems, Banff, Canada, 1980, 204–215.

[66] S. Ganesan, G. Matthies, and L. Tobiska, On spurious velocities in incompressible flow problems with inter-
faces, Comput. Methods Appl. Mech. Engrg. 196 (2007) 1193–1202.

[67] A. Goshtasby and M. Satter, An adaptive window mechanism for image smoothing, Comput. Vis. Image
Underst, 111 (2) (2008) 155–169.

[68] Y. Hiramoto, Mechanical properties of sea urchin eggs. Exp. Cell Res. 32 (1963) 5-75.
[69] Y. Ha, Y.-J. Kim, and T.G. Myers, On the numerical solution of a driven thin film equation, J. Comput. Phys.

227 (2008) 7246–7263.
[70] J. Hahn and C-O. Lee, Geometric attraction-driven flow for image segmentation and boundary detection,

Journal of Visual Communication and Image Image Representation, 21 (2010), 56–66.
[71] F. Harlow and J. Welch, Numerical calculations of time dependent viscous incompressible flow with free

surface, Phys. Fluids 8 (1965) 2182–2189.
[72] C.H. Ho and Y.C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech.

30 (1998) 579–612.
[73] T. Ihle, Competition between kinetic and surface tension anisotropy in dendritic growth, Eur. Phys. J. B 16

(2000) 337–344.
[74] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Diff. Geom.

38 (1993) 417–461.
[75] D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys. 123 (1996)

127-148.
[76] J. G. White and G. G. Borisy, On the Mechanisms of Cytokinesis in Animal Cells, J. theor. Biol. (101) (1983)

289–316.
[77] J.-H. Jeong and N. Goldenfeld, J.A. Dantzig, Phase field model for three-dimensional dendritic growth with

fluid flow, Phys. Rev. E 64 (2001) 041–602.
[78] Y.M. Jung, S.H. Kang, and J. Shen, Multiphase image segmentation via Modica-Mortola phase transition,

SIAM Appl. Math., 67(2007) 1213–1232.
[79] A. Jacot and M. Rappaz, A pseudo-front tracking technique for the modelling of solidification microstructures

in multi-component alloys, Acta Mater. 50 (2002) 1909–1926.

101

[80] J.S. Kim and H.-O. Bae, An unconditionally stable adaptive mesh refinement for Cahn-Hilliard equation, in
review, 2007.

[81] J. Kim, Adaptive mesh refinement for thin-film equations. Journal of the Korean Physical Society, (49)
(2006)1903–1907.

[82] J. Kim, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys. 204
(2005) 784-804.

[83] S. Kang, Uniform-shear flow over a circular cylinder at low Reynolds numbers, J. Fluids Struct. 22 (2006)
541-555.

[84] Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method,
Phys. Rev. E 62 (2000) 2471-2474.

[85] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, Conformal curvature flows: From phase
transitions to active vision, Archive for Rational Mechanics and Analysis, 134 (1996) 275–301.

[86] R.E. Khayat, K-T. Kim, and S. Delosquer, Influence of inertia, topography and gravity on transient axisym-
metric thin-film flow. International Journal for Numerical Methods in Fluids. (45) (2004) 391–419.

[87] M. Katsoulakis, G.T. Kossioris, and F. Reitich, Generalized motion by mean curvature with Neumann condi-
tions and the Allen-Cahn model for phase transitions, J. Geom. Anal. 5 (1995) 255-279.

[88] K.H. Karlsen and K.-A. Lie, An unconditionally stable splitting for a class of nonlinear parabolic equations,
IMA J. Numer. Anal. 19 (1999) 609-635.

[89] A. Karma, Y.H. Lee, and M. Plapp, Three-dimensional dendrite-tip morphology at low undercooling, Phys.
Rev. E 61 (2000) 3996-4006.

[90] R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Phys. D 63 (1993) 410-423.
[91] Y. Kim and C. Peskin, 3-D Parachute simulation by the immersed boundary method, Comput. Fluids 38 (2009)

1080-1090.
[92] Y. Kim and C. Peskin, Numerical study of incompressible fluid dynamics with nonuniform density by the

immersed boundary method, Phys. Fluids 20 (2008) 062101.
[93] A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimen-

sions, Phys. Rev. E 57 (1998) 4323-4349.
[94] A. Karma and W.-J. Rappel, Phase-field method for computationally efficient modeling of solidification with

arbitrary interface kinetics, Phys. Rev. E 53 (1996) 3017–3020.
[95] J. Kim and J.Sur, A hybrid method for higher-order nonlinear diffusion equations. Communications of the

Korean Mathematical Society (20) (2005) 179–193.
[96] D.E. Kataoka and S.M. Troian, A theoretical study of instabilities at the advancing front of thermally driven

coating films. Journal of Colloid and Interface Science (192) (1997) 350–362.
[97] J.S. Langer, Directions in Condensed Matter (World Scientific, Singapore, 1986).
[98] C. Li, C. Xu, C. Gu, and M.D. Fox, Level set evolution without re-initialization: a new variational formulation,

IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, (2005) 430–436.
[99] Y. Li, H.G. Lee, D. Jeong, and J.S. Kim, An unconditionally stable hybrid numerical method for solving the

Allen-Cahn equation, Comput. Math. Appl., 60 (2010) 1591-1606.
[100] M-C. Lai C-Y. Huang and Y-M. Huang, Simulating the axisymmetric interfacial flows with insoluble surfac-

tant by immersed boundary, International Journal Numerical Analysis and Modeling Computing and Informa-
tion, 1 (1) (2004)1–18

[101] D.S. Lee, M.Y. Ha, H.S. Yoon, and S. Balachandar, A numerical study on the flow patterns of two oscillating
cylinders, J. Fluids Struct. 25 (2009) 263-283.

[102] S. Li, J.S. Lowengrub, and P.H. Leo, Nonlinear morphological control of growing crystals, Phys. D 208
(2005) 209–219.

[103] R. Leveque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension,
SIAM J. Sci. Comput. 18 (1997) 709–735.

[104] J. Lie, M. Lysaker, and X.C. Tai, A binary level set model and some applications for Mumford-Shah image
segmentation, IEEE Trans. Image Process. 15 (4) (2006) 1171–1181.

[105] J. Lie, M. Lysaker, and X.C. Tai, A variant of the level set method and applications to image segmentation,
Math. Comp., 75 (2006) 1155-1174.

[106] D. Li, R. Li, and P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth with
convection, Appl. Math. Modelling 31 (2007) 971-982.

102

[107] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, Modelling merging and fragmentation in
multiphase flows with SURFER, J. Comput. Phys. 113 (1994) 134-147.

[108] B.P. Vollmayr-Lee and A.D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally
stable time step, Phys. Rev. E 68 (2003) 066–703.

[109] Y.C. Lee, H.M. Thompson, and P.H. Gaskell, A parallel algorithm designed for the efficient and accurate
computation of thin film flow on functional surfaces containing micro-structure. Computer Physics Commu-
nications (180) (2009) 2634–2649.

[110] Y.C. Lee, H.M. Thompson, and P.H. Gaskell, An efficient adaptive multigrid algorithm for predicting thin
film flow on surfaces containing localised topographic features. Computers & Fluids (36)(2007) 838–855.

[111] M.-C. Lai, Y.-H. Tseng, and H. Huang, An immersed boundary method for interfacial flows with insoluble
surfactant, J. Comput. Phys. 227 (2008) 7279–7293.

[112] E. Guyon, J.P. Hulin, and L. Petit, hysical hydrodynamics Oxford University Press (2001).
[113] E.V.L. Melloa, Otton Teixeira da Silveira Filho, Numerical study of the Cahn-Hilliard equation in one, two

and three dimensions, Phys. A. 347 (2005) 429–443.
[114] T.G. Myers, J.P.F. Charpin, and S.J. Chapman, The flow and solidification of a thin fluid film on an arbitrary

three-dimensional surface. Physics of Fluids (24) (2002) 2788–2803.
[115] D.I. Meiron, Boundary integral formulation of the two-dimensional symmetric model of dendritic growth,

Phys. D 23 (1986) 329–339.
[116] D.F. Martin, P. Colella, M. Anghel, F.L. Alexander, Adaptive mesh refinement for multiscale nonequilibrium

physics, Comp. Sci. Eng. 7 (2005) 24–31.
[117] K.W. Morton, D.E, Mayers, Numerical Solution of Partial Differential Equations, Cambridge University

Press, University of Cambridge, 1996.
[118] D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational

problems, Commun. Pure Appl. Math. 14 (1989) 577–685.
[119] J.M. Morel and S. Solimini, Variational methods in image segmentation, Progress in Nonlinear Differential

Equations and Their Applications, Birkhdiuser Boston, Cambridge, MA, 1995.
[120] I.S. McKinley and S.K. Wilson, and B.R. Duffy, Spin coating and air-jet blowing of thin viscous drops.

Physics of Fluids (11) (1999) 30–47.
[121] E. Newren, A. Fogelson, R. Guy, and R. Kirby, Unconditionally stable discretizations of the immersed

boundary equations, J. Comput. Phys. 222 (2007) 702–719.
[122] T. Ohtsuka, Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials, Asymptotic

Anal. 56 (2008) 87–123.
[123] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-

Jacobi formulations, J. Comput. Phys. 79 (1) (1988) 12–49.
[124] N. Provatas, N. Goldenfeld, and J. Dantzig, Adaptive mesh refinement computation of solidification mi-

crostructures using dynamic data structures, J. Comput. Phys. 148 (1999) 265–290.
[125] N. Provatas, N. Goldenfeld, and J. Dantzig, Efficient computation of dendritic microstructures using adaptive

mesh refinement, Phys. Rev. Lett. 80 (1998) 3308–3311.
[126] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220–252.
[127] C. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 1–39.
[128] D. Pelletier, A. Fortin, and R. Camarero, Are FEM solutions of incompressible flows really incompressible

(Or how simple flows can cause headaches), Int. J. Numer. Meth. Fluids 9 (1989) 99–112.
[129] W.H. Press, B.P. Flemming, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes, The Art of Scientific

Computing, 2nd edn., Cambridge University Press, Cambridge, 1989.
[130] M. Plapp and A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic

solidification, J. Comput. Phys. 165 (2000) 592–619.
[131] C. Peskin and D. Mcqueen, A general method for the computer simulation of biological systems interacting

with fluids, Symp. Soc. Exp. Biol. 49 (1995) 265–276.
[132] C. Peskin and B. Printz, Improved volume conservation in the computation of flows with immersed elastic

boundaries, J. Comput. Phys. 105 (1993) 33–46.
[133] Rappaport, R., Int. Rev. Cytol. (31) (1971) 169.
[134] J.C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers, Phase-field modeling of binary alloy solidifica-

tion with coupled heat and solute diffusion, Phys. Rev. E 69 (2004) 051607.

103

[135] M. Raessi, M. Bussmann, and J. Mostaghimi, A semi-implicit finite volume implementation of the CSF
method for treating surface tension in interfacial flows, Int. J. Numer. Meth. Fluids 59 (2009) 1093–1110.

[136] J. Rosam, P.K. Jimack, and A. Mullis, A fully implicit, fully adaptive time and space discretisation method
for phase-field simulation of binary alloy solidification, J. Comput. Phys. 225 (2007) 1271–1287.

[137] V. Rutka and Z. Li, An explicit jump immersed interface method for two-phase Navier-Stokes equations with
interfaces, Comput. Methods Appl. Mech. Engrg. 197 (2008) 2317-2328.

[138] C. Reisinger and G. Wittum, On multigrid for anisotropic equations and variational inequalities, Pricing
multi-dimensional European and American options, Computing and Visualization in Science, (7)(2004) 189–
197.

[139] J. Sur, A.L. Bertozzi, and R.P. Behringer, Reverse undercompressive shock structures in driven thin film flow.
Physical Review Letters (90) (2003) 126105-1–126105-4.

[140] T.P. Schulze, Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques,
Phys. Rev. E 78 (2008) 020601(R).

[141] J.A. Sethian and J. Strain, Crystal growth and dendlritic solidification, J. Comput. Phys. 98 (1992) 231–253.
[142] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia, A level set model for image classification, Inte. J.

Comput. Vis., 40 (3) (2000) 187–197.
[143] A. Stuart and A.R. Humphries, Dynamical system and numerical analysis, Cambridge University Press,

Cambridge, 1998.
[144] C.J. Shih, M.H. Lee, and C.W. Lan, A simple approach toward quantitative phase field simulation for dilute-

alloy solidification, J. Cryst. Growth 282 (2005) 515–524.
[145] M. Sellier,Y.C. Lee, H.M. Thompson, and P.H. Gaskell, Thin film flow on surfaces containing arbitrary

occlusions. Computers & Fluids, (38) (2009) 171–182.
[146] C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schems II.

Journal of Computational Physics (83)(1989) 32–78.
[147] M. Sellier and S. Panda, Beating capillarity in thin film flows. International Journal for Numerical Methods

in Fluids, (63) (2010) 431–448.
[148] L.W. Schwartz and R.V. Roy, Theoretical and numerical results for spin coating of viscous liquids. Physics

of Fluids (16) (2004) 569–584.
[149] J. Strain, A boundary integral approach to unstable solidification, J. Comput. Phys. 85 (1989) 342–389.
[150] S.M. Troian, E. Herbolzheimer, S.A. Safran, and J.F. Joanny, Fingering instability of driven spreading films.

Europhysics Letters (10) (1989)25–30.
[151] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, A

front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169 (2001) 708-759.
[152] X. Tong, C. Beckermann, and A. Karma, Q. Li, Phase-field simulations of dendritic crystal growth in a forced

flow, Phys. Rev. E 63 (2001) 061601.
[153] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, USA, 2001.
[154] L.A. Vese and T.F. Chan, A multiphase level set framevork for image segmentation using the mumford and

shah model, Int. J. Comput. Vis. 50 (3) (2002) 271–293.
[155] S. Veremieiev, H.M. Thompson, Y.C, Lee, and P.H. Gaskell. Inertial thin film flow on planar surfaces featur-

ing topography. Computers & Fluids (39)(2010) 431–450.
[156] J.A. Warren and W.J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary

alloy using the phase-field method, Acta Metall. Mater. 43 (1995) 689-703.
[157] T.P, Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical

Mathematics, 45 (2003)331–351.
[158] A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phase-field model for isothermal phase transitions in

binary alloys, Phys. Rev. A 45 (1992) 7424–7439.
[159] K. Wang, A. Chang, L.V. Kale, and J.A. Dantzig, Parallelization of a level set method for simulating dendritic

growth, J. Parallel Distrib. Comput. 66 (2006) 1379–1386.
[160] A.A. Wheeler, W.J. Boettinger, and G.B. Mcfadden, Phase-field model for isothermal phase transitions in

binary alloys, Phys. Rev. A 45 (1992) 7424–7439.
[161] S.-L. Wang and R.F. Sekerka, Algorithms for phase field computation of the dendritic operating state at large

supercoolings, J. Comput. Phys. 127 (1996) 110–117.

104

[162] Y. Xu, J.M. McDonough, and K.A. Tagavi, A numerical procedure for solving 2D phase-field model prob-
lems, J. Comput. Phys. 218 (2006) 770-7-93.

[163] H. Yin and S.D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Mod-
elling Simul. Mater. Sci. Eng. 17 (2009) 075011.

[164] X. Yang, J.J. Feng, C. Liu, and J. Shen, Numerical simulations of jet pinching-off and drop formation using
an energetic variational phase-field method, J. Comput. Phys. 218 (2006) 417–428.

[165] A. Yezzi, S. Kichenassamy, A. Kumar, P Olver, and A. Tannenbaum, A geometric snake model for segmen-
tation of medical imagery, IEEE Transaction on Medical Image, 16 (2)(1997) 199–209.

[166] Y.-l. Wang, J. D. Silverman, and L.-G. Cao, Single Particle Tracking of Surface Receptor Movement during
Cell Division, The Journal of Cell Biology,1994.

[167] M.F. Zhu and C.P. Hong, A modified cellular automaton model for the simulation of dendritic growth in
solidification of alloys, ISIJ Int. 41 (2001) 436–445.

[168] P. Zhao, J.C. Heinrich, and D.R. Poirier, Fixed mesh front-tracking methodology for finite element simula-
tions, Int. J. Numer. Meth. Engng. 61 (2004) 928–948.

[169] M.F. Zhu, S.Y. Lee, and C.P. Hong, Modified cellular automaton model for the prediction of dendritic growth
with melt convection, Phys. Rev. E 69 (2004) 061–610.

[170] P. Zhao, J.C. Heinrich, and D.R. Poirier, Dendritic solidification of binary alloys with free and forced con-
vection, 49 (2005) 233–266.

[171] Z.C. Zheng and N. Zhang, Frequency effects on lift and drag for flow past an oscillating cylinder, J. Fluids
Struct. 24 (2008) 382–399.

