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a b s t r a c t

We present a fourth-order spatial accurate and practically stable compact difference
scheme for the Cahn–Hilliard equation. The compact scheme is derived by combining
a compact nine-point formula and linearly stabilized splitting scheme. The resulting
system of discrete equations is solved by a multigrid method. Numerical experiments
are conducted to verify the practical stability and fourth-order accuracy of the proposed
scheme. We also demonstrate that the compact scheme is more robust and efficient than
the non-compact fourth-order scheme by applying to parallel computing and adaptive
mesh refinement.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Cahn–Hilliard (CH) equation was originally introduced as a phenomenological model of phase separation in a binary
alloy [1,2] and has been widely applied in many areas such as image processing [3,4], microstructure [5], multi-phase fluid
flows [6], planet formation [7], and tumor growth [8,9]. We consider the following CH equation

∂φ(x, t)
∂t

= M∆µ(φ(x, t)), x ∈ Ω, t > 0, (1)

µ(φ(x, t)) = F ′(φ(x, t))− ϵ2∆φ(x, t), (2)
where the order parameter φ(x, t) is the difference of the local concentrations of the two components in a domain Ω .
M is the mobility, µ is the chemical potential, F(φ) = 0.25(φ2

− 1)2 is the free energy density, and ϵ is a positive
constant related to the interfacial thickness. The total free energy functional of the CH equation is defined as E(φ) =
Ω


F(φ)+ 0.5ϵ2|∇φ|

2

dx. For the sake of convenience, we consider the constant mobility,M = 1.
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The CH equation has fourth-order spatial derivatives and a Laplacian acting on the nonlinear term F ′(φ). In general,
explicit time discretizations require small time step sizes for stability. To overcome constraints of the time step sizes,
several implicit time discretizations have been proposed [10–16]. However, most of these numerical solutions have the
second-order accuracy in spatial discretizations. Note that the spectral [17–19] and finite element [20] methods for the CH
equation can be approximated to arbitrary accuracy. However, there are advantages and disadvantages to each numerical
method. Among these methods, the finite difference method is suitable in the framework of adaptive mesh refinement
(AMR) [21].

In recent years, high-order compact difference methods have been developed for simulating computational fluid
dynamics [22], acoustics [23], electromagnetic [24,25], and option pricing in stochastic volatility models [26]. Moreover,
there are various studies about fourth-order compact schemes for the Poisson [27–29], heat [30], Navier–Stokes [31–33],
biharmonic [34,35], reaction–diffusion [36], and convection–diffusion [37,38] equations. Also, sixth-order compact schemes
for the Poisson [29,39], Helmholtz [24], and convection–diffusion equations [22] have been developed.

Up to now, there are many works on the second-order finite difference method but few works on the high-order
difference method for the CH equation. Li et al. [40] established a three-level linearized compact difference scheme for
the CH equation. In this paper, we propose the compact scheme by combining a compact nine-point formula and linearly
stabilized splitting scheme [41]. The proposed numerical scheme has amerit that it can be straightforwardly applied to AMR
framework.

This paper is organized as follows. In Section 2, we derive the fourth-order compact finite difference scheme and describe
the multigrid, parallel computing, and AMR methods for the CH equation. In Section 3, numerical results are presented to
confirm the superiority of our scheme. Finally, conclusions are drawn in Section 4.

2. Numerical solution

2.1. Discretization

We discretize the CH equation in two-dimensional domain Ω = (a, b) × (c, d). Let Nx and Ny be positive even
integers, h = (b − a)/Nx = (d − c)/Ny be the uniform mesh size. We denote a discrete computational domain by
Ωh = {(xi, yj) : xi = a + (i − 0.5)h, yj = c + (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}, which is the set of cell-centers.
Let φn

ij be the approximation of φ(xi, yj, n∆t), where ∆t = T/Nt is the time step, T is the final time, and Nt is the total
number of time steps. We use periodic boundary conditions for φ and µ as follows:

φi0 = φi,Nx, φi,Nx+1 = φi1, φ0j = φNy,j, φNy+1,j = φ1j.

The discrete differentiation operators are

Dxφi+ 1
2 ,j

=
1
12
φi+1,j+1 − φi,j+1

h
+

5
6
φi+1,j − φij

h
+

1
12
φi+1,j−1 − φi,j−1

h
,

Dyφi,j+ 1
2

=
1
12
φi+1,j+1 − φi+1,j

h
+

5
6
φi,j+1 − φij

h
+

1
12
φi−1,j+1 − φi−1,j

h
,

and we use the notation ∇cφij =


Dxφi+ 1

2 ,j
,Dyφi,j+ 1

2


to represent the discrete gradient of φ. The discrete divergence

operator is defined at cell-center point as

∇d · (u, v)ij =

ui+ 1
2 ,j

− ui− 1
2 ,j

h
+

vi,j+ 1
2

− vi,j− 1
2

h
.

We then define the discrete l2-inner products as

(φ, ψ)h := h2
Nx
i=1

Ny
j=1

φijψij,

(∇cφ,∇cψ)e := h2
Nx
i=1

Ny
j=1


Dxφi+ 1

2 ,j
Dxψi+ 1

2 ,j
+ Dyφi,j+ 1

2
Dyψi,j+ 1

2


,

and the discrete norms as ∥φ∥
2

= (φ, φ)h and ∥∇φ∥
2
e = (∇cφ,∇cφ)e. We define the discrete total energy functional by

Eh(φn) = (F(φn), 1)h +
ϵ2

2
∥∇φn

∥
2
e .

2.2. Compact finite difference scheme

The nine-point Laplacian operator∆c [42] is defined as

∆cφij = ∇d · ∇cφij =
1

6h2


φi−1,j+1 + 4φi,j+1 + φi+1,j+1 + 4φi−1,j − 20φij + 4φi+1,j + φi−1,j−1 + 4φi,j−1 + φi+1,j−1


.
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By the Taylor series in two variables, we can obtain

φ(x +∆x, y +∆y) =

5
k=0

1
k!


∆x

∂

∂x
+∆y

∂

∂y

k

φ(x, y)+ O((∆x)6 + (∆y)6).

By replacing∆x and∆y with different values ±h, we get

φ(x + h, y)+ φ(x − h, y)+ φ(x, y − h)+ φ(x, y + h) = 4φ + h2φxx + h2φyy +
h4

12
φxxxx +

h4

12
φyyyy + O(h6), (3)

φ(x − h, y − h)+ φ(x − h, y + h)+ φ(x + h, y − h)+ φ(x + h, y + h)

= 4φ + 2h2φxx + 2h2φyy +
h4

6
φxxxx + h4φxxyy +

h4

6
φyyyy + O(h6). (4)

From Eqs. (3) and (4), we have

φ(x − h, y − h)+ φ(x − h, y + h)+ φ(x + h, y − h)+ φ(x + h, y + h)
+ 4 [φ(x + h, y)+ φ(x − h, y)+ φ(x, y − h)+ φ(x, y + h)] − 20φ(x, y)

= 6h2 φxx + φyy

(x, y)+

h4

2


φxxxx + 2φxxyy + φyyyy


(x, y)+ O(h6).

Finally, we have

∆cφij = ∆φ(xi, yj)+
h2

12
∆2φ(xi, yj)+ O(h4), (5)

where ∆2φ = ∆(∆φ) is the biharmonic operator. Note that another standard fourth-order nine-point Laplacian operator
∆s is defined as

∆sφij =
1

12h2


−φi−2,j + 16φi−1,j − 30φij + 16φi+1,j − φi+2,j


+

1
12h2


−φi,j−2 + 16φi,j−1 − 30φij + 16φi,j+1 − φi,j+2


.

In a similar manner, we can derive ∆sφij = ∆φ(xi, yj) + O(h4). Now, we derive the fourth-order spatial accurate and
practically stable compact finite difference scheme for the CH equation. Beginning with the nine-point Laplacian operator
for µij, we have

∆cµij = ∆µ(xi, yj)+
h2

12
∆2µ(xi, yj)+ O(h4)

= φt(xi, yj)+
h2

12
∆φt(xi, yj)+ O(h4) = (φt)ij +

h2

12
∆c(φt)ij + O(h4). (6)

Note that Eq. (1) is used for the second equality in Eq. (6). We approximate the temporal operator φt to first-order accuracy
by treating it implicitly:

∆cµ
n+1
ij =

φn+1
ij − φn

ij

∆t
+

h2

12

∆cφ
n+1
ij −∆cφ

n
ij

∆t
+ O(∆t)+ O(h4). (7)

We apply the linearly stabilized splitting scheme [41] to Eq. (2):

µn+1
= (φ3

− 3φ)n + 2φn+1
− ϵ2∆φn+1. (8)

By substituting Eq. (8) into Eq. (5), we get

∆cφ
n+1
ij =

(φ3
− 3φ)nij + 2φn+1

ij − µn+1
ij

ϵ2
+

h2

12
∆


(φ3

− 3φ)n + 2φn+1
− µn+1

ϵ2


ij
+ O(h4)

=
(φ3

− 3φ)nij + 2φn+1
ij − µn+1

ij

ϵ2
+

h2

12ϵ2

∆c(φ

3
− 3φ)nij + 2∆cφ

n+1
ij −∆cµ

n+1
ij


+ O(h4). (9)

Finally, from Eqs. (7) and (9), we have the fourth-order spatial accurate and practically stable compact finite difference
scheme for the CH equation:

φn+1
ij

∆t
+

h2

12∆t
∆cφ

n+1
ij −∆cµ

n+1
ij =

φn
ij

∆t
+

h2

12∆t
∆cφ

n
ij , (10)

−
2
ϵ2
φn+1
ij +


1 −

h2

6ϵ2


∆cφ

n+1
ij +

1
ϵ2
µn+1

ij +
h2

12ϵ2
∆cµ

n+1
ij =

1
ϵ2
(φ3

− 3φ)nij +
h2

12ϵ2
∆c(φ

3
− 3φ)nij. (11)
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2.3. Mass conservation

We verify that the compact scheme inherits the total mass conservation. Taking the inner product to Eq. (10) with a
constant grid function 1, we get

φn+1, 1

h +

h2

12


∆cφ

n+1, 1

h −∆t


∆cµ

n+1, 1

h =


φn+1, 1


h +

h2

12


∆cφ

n, 1

h .

For (∆cφ
n, 1)h, we have

∆cφ
n, 1


h = h2

Nx
i=1

Ny
j=1

∆cφ
n
ij

= h2
Nx
i=1

Ny
j=1

Dxφ
n
i+ 1

2 ,j
− Dxφ

n
i− 1

2 ,j

h
+

Dxφ
n
i,j+ 1

2
− Dxφ

n
i,j− 1

2

h



= h
Ny
j=1


Dxφ

n
Nx+

1
2 ,j

− Dxφ
n
1
2 ,j


+ h

Nx
i=1


Dxφ

n
i,Ny+

1
2

− Dxφ
n
i, 12


= 0.

Here, we have used the periodic boundary condition for φ, and

∆cφ

n+1, 1

h = (∆cµ

n, 1)h = 0 can be proved in a similar
manner. Thus, we have the mass conserving property, i.e., (φn, 1)h =


φn+1, 1


h.

2.4. Multigrid algorithm

We briefly describe the multigrid method and implementation to solve the resulting system. We represent the discrete
CH system as

Lh(φn+1, µn+1) = (ξ n, ψn),

where the linear operator Lh is defined as

Lh(φn+1, µn+1) =


φn+1
ij

∆t
+

h2

12∆t
∆cφ

n+1
ij −∆cµ

n+1
ij ,

−
2
ϵ2
φn+1
ij +


1 −

h2

6ϵ2


∆cφ

n+1
ij +

1
ϵ2
µn+1

ij +
h2

12ϵ2
∆cµ

n+1
ij


,

and the source term is
ξ n, ψn

=


φn
ij

∆t
+

h2

12∆t
∆cφ

n
ij ,

1
ϵ2
(φ3

− 3φ)nij +
h2

12ϵ2
∆c(φ

3
− 3φ)nij


.

2.4.1. Smoothing
Compute


φ̄k, µ̄k


by applying ν smoothing procedures to (φk, µk).

φ̄k, µ̄k


= SMOOTHν (φk, µk, Lh, ξk, ψk)

on a mesh gridΩk. The SMOOTHν function means that it performs a SMOOTH relaxation operator with approximations φk
and µk, and source terms ξk and ψk. The superscript ν denotes how many times the given relaxation operator is applied
to obtain the updated approximations


φ̄k, µ̄k


. This relaxation step is evaluated using pointwise Gauss–Seidel iterative

methods. One SMOOTH relaxation operator step is completed by solving the system by a 2 × 2 matrix inversion for each i
and j.

2.4.2. V-cycle
One V-cycle step comprises the presmoothing, coarse grid correction, and postsmoothing steps. Please refer to the

reference text for additional details and background [13].
φ

n+1,m+1
k , µ

n+1,m+1
k


= V-cycle(k, φn+1,m

k , µ
n+1,m
k , Lh, ξ nk , ψ

n
k , ν1, ν2)

where φn+1,m+1
k and φn+1,m

k are the approximations of φn+1
k before and after the V-cycle. Next, we define the V-cycle.

Presmoothing

(φ̄
n+1,m
k , µ̄

n+1,m
k ) = SMOOTHν1(φn+1,m

k , µ
n+1,m
k , Lh, ξ nk , ψ

n
k ).

Coarse grid correction

(1) Find the defect:

d̄m1,k, d̄

m
2,k


=

ξ nk , ψ

n
k


− Lh


φ̄

n+1,m
k , µ̄

n+1,m
k


.

(2) Restrict the defect: d̄m1,k−1 = Ik−1
k d̄m1,k, d̄

m
2,k−1 = Ik−1

k d̄m2,k.
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a b

Fig. 1. Data communication between adjacent sub-domains. (a) Ωri sends data to Ωr , and (b) Ωr receives the data from Ωri . Circles and crosses are
corresponding to the data for communication of CNPF and NPF, respectively.

(3) Evaluate approximations

v̂
n+1,m
1,k−1 , v̂

n+1,m
2,k−1


of the following coarse grid system on Ωk−1: L2h


v̂
n+1,m
1,k−1 , v̂

n+1,m
2,k−1


=

d̄m1,k−1, d̄
m
2,k−1


. If k > 1, thenwe can solve the coarse grid system using the zero grid functions as initial approximations

and the defect functions as source terms
v̂
n+1,m
1,k−1 , v̂

n+1,m
2,k−1


= V-cycle


k − 1, 0, 0, L2h, d̄m1,k−1, d̄

m
2,k−1, ν1, ν2


.

Otherwise, we apply the smoothing procedure to obtain the approximations.
(4) Interpolate the correction: v̂n+1

1,k = Ikk−1v̂
n+1,m
1,k−1 , v̂n+1,m

2,k = Ikk−1v̂
n+1,m
2,k−1 .

(5) Compute the corrected approximation onΩk:φn+1,m
k ,µn+1,m

k


=


φ̄

n+1,m
k , µ̄

n+1,m
k


+


v̂
n+1,m
1,k , v̂

n+1,m
2,k


.

Postsmoothing
φ

n+1,m+1
k , µ

n+1,m+1
k


= SMOOTHν2

φn+1,m
k ,µn+1,m

k , Lh, ξ nk , ψ
n
k


.

This completes the description of the V-cycle.

2.5. Parallel computation

In industrial sciences, parallel algorithms have been developed for large-data applications. Parallel computation can
divide a large domain into smaller sub-domains, and carry outmany calculations simultaneously.We apply CNPF andNPF to
the parallelmultigridmethod [43],which is based on the grid partitioning strategy and data communication. Fig. 1 illustrates
the data communication. Let us consider the rth sub-domain,Ωr , andwe define its adjacent sub-domainsΩr0 ,Ωr1 , . . . ,Ωr7 .
Shaded layers are sub-boundaries which need the data communication because of the Laplacian operator. Communications
are performed before the smoothing and defect procedures. On the other hand, no data communication is needed before
restriction and prolongation. The Message Passing Interface (MPI) [44] is used for the interprocessor communication.

2.6. Adaptive mesh refinement

The AMRmethod [45,46] is more efficient than amethod based on the uniformmesh because it allows amulti-resolution
in interest regions without requiring a fine grid resolution of the whole domain. With its advantage, they are widely
used [21,47–50]. In the adaptive approach, we introduce a hierarchy of grids,Ω0,Ω1,Ω2, . . . ,Ωl+0,Ωl+1, . . . ,Ωl+l∗ . Here,
Ω0,Ω1, . . . ,Ωl denote a hierarchy of global grids in the non-adaptivemultigrid on uniform grids andΩl+0,Ωl+1, . . . ,Ωl+l∗

denote a hierarchy of increasingly finer gridswhich are restricted to smaller and smaller sub-domains around the phase-field
interfacial transition zone. Fig. 2 shows the grid structure used in AMR [45] with l∗ = 3. Here, contours represent the
interface of phase field, i.e., φ ∈ [−0.99, 0.99].

When the new level is changed, we have to fill the data in the new level from the previous level. In this time, the ghost-
layer values are obtained by the interpolation process from the previous level data. Themain idea of the interpolation process
is to use the quadratic function. First, we can get the intermediate values (solid circles) by using the quadratic interpolation
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Fig. 2. Block-structured local refinement with the level l∗ = 3. Contours represent the interface of phase-field, i.e., φ ∈ [−0.99, 0.99].

Fig. 3. Coarse–fine boundary interpolation. First, the intermediate value (solid circle) is obtained by the coarse grid points (open circles). Then, the ghost
cell value (open triangle) is obtained by the intermediate value (solid circle) and the fine grid points (×’s).

with the data in coarse grid (open circles). Then, the ghost cell values (open triangles) are obtained in the samemanner with
the fine cells (×’s) and the intermediate values (solid circles), see Fig. 3.

3. Numerical results

In this section, various numerical experiments are given to demonstrate the fourth-order convergence, non-increase of
total energy,mass conservation, linear stability analysis, and robustness of the scheme. In addition, we present the evolution
up to the steady state, compare with three numerical methods, and show the applicability to the parallel computation and
the AMR method.

3.1. Convergence test

A numerical convergence test for the three schemes is performed with increasingly finer grids h = 1/2n, for n = 3, 4,
5, and 6. The initial state is defined as φ(x, y, 0) = 0.1 cos(2πx) cos(2πy) in Ω = (0, 1) × (0, 1) (Fig. 4(a)), and Fig. 4(b)
illustrates the numerical solution at T = 24∆t , where we use ϵ = 0.0075 and ∆t = 6 × 10−4. We consider a reference
solution, because it is generally hard to find the exact solution of the CH equation. We define the reference solution φref

ij by
the local average of the numerical solution on a much finer grid, and then denote the error by eij := φij − φ

ref
ij . We use a

1024 × 1024 mesh grid and FPF for the reference solution φref
ij . The convergence rate is defined as the ratio of successive

errors, log2(∥eh∥/∥eh/2∥), where ∥eh∥ is the discrete l2-norm of error function eh.
To compare the accuracy, we use the five-point formula (FPF), nine-point formula (NPF), and compact nine-point formula

(CNPF) for the calculation of the Laplacian operator. Table 1 lists the discrete l2-norm of errors and convergence rates
with different three formulas. Using NPF and CNPF, we have the fourth-order accuracy in space as we expect from the
discretization.

3.2. Non-increase of total energy and conservation of mass

Fig. 5 demonstrates that the discrete total energy is monotonically decreasing and the mass is conserved. The inscribed
small figures show the phase separation at the indicated times. For the numerical test, in Ω = (0, 1) × (0, 1), the initial
state is taken as a random perturbation φ(x, y, 0) = 0.5 rand(x, y), where rand(x, y) is a random value, which is uniformly
distributed between −1 and 1. For other parameters, h = 1/256,∆t = 0.002, T = 3, and ϵ = 0.0038 are used.
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a b

Fig. 4. (a) Initial condition φ(x, y, 0) and (b) numerical solution φ(x, y, T ) at time T = 0.0144.

Fig. 5. Non-dimensional discrete total energy Eh(φn)/Eh(φ0) and mass concentration with the initial condition φ(x, y, 0) = 0.5 rand (x, y).

Table 1
l2-norm errors and convergence rates for FPF, NPF, and CNPF.

h FPF NPF CNPF
Error Order Error Order Error Order

1/8 1.03 × 10−2 8.14 × 10−3 5.02 × 10−3

1/16 2.76 × 10−3 1.90 6.59 × 10−4 3.63 3.36 × 10−4 3.90
1/32 7.26 × 10−4 1.93 4.54 × 10−5 3.86 2.01 × 10−5 4.06
1/64 1.83 × 10−4 1.99 2.31 × 10−6 4.30 1.27 × 10−6 3.98

3.3. Linear stability analysis

Let us consider the linear stability analysis for CH equations (1) and (2)

φt = ∆

φ3

− φ − ϵ2∆φ

, x ∈ Ω, t > 0, (12)

whereΩ = (0, 2π)× (0, 2π). We assume that the solution can be expressed by

φ(x, y, t) = φ̄ +

∞
k1=1

∞
k2=1

βk1k2(t) cos(k1x) cos(k2y)+

∞
k1=1

∞
k2=1

γk1k2(t) sin(k1x) sin(k2y), (13)

where φ̄ is the average of φ, and βk1k2(t) and γk1k2(t) are amplification factors at wave numbers k1 and k2. After linearizing
Eq. (12) and substituting Eq. (13) into the linearized equation, we have

dβk1k2(t)
dt

= k2

1 − 3φ̄2

− ϵ2k2

βk1k2(t), (14)

where we denote k2 = k21 + k22. We only consider βk1k2(t) because the same ordinary differential equation holds for
γk1k2(t). The solution of Eq. (14) is βk1k2(t) = βk1k2(0) exp(ηk1k2 t), where ηk1k2 = k2(1 − 3φ̄2

− ϵ2k2) is the growth rate.
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a b

Fig. 6. Growth rate versus the wave numbers k1 and k2 for the (a) CH and (b) linearized CH equations.

(a)∆t = 0.01. (b)∆t = 10. (c)∆t = 10000.

Fig. 7. Evolutions with different time steps∆t = 0.01, 10, and 10000.

Fig. 8. Evolution of φ up to the steady state time t = 152.6. The times are shown below in each figure.

The numerical growth rate is defined asηk1k2 = log(∥φm
∥∞/∥φ

0
∥∞)/(m∆t). We take the initial condition φ(x, y, 0) =

0.01 cos(k1x) cos(k2y) with m = 100, ∆t = 10−8, h = π/256, and ϵ = 0.03. Fig. 6(a) and (b) show the numerical growth
rateηk1k2 versus the wave numbers k1 and k2 for the CH and linearized CH equations, respectively. Open and closed circles
correspond to the solutions from the linear stability analysis and CNPF, respectively. The numerical results are in good
agreement with the analytic solutions from the linear stability analysis.

3.4. Stability of the proposed scheme

We demonstrate a practical stability of the scheme through a numerical experiment with spinodal decomposition of a
binary mixture. In the simulation, the initial condition is taken as φ(x, y, 0) = 0.5 rand(x, y) in Ω = (0, 1) × (0, 1). Note
that the maximum amplitude is 0.5 at the initial time. For numerical parameters, h = 1/128 and ϵ = 0.0113 are used
and different time steps ∆t = 0.01, 10, and 10000 are employed. In Fig. 7, we illustrate the evolutions after fifteen time
iterations. As the numerical results, the maximum amplitudes are bounded, and the numerical solutions do not blow up.
Therefore, our proposed scheme is stable regardless of the time step size.

3.5. Steady state

Weexamine the evolution of a randomperturbation up to the steady state. The initial condition is taken to beφ(x, y, 0) =

0.01rand(x, y) inΩ = (0, 1)× (0, 1). We then take the simulation parameters as ϵ = 0.0075, h = 1/256, and∆t = 10h2.
We stop the numerical computations when the discrete l2-norm of the difference between (n+ 1)th and nth step solutions
becomes less than 10−9, i.e., ∥φn+1

− φn
∥ ≤ 10−9. Fig. 8 shows the snapshots of filled contour of the concentration φ.

We observe that the randomly perturbed concentration φ evolves to a complex interconnected pattern. After a long time
evolution, a numerical equilibrium state is reached.
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Fig. 9. Evolutions for FPF and CNPF with a mesh grid 256 × 64. Note that the reference solution is defined by using much more finer mesh 1024 × 256.
From top to bottom, times are t = 0, 2, 6, and 10.

Fig. 10. V-cycle number with different time steps∆t .

Table 2
CPU time (s) for FPF, NPF, and CNPF.

FPF NPF CNPF

1819 3095 2218

3.6. Comparison of three methods

To show the superiority of CNPF, we compare the evolution results from CNPF and FPF, and list the computational times
for the three methods. The initial condition is given as

φ(x, y, 0) =


1 if 0.2 < x < 3.8 and 0.4 < y < 0.6,
−1 otherwise (15)

inΩ = (0, 4)× (0, 1). Here, a mesh grid 256× 64, ϵ = 0.015,∆t = 0.0005, and T = 10 are used. We define the reference
solution by numerical solutions, using FPF, on a finer mesh 1024 × 256. In Fig. 9, we illustrate evolutions by CNPF (circles)
and FPF (dashed line) with the reference solutions (solid line) at t = 0, 2, 6, and 10. Table 2 lists CPU times of the three
schemes to T = 10. Although CNPF has a slight difference of CPU time than FPF, it has higher accuracy compared to FPF.
Furthermore, NPF needs more V-cycle iterations than CNPF to reach the V-cycle tolerance, and it results in the increment of
CPU time.

3.7. Comparison between CNPF and NPF

We compare the numerical convergence of two formulas, CNPF and NPF. For the numerical test, we take the initial
condition as φ(x, y, 0) = 0.1 cos(2πx) cos(2πy) in Ω = (0, 1) × (0, 1). For other parameters, we use h = 1/64 and
ϵ = 0.015. We count the number of V-cycle until the maximum value of residual error is less than 10−10. Fig. 10 plots
the numbers of V-cycle for one time iteration versus ∆t . From the results, we can observe that CNPF requires less V-cycle
iterations than NPF for all time step sizes.
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(a) t = 0. (b) t = 2.

(c) t = 5. (d) t = 20.

Fig. 11. Contours and adaptive meshes of φ. The times are shown below in each figure. The zero-level gridΩl+0 has 128 × 32 points and three levels of
mesh refinement are used as l∗ = 3 inΩ = (0, 4)× (0, 1).

Fig. 12. Contours at φ = −0.95, 0, 0.95 at t = 20. Solid lines and circles represent the results on the uniform and adaptive meshes, respectively.

3.8. Parallel computation

The parallel performance is usually evaluated based on speed-up. The value of the speed-up is used tomeasure the ratio of
the time spent in the serial mode to that spent in the parallel mode. Let T (P) be the execution time, i.e., the computational
time, using P processors. The speed-up is defined as S(P) = T (1)/T (P). Ideally, we expected S(P) ≈ P for the parallel
algorithm.

The execution time is the CPU time taken to reach T = 100∆t . The calculations are performed with the initial data
φ(x, y, 0) = 0.1 cos(2πx) cos(2πy) in Ω = (0, 1) × (0, 1). For other parameters, h = 1/1024, ∆t = h2, and ϵ = 0.0019
are used. Table 3 lists the CPU time and speed-up for two formulas. Because the NPF has a disadvantage for the data
communication, the speed-up of CNPF shows the better performance than the one of NPF.

3.9. Adaptive mesh refinement

In this section, we compare the numerical results obtained on uniform and adaptivemesheswith CNPF. For the numerical
test, we use the initial condition (15) on the computational domainΩ = (0, 4)× (0, 1). The other parameters are taken as
∆t = 0.001 and ϵ = 0.015. And we use 1024 × 256 grid points on uniformmesh. On adaptive mesh, we use the zero-level
grid Ωl+0 which has 128 × 32 grid points and the three levels for mesh refinement as l∗ = 3. Fig. 11 shows the evolution
using the AMR method and dynamical adjustment of grid hierarchy structure around interface transition region.

In Fig. 12, contours of results by uniform and adaptivemeshes are drawn and they are in a good agreement. The numerical
test on the uniform mesh requires more than 10.48 h. The test on adaptive mesh needs only 1.15 h, which is about 9 times
faster than the uniform mesh.

4. Conclusions

We proposed the fourth-order spatial accurate and practically stable compact scheme, by using the compact nine-point
formula (CNPF) and linearly stabilized splitting scheme, to solve the Cahn–Hilliard equation. We numerically demonstrated
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Table 3
CPU time (s) and speed-up with different number of processor.

P NPF CNPF
T (P) S(P) T (P) S(P)

1 275.2 1.00 227.9 1.00
2 138.8 1.98 114.9 1.98
4 70.4 3.91 58.0 3.93
8 37.2 7.39 29.8 7.66

16 18.6 14.8 14.8 15.4
32 9.8 28.2 7.77 29.3

the practical stability, fourth-order accuracy, decrease of total energy, and mass conservation. Also, to show the superiority
of CNPF, we compared the standard nine-point formula (NPF) with CNPF. The computational time of CNPF was less than
that of NPF because NPF needs more V-cycle iterations than CNPF to reach the tolerance. We then applied NPF and CNPF to
the parallel multigrid method. It was found that NPF has a disadvantage on the data communication due to the wide stencil.
Furthermore, we demonstrated the applicability of CNPF to the adaptive mesh refinement method.
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