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Phase-field Model for the Pinchoff of Liquid-liquid Jets
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Understanding pinchoff in a liquid-liquid jet is one of the fundamental problems in the physics
of fluid. Pinchoff has a wide variety of applications, such as in ink-jet printers. We have need
a phase-field model to numerically investigate the breakup of a forced liquid jet into drops in
immiscible liquid-liquid systems. In the phase-field model, the classical sharp interface between the
two immiscible fluids is represented by a transition region of small, but finite, width. Across this
width the composition of one of the two fluids changes continuously. The phase-field method can
deal with topological transitions, such as breakup and reconnection, smoothly without ad-hoc “cut
and connect” or smoothing procedures. We found the numerical results for the pinchoff of liquid-
liquid jets with surface tension to be in good agreement with experimental data. In particular, we
investigated the axial velocities and the vorticity structures around the jet neck before and after
pinchoff.
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I. INTRODUCTION

Free boundary problems represent excellent approxi-
mations to a number of important engineering, indus-
trial, and biomedical problems such as breakup of a liq-
uid column surrounded by another fluid [1]. However,
one of the great difficulties in the study of two immiscible
fluid flows is the presence of an interface. The interface
changes and may undergo severe topological deforma-
tions, such as breakup and merging.

The phase-field model [2] provides a natural way of
capturing the evolution of complex interfaces and treat-
ing the topological changes of the interface. In this
model, a mass concentration field c(x, t) is introduced
to denote the mass fraction of one of the components
in a heterogeneous mixture of two fluids. The mass
concentration is coupled to the fluid motion through a
concentration-dependent density, viscosity, and surface
tension force. The resulting system couples the Navier-
Stokes equations to a fourth-order, degenerate, nonlinear
parabolic diffusion equation of the Cahn-Hilliard type for
the concentration. The advantages of this approaches are
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as follows: (1) Topological changes, such as the interface
merging and breakup, can be treated without difficulty.
(2) The phase field has physical meanings not only on
the interface but also in the bulk phases. Therefore, this
method can be applied to many physical applications.
(3) This method can be straightforwardly extended to
a three-dimensional multicomponent system. There are
other approaches, such as the lattice Boltzmann method
[3, 4], to study multiphase flow [5]. Anderson, McFad-
den, and Wheeler have authored a review paper of this
phase-field model [6].

This paper is organized in the following manner. The
definition and the formulation of the governing equation
in cylindrical coordinates for the solution to the problem
of a Newtonian liquid jet injected vertically into another
Newtonian quiescent liquid are introduced in Sec. II. We
describe a numerical method in Sec. III. We compare the
numerical experiments with available experimental data
from Milosevic and Longmire [1] in Sec. IV. Finally, we
present conclusions in Sec. V.

II. PROBLEM DEFINITION AND
FORMULATION

In this paper, we consider a liquid-liquid jet that
pinches off, making droplets. The experimental setup,
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Fig. 1. Recirculating jet facility.

Fig. 2. Liquid/liquid jet flow configuration.

consisting of a tank, a pump, a control valve, a rotame-
ter, and a forcing apparatus, is illustrated in Fig. 1.
The dimensions of the tank are 20.3× 20.3× 56 cm3. A
magnetic-driven pump generates a steady flow controlled
by a needle valve. The flow (a water/glycerin mixture)
passes through a honeycomb straightener before exiting
a nozzle into an ambient layer of the Dow Corning fluid.
More details about the experimental setup are in Ref. 1.
The flow configuration investigated numerically in our
study is shown in Fig. 2. The jet of a viscous fluid, fluid
1, is injected vertically from a circular nozzle downwards
into a tank of a stationary mutually saturated immisci-
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Fig. 3. Double well potential, F (c) = 0.25c2(c− 1)2.

ble fluid, fluid 2. The viscosity and the density of the
inner jet, fluid 1, are denoted by η1 and ρ1, respectively.
Likewise, those of the outer ambient, fluid 2, are denoted
by η2 and ρ2, respectively. The domain is axisymmetric
with the center line being the axis of symmetry.

1. The Governing Equations

We consider a situation of a binary fluid consisting of
two components, fluid 1 and fluid 2. We denote the com-
position of component 1, expressed as a mass fraction,
by c(x, t), where x is the space position and t is the time.
In this setting, the composition plays the role of an order
parameter that distinguishes the different phases of the
fluid. Then, in dimensional form, the phase-field model
[7] is

∇ · u = 0, (1)
ρu̇ = −∇p +∇ · [η(c)(∇u +∇uT )]

−6
√

2εσ∇ ·
( ∇c

|∇c|
)
|∇c|∇c + ρg, (2)

ċ = ∇ · (M(c)∇µ), (3)
µ = f(c)− ε2∆c, (4)

where · = ∂t + u · ∇ is the total derivative, u is the
velocity, p is the pressure, ρ(c) = ρ1c + ρ2(1 − c) is
the density, and η(c) = η1c + η2(1 − c) is the viscos-
ity. −6

√
2εσ∇ ·

(
∇c
|∇c|

)
|∇c|∇c is the interfacial tension

body force concentrated on the interface, where σ is
the interfacial tension coefficient, and ε is the interface
thickness parameter. M(c) = Mc(1 − c) is the vari-
able mobility, µ is the generalized chemical potential,
and f(c) = F ′(c). F (c) is the Helmholtz free energy,
where F (c) = 1

4c2(1− c)2 (see Fig. 3).

2. The Nondimensional Governing Equations

The next step is to restate the dimensional phase-field
model in dimensionless form. For this purpose, we de-
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fine characteristic values, such as length (L∗), velocity
(V∗), viscosity (η∗), density (ρ∗), chemical potential (µ∗),
and mobility (M∗). We then introduce non-dimensional
variables for the space coordinates, time, velocity compo-
nents, viscosity, fluid pressure, interface thickness, chem-
ical potential, and mobility:

x̄ =
x

L∗
, ū =

u
V∗

, η̄ =
η

η∗
, p̄ =

p

ρ∗V 2∗
,

ε̄ =
ε

L∗
, µ̄ =

µ

µ∗
, M̄ =

M

M∗
,

where the bars denote dimensionless variables. Substi-
tuting these variables into the governing equations (1)-
(4), dropping the bar notations, and using the dimension-
less numbers yield the following nondimensional system:

∇ · u = 0, (5)

ut + u · ∇u = −∇p +
1

Re
∇ · [η(c)(∇u +∇uT )] (6)

−6
√

2ε

We
∇ ·

( ∇c

|∇c|
)
|∇c|∇c +

ρ− 1
Fr2

G,

ct + u · ∇c =
1

Pe
∇ · (M(c)∇µ), (7)

µ = f(c)− ε2∆c. (8)

The dimensionless parameters are the Reynolds number,
Re = ρ∗V∗L∗/η∗, the Weber number, We = ρ∗L∗V 2

∗ /σ,
the Froude number, Fr = V∗/

√
L∗g, and the diffusional

Peclet number, Pe = L∗V∗/(M∗µ∗).

3. The Axisymmetric Navier-Stokes Cahn-
Hilliard System

In this paper, we consider only axisymmetric flows;
therefore, there is no flow in the θ (azimuthal) direction,
and all θ derivatives are identically zero. Therefore, we
consider only two variables, r the radial direction and z
the axial direction, in the two-dimensional axisymmetric
domain Ω = {(r, z) : 0 < r < R, 0 < z < H}. We
define the fluid velocity by the vector u = (u,w), where
u = u(r, z) is the radial component of the velocity and
w = w(r, z) is the component in the axial direction. We
use the Boussinesq approximation to represent the grav-
itational force due to the density difference between the
jet and the ambient fluid. The governing equations for
axisymmetric flow are

1
r
(ru)r + wz = 0, (9)

ut + uur + wuz = −pr +
1

Re

[
1
r
(r(2ηur))r

+(η(wr + uz))z − 2ηu

r2

]
+ F1, (10)

wt + uwr + wwz = −pz +
1

Re

[
1
r
(rη(wr + uz))r

+(2ηwz)z] + F2 − ρ− 1
Fr2

, (11)

ct + ucr + wcz =
1

Pe

[
1
r
(rM(c)µr)r + (M(c)µz)z

]
,

(12)

µ = f(c)− ε2
[
1
r
(rcr)r + czz

]
, (13)

where

F = (F1, F2) = −6
√

2ε

We
∇ ·

( ∇c

|∇c|
)
|∇c|∇c,

and

∇c = (cr, cz), ∇ · (φ, ψ) =
1
r
(rφ)r + ψz,

with the subscript indexes t, r, and z referring to differ-
entiation with respect to the variable.

We, next, specify the boundary conditions. The am-
plitude of the velocity fluctuation is adjusted such that
a droplet is pinched off at the same downstream location
as in the experiments. For the inflow into the nozzle, we
assume time-dependent fully-developed Poissuille flow:
u(r, 2π, t) = 0 and w(r, 2π, t) = V∗(1 + α cos(2πft))(1−
r2), where α and f are the amplitude and the frequency
of the velocity fluctuation, respectively. We define the
Strouhal number as St = fL∗/V∗. Outside the nozzle,
no-slip conditions are used: u(r, 2π, t) = w(r, 2π, t) = 0.

For the axis of symmetry at r = 0, u(0, z, t) = ∂w(0,z,t)
∂r =

0. For the outflow boundary at the bottom of the mesh,
z = 0. We assume no change in the axial direction:
∂u(r,0,t)

∂z = ∂w(r,0,t)
∂z = 0.

III. THE NUMERICAL METHOD

We employ a Chorin-type projection method for the
decoupling of the momentum and the continuity equa-
tions. Our strategy for solving the system, Eqs. (9)-
(13), is a fractional step scheme having two parts. First,
we solve the momentum and the concentration equa-
tions, Eqs. (10)-(11), without strictly enforcing the in-
compressibility constraint in Eqs. (9); then, we project
the resulting velocity field onto the space of discretely
divergence-free vector fields [8]. Then, we update the
phase field in Eqs. (12) and (13). We provide a detailed
description in Appendix A.

IV. NUMERICAL EXPERIMENTS

In our numerical simulations, we use the mean value
for the flow rate at the nozzle. Then, the simulation fol-
lows the time evolution of the flow until the jet length
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Φ = 0◦ Φ = 30◦ Φ = 60◦ Φ = 90◦ Φ = 120◦
Φ = 150◦

Φ = 180◦ Φ = 210◦ Φ = 240◦ Φ = 270◦ Φ = 300◦ Φ = 330◦

Fig. 4. Time evolution leading to multiple pinchoffs. The phase-locked sequence of jet pinchoff at Re = 58 and St = 3.5.
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Fig. 5. Normalized axial velocity (w) contours of forced flow at St = 3.5 and Re = 58. The highest contour level is 0.
Succeeding levels are decreased by 1.

versus time profile reaches a pseudo-steady behavior.
The initial concentration field and velocity fields are
given by

c0(r, z) = 0.5
[
1− tanh

(
r − 0.5− 0.05 cos(z)

2
√

2ε

)]
,

u0(r, z) = w0(r, z) = 0

on a domain Ω = {(r, z)|0 ≤ r ≤ 0.5π and 0 ≤ z ≤ 4π}.
In this computation, we use the following parameters:
ε = 0.02, Re = 58, We = 0.016, St = 3.5, and Pe =

100/ε.
Sequences of phase-locked images are shown in Fig.

4. We divide one cycle into 360◦ phases. As the liquid
filament is stretched by gravity, a neck forms, elongates,
and becomes thinner. In the meantime, the lower end
of the filament turns into a round drop under capillary
forces. The falling drop continues to stretch the thread,
and eventually the Rayleigh instability leads to a pinchoff
of the main drop [9].

The normalized axial velocity (w) contours of the
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Fig. 6. Normalized vorticity field (wr − uz) contours of forced flow at St = 3.5 and Re = 58. The solid lines represent
positive vorticity. The lowest contour level is 0.05. Succeeding levels are incremented by 0.5. The dotted lines represent
negative vorticity. The highest contour level is −0.05. Succeeding levels are decreased by 0.5.

(a)

(b)

Fig. 7. (a) Φ = 120◦ and (b) Φ = 240◦.

forced flow at St = 3.5 and Re = 58 are shown in Fig.
5. The highest contour level is 0, and succeeding lev-
els are decreased by 1. We can see that, before pinchoff

(Φ = 60◦ and Φ = 90◦), the maximum axial velocity
is located approximately at the jet neck. The fluid is,
thus, accelerating into the neck and acting to increase
the volume of the drop. After the pinchoff, the maxi-
mum velocity still resides inside the drop (Φ = 120◦ and
Φ = 150◦).

The normalized vorticity field (wr−uz) contours of the
forced flow at St = 3.5 and Re = 58 are shown in Fig.
6. Solid lines represent positive vorticity. The lowest
contour level is 0.05. Succeeding levels are incremented
by 0.5. Dotted lines represent negative vorticity. The
highest contour level is −0.05. Succeeding levels are de-
creased by 0.5. At the phase Φ = 90◦, two opposites
signed vorticities develop around the jet neck and act
to encourage pinchoff. A positive vorticity makes the
fluid rotate clockwise while a negative vorticity makes
the fluid rotate counterclockwise. After the drop pinches
off, a small ring of inverted vorticity develops at the jet
tip due to the recoiling interface there.

In Fig. 7, we plot close-up shapes of drops at the
phases Φ = 120◦ and Φ = 240◦. At Φ = 120◦, after
pinchoff the upstream area of the drop has a large cur-
vature. This curvature and gravity accelerate the axial
velocity, giving a maximum value at the upstream part
of the drop. At Φ = 240◦, the upstream region of the
drop has a large dimple. Interfacial tension causes the
upstream surface of the drop to recover to a convex shape
as the drop falls. In Fig. 8, (a) and (b) are the normal-
ized axial velocity (w) and (c) and (d) are the vorticity
field (wr − uz) contours of forced flow. These results are
qualitatively in good agreement with the experimental
data [1].

V. CONCLUSIONS

In this paper, we described our numerical study of the
physics of the pinchoff transition in liquid-liquid jet sys-
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Fig. 8. (a) and (b) are the normalized axial velocity (w) and (c) and (d) are the vorticity field (wr − uz) contours of forced
flow.

tems. The numerical method we used is a phase-field
model for solving axisymmetric immiscible two-phase
flow with variable density, viscosity, surface tension, and
gravity. The phase-field model is based on a physical
background. It can deal with topological transitions such
as jet pinchoff. The axial velocity and vorticity struc-
tures around the jet neck before and after pinchoff are
qualitatively in good agreement with the experimental
results. In the future, we will include an electrostatic
field in our governing equations to simulate the electro-
static ejection of liquid droplets [10].
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APPENDIX A: THE NUMERICAL
PROCEDURE

We use a projection method for solving the system of
equations, Eqs. (9)-(13) [8]. The computational grid
consists of square cells of size h; these cells Ωik are
centered at (ri = (i − 0.5)h, zk = (k − 0.5)h), where
i = 1, · · · ,M and k = 1, · · · , N . The discrete velocity
field un

ik and the concentration field cn
ik are located at

the cell centers. The pressure p
n− 1

2
i+ 1

2 ,k+ 1
2

is located at the

cell corners. The notation un
ik is used to represent an

approximation to u(ri, zk, tn), where tn = n∆t with ∆t

being a time step. Given un−1,un, cn−1, cn, and pn− 1
2 ,

we want to find un+1, cn+1, and pn+ 1
2 , which solve the

following equations of motion:

∇d · un+1 = 0,

un+1 − un

∆t
= −∇dp

n+ 1
2 +

1
2Re

∇d · η(cn+1)

×[∇dun+1 + (∇dun+1)T ]

+
1

2Re
∇d · η(cn)[∇dun + (∇dun)T ]

+Fn+ 1
2 − (u · ∇du)n+ 1

2 ,

cn+1 − cn

∆t
=

1
Pe
∇d · (M(cn+ 1

2 )∇dµ
n+ 1

2 )

−(u · ∇dc)n+ 1
2 , (A1)

µn+ 1
2 =

1
2
[f(cn) + f(cn+1)]− ε2

2
∆d(cn + cn+1). (A2)

An outline of the main procedures in one time step of
each follows:

Procedure 1. Initialize c0 to be the locally equilibrated
concentration profile and u0 to be the divergence-free
velocity field.

Procedure 2. Update the concentration field cn to
cn+1. The details of this step are presented in Section
A 1 below.

Procedure 3. Compute (u·∇du)n+ 1
2 by using a second-

order ENO (essentially non-oscillatory) scheme. The

half-time value un+ 1
2

ik is calculated using an extrapola-
tion from previous values. We obtain cell-edged values
as un+ 1

2
i+ 1

2 ,k
= (riu

n+ 1
2

ik +ri+1u
n+ 1

2
i+1,k)/(2ri+ 1

2
) and un+ 1

2
i,k+ 1

2
=

(un+ 1
2

ik + un+ 1
2

i,k+1)/2. In general, the normal velocities

u
n+ 1

2
i+ 1

2 ,k
and w

n+ 1
2

i,k+ 1
2

at the edges are not divergence-free.
We apply a MAC projection [11] before constructing the
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convective derivatives. The equation

∆dφ = ∇MAC · un+ 1
2 (A3)

is solved for a cell-centered φ. We solve the resulting
linear system, Eq. (A3), by using a multigrid method
with a Gauss-Seidel relaxation. Then, the divergence-
free normal velocities ũ and w̃ are defined by

ũ
n+ 1

2
i+ 1

2 ,k
= u

n+ 1
2

i+ 1
2 ,k

− φi+1,k − φik

h
,

w̃
n+ 1

2
i,k+ 1

2
= w

n+ 1
2

i,k+ 1
2
− φi,k+1 − φik

h
.

The convective terms are discretized as

(u · ∇du)n+ 1
2

ik =
ri+ 1

2
ũi+ 1

2 ,k + ri− 1
2
ũi− 1

2 ,k

2rih

×(ūi+ 1
2 ,k − ūi− 1

2 ,k)

+
w̃i,k+ 1

2
+ w̃i,k− 1

2

2h
(ūi,k+ 1

2
− ūi,k− 1

2
),

where we suppress the n + 1
2 temporal index. The edge

values ūn+ 1
2

i± 1
2 ,k

and ūn+ 1
2

i,k± 1
2

are computed using a higher-
order ENO procedure derived in Ref. 12. The procedure
for computing the quantity fi+ 1

2 ,k is

j =
{

i ũi+ 1
2 ,k ≥ 0

i + 1 otherwise,

a =
fjk − fj−1,k

h
, b =

fj+1,k − fjk

h
,

d =
{

a if |a| ≤ |b|
b otherwise,

fi+ 1
2 ,k = fjk +

h

2
d(1− 2(j − i)).

Procedure 4. We solve

u∗ − un

∆t
= −∇dp

n− 1
2 +

1
2Re

∇d · η(cn+1)

×[∇du∗ + (∇du∗)T ] (A4)

+
1

2Re
∇d · η(cn)[∇dun + (∇dun)T ]

+Fn+ 1
2 − (u · ∇du)n+ 1

2

by using a multigrid method for the intermediate velocity
u∗. Here, we use the following discretizations for the
derivatives:

(∇dp)ik =

( p
i+ 1

2 ,k+ 1
2
+p

i+ 1
2 ,k− 1

2
−p

i− 1
2 ,k+ 1

2
−p

i− 1
2 ,k− 1

2
2h

p
i+ 1

2 ,k+ 1
2
+p

i− 1
2 ,k+ 1

2
−p

i+ 1
2 ,k− 1

2
−p

i− 1
2 ,k− 1

2
2h

)
,

(L1,L2) = ∇ · [η(∇u +∇uT )]

=
(

2
r (rηur)r − 2η

r2 u + (ηuz)z + (ηwr)z
1
r (rηuz)r + 1

r (rηwr)r + 2(ηwz)z

)
.

Then, the first component of the viscous terms is dis-
cretized as follows:

L1
ik =

2ri+ 1
2
ηi+ 1

2 ,k(ui+1,k − uik)− 2ri− 1
2
ηi− 1

2 ,k(uik − ui−1,k)

rih2

−2ηik

r2
i

uik +
ηi,k+ 1

2
(ui,k+1 − uik)− ηi,k− 1

2
(uik − ui,k−1)

h2

+
ηi,k+ 1

2
(wi+1,k+1 − wi−1,k+1 + wi+1,k − wi−1,k)

4h2

−
ηi,k− 1

2
(wi+1,k − wi−1,k + wi+1,k−1 − wi−1,k−1)

4h2
,

where ri+ 1
2

= (ri+1 + ri)/2 and ηi+ 1
2 ,k = [η(cik) +

η(ci+1,k)]/2. Next, we derive a discretization for the sur-
face force term. The vertex-centered normal vector at
the top right vertex of cell Ωik is given by

mi+ 1
2 ,k+ 1

2
= (mr

i+ 1
2 ,k+ 1

2
,mz

i+ 1
2 ,k+ 1

2
)

=
(

ci+1,k + ci+1,k+1 − cik − ci,k+1

2h
,

ci,k+1 + ci+1,k+1 − cik − ci+1,k

2h

)
.

The curvature is calculated at the cell centers from the
vertex-centered normals and is given by

κ(cik) = ∇d ·
(

m
|m|

)

ik

=
1
2h




r
i+ 1

2
ri

mr
i+ 1

2 ,k+ 1
2

+ mz
i+ 1

2 ,k+ 1
2

|mi+ 1
2 ,k+ 1

2
|

+

r
i+ 1

2
ri

mr
i+ 1

2 ,k− 1
2
−mz

i+ 1
2 ,k− 1

2

|mi+ 1
2 ,k− 1

2
|
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−
r

i− 1
2

ri
mr

i− 1
2 ,k+ 1

2
−mz

i− 1
2 ,k+ 1

2

|mi− 1
2 ,k+ 1

2
|

−
r

i− 1
2

ri
mr

i− 1
2 ,k− 1

2
+ mz

i− 1
2 ,k− 1

2

|mi− 1
2 ,k− 1

2
|


 .

The cell-centered normal is the average of the vertex nor-
mals,

∇dcik =
(
mi+ 1

2 ,k+ 1
2

+ mi+ 1
2 ,k− 1

2

+mi− 1
2 ,k+ 1

2
+ mi− 1

2 ,k− 1
2

)
/4.

Therefore, the discretization of the surface tension force
formulation F is

F(cik) = −6
√

2σε∇d ·
(

m
|m|

)

ik

|∇dcik|∇dcik.

Procedure 5. Project u∗ onto the space of dis-
cretely divergence-free vector fields and get the velocity
un+1, i.e., u∗ = un+1 + ∆t∇dφ, where φ satisfies
∆dφ = ∇d · u∗−un

∆t .

Procedure 6. Update the pressure field, pn+ 1
2 = pn− 1

2 +
φ. These steps complete one time step.

1. The Numerical Solution of the Axisymmetric
Cahn-Hilliard Equation

We use a nonlinear full approximation storage (FAS)
multigrid method [13–15] to solve the nonlinear discrete
system at the implicit time level. Let us rewrite Eqs.
(A1) and (A2) as follows:

NSO(cn+1, µn+ 1
2 ) = (φn, ψn),

where

NSO(cn+1, µn+ 1
2 )

=
(

cn+1

∆t
− 1

Pe
∇d · (M(c)n+ 1

2∇dµ
n+ 1

2 ),

µn+ 1
2 − 1

2
f(cn+1) +

ε2

2
∆dc

n+1

)
.

The source term is (φn, ψn) = ( cn

∆t + sn+ 1
2 , 1

2f(cn) −
ε2

2 ∆dc
n), where sn+ 1

2 = −(u · ∇dc)n+ 1
2 . We assume a

sequence of grids Ωl (Ωl−1 to be coarser than Ωl by a
factor of 2).

The FAS multigrid cycle

{cm+1
l , µ

m+ 1
2

l } = FAScycle(l, cn
l , cm

l , µ
m− 1

2
l ,

NSOl, φ
n
l , ψn

l , ν).

Step I. Presmoothing

Compute {c̄m
l , µ̄

m− 1
2

l } by applying ν smoothing

steps to {cm
l , µ

m− 1
2

l }

{c̄m
l , µ̄

m− 1
2

l } = SMOOTHν(cn
l , cm

l , µ
m− 1

2
l ,

NSOl, φ
n
l , ψn

l ).

One SMOOTH relaxation operator step consists of solv-
ing the system of Eqs. (A7) and (A8) given below by
using a 2 × 2 matrix inversion for each i and k. Let us
discretize Eq. (A1) to get a smooth operator:

cn+1
ik

∆t
+


ri+ 1

2
M

n+ 1
2

i+ 1
2 ,k

+ ri− 1
2
M

n+ 1
2

i− 1
2 ,k

rih2Pe

+
M

n+ 1
2

i,k+ 1
2

+ M
n+ 1

2
i,k− 1

2

h2Pe


 µ

n+ 1
2

ik

=
cn
ik

∆t
+ s

n+ 1
2

ik

+
ri+ 1

2
M

n+ 1
2

i+ 1
2 ,k

µ
n+ 1

2
i+1,k + ri− 1

2
M

n+ 1
2

i− 1
2 ,k

µ
n+ 1

2
i−1,k

rih2Pe

+
M

n+ 1
2

i,k+ 1
2
µ

n+ 1
2

i,k+1 + M
n+ 1

2
i,k− 1

2
µ

n+ 1
2

i,k−1

h2Pe
, (A5)

where M
n+ 1

2
i+ 1

2 ,k
= M((cn+1

ik +cn+1
i+1,k+cn

ik+cn
i+1,k)/4). Next,

let us discretize Eq. (A2). Since f(cn+1
ik ) is nonlinear

with respect to cn+1
ik , we linearize f(cn+1

ik ) at cm
ik, i.e.,

f(cn+1
ik ) ≈ f(cm

ik)+ df(cm
ik)

dc (cn+1
ik − cm

ik). After substitution
of this into Eq. (A2) and rearranging the terms, we get

−
(

df(cm
ik)

2dc
+

2ε2

h2

)
cn+1
ik + µ

n+ 1
2

ik

=
1
2
f(cn

ik)− ε2

2
∆dc

n
ik +

1
2
f(cm

ik) (A6)

−df(cm
ik)

2dc
cm
ik −

ε2

2

(
ri+ 1

2
cm
i+1,k + ri− 1

2
cn+1
i−1,k

rih2

+
cm
i,k+1 + cn+1

i,k−1

h2

)
.

Next, we replace cn+1
jl and µ

n+ 1
2

jl in Eqs. (A5) and

(A6) with c̄m
jl and µ̄

m− 1
2

jl if (j < i) or (j = i and l ≤ k),

otherwise, with cm
jl and µ

m− 1
2

jl , i.e.,
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c̄m
ik

∆t
+


ri+ 1

2
M

n+ 1
2

i+ 1
2 ,k

+ ri− 1
2
M

n+ 1
2

i− 1
2 ,k

rih2Pe

+
M

n+ 1
2

i,k+ 1
2

+ M
n+ 1

2
i,k− 1

2

h2Pe


 µ̄

m− 1
2

ik

=
cn
ik

∆t
+ s

n+ 1
2

ik

+
ri+ 1

2
M

n+ 1
2

i+ 1
2 ,k

µ
m− 1

2
i+1,k + ri− 1

2
M

n+ 1
2

i− 1
2 ,k

µ̄
m− 1

2
i−1,k

rih2Pe

+
M

n+ 1
2

i,k+ 1
2
µ

m− 1
2

i,k+1 + M
n+ 1

2
i,k− 1

2
µ̄

m− 1
2

i,k−1

h2Pe
, (A7)

−
(

df(cm
ik)

2dc
+

2ε2

h2

)
c̄m
ik + µ̄

m− 1
2

ik

=
1
2
f(cn

ik)− ε2

2
∆dc

n
ik +

1
2
f(cm

ik) (A8)

−df(cm
ik)

2dc
cm
ik −

ε2

2

(
ri+ 1

2
cm
i+1,k + ri− 1

2
c̄m
i−1,k

rih2

+
cm
i,k+1 + c̄m

i,k−1

h2

)
.

Step II. Compute the defect: (d̄1
m
l , d̄2

m
l ) = (φn

l , ψn
l )−

NSOl(c̄n
l , c̄m

l , µ̄
m− 1

2
l ).

• Restrict the defect and {c̄m
l , µ̄

m− 1
2

l }:

(d̄1
m
l−1, d̄2

m
l−1) = I l−1

l (d̄1
m
l , d̄2

m
l ),

(c̄m
l−1, µ̄

m− 1
2

l−1 ) = I l−1
l (c̄m

l , µ̄
m− 1

2
l ).

The restriction operator I l−1
l maps l-level functions to

(l − 1)-level functions:

cl−1(ri, zk) = I l−1
l cl(ri, zk)

=
1

4h2ri

∫ zk+1

zk−1

∫ ri+1

ri−1

c(r, z)rdrdz

= [ri− 1
2
(ci− 1

2 ,k− 1
2

+ ci− 1
2 ,k+ 1

2
)

+ri+ 1
2
(ci+ 1

2 ,k− 1
2

+ ci+ 1
2 ,k+ 1

2
)]/(4ri)

• Compute the right-hand side:

(φn
l−1, ψ

n
l−1) = (d̄1

m
l−1, d̄2

m
l−1)

+NSOl−1(c̄n
l−1, c̄

m
l−1, µ̄

m− 1
2

l−1 ).

• Compute an approximate solution {ĉm
l−1, µ̂

m− 1
2

l−1 } of the
coarse grid equation on Ωl−1, i.e.

NSOl−1(cn
l−1, c

m
l−1, µ

m− 1
2

l−1 ) = (φn
l−1, ψ

n
l−1). (A9)

If l = 1, we employ smoothing steps. If l > 1, we
solve Eq. (A9) by performing a FAS l-grid cycle using

{c̄m
l−1, µ̄

m− 1
2

l−1 } as an initial approximation:

{ĉm
l−1, µ̂

m− 1
2

l−1 } = FAScycle(l − 1, cn
l−1, c̄

m
l−1,

µ̄
m− 1

2
l−1 , NSOl−1, φ

n
l−1, ψ

n
l−1, ν).

• Compute the coarse grid correction (CGC):

v̂m
1l−1 = ĉm

l−1 − c̄m
l−1, v̂

m− 1
2

2l−1 = µ̂
m− 1

2
l−1 − µ̄

m− 1
2

l−1 .

• Interpolate the correction: v̂m
1l = I l

l−1v̂
m
1l−1, v̂

m− 1
2

2l =

I l
l−1v̂

m− 1
2

2l−1 . The interpolation operator I l
l−1 maps (l− 1)-

level functions to l-level functions. Then, the prolonga-
tion operator I l

l−1 from Ωl−1 to Ωl is defined by




vl(ri− 1
2
, zk− 1

2
)

vl(ri− 1
2
, zk+ 1

2
)

vl(ri+ 1
2
, zk− 1

2
)

vl(ri+ 1
2
, zk+ 1

2
)


 = vl−1(ri, zk)




ri

r
i− 1

2
ri

r
i− 1

2
ri

r
i+ 1

2
ri

r
i+ 1

2




.

• Compute the corrected approximation on Ωl:

cm, after CGC
l = c̄m

l + v̂1
m
l ,

µ
m− 1

2 , after CGC

l = µ̄
m− 1

2
l + v̂2

m− 1
2

l .

Step III. Postsmoothing: Compute {cm+1
l , µ

m+ 1
2

l }
by applying ν smoothing steps to cm, after CGC

l ,

µ
m− 1

2 , after CGC

l .

{cm+1
l , µ

m+ 1
2

l } = SMOOTHν(cn
l , cm, after CGC

l ,

µ
m− 1

2 , after CGC

l , NSOl, φ
n
l , ψn

l ).

This completes the description of a nonlinear FAScycle
for the axisymmetric Cahn-Hilliard equation.
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