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ABSTRACT. This paper presents the numerical valuation of the two-asset step-down equity-
linked securities (ELS) option by using the operator-splitting method (OSM). The ELS is one
of the most popular financial options. The value of ELS option can be modeled by a modified
Black-Scholes partial differential equation. However, regardless of whether there is a closed-
form solution, it is difficult and not efficient to evaluate the solution because such a solution
would be represented by multiple integrations. Thus, a fast and accurate numerical algorithm
is needed to value the price of the ELS option. This paper uses a finite difference method to
discretize the governing equation and applies the OSM to solve the resulting discrete equa-
tions. The OSM is very robust and accurate in evaluating finite difference discretizations. We
provide a detailed numerical algorithm and computational results showing the performance of
the method for two underlying asset option pricing problems such as cash-or-nothing and step-
down ELS. Final option value of two-asset step-down ELS is obtained by a weighted average
value using probability which is estimated by performing a MC simulation.

1. INTRODUCTION

Equity-linked securities (ELS) are securities whose return on investment is dependent on
the performance of the underlying equities linked to the securities. Since ELS were introduced
to Korea in 2003, the booming world economy and expanding financial markets have shifted
funds previously focused on real estate to new investment vehicles. The ELS option represents
one of the new investment vehicles in that they can be used to structure various products ac-
cording to the needs of investors. We can model the value of the ELS option by a modified
Black-Scholes partial differential equation (BSPDE) [1, 3, 10, 11, 12, 13]. Typically, there is
no closed-form solution, and even if there were such a solution, evaluating it would be difficult
because it would be represented by multiple integrations. Therefore, a fast and accurate numer-
ical algorithm is needed to price the ELS option. We use a finite difference method to discretize
the BSPDE and apply the operator-splitting method (OSM) [3, 5] to solve the resulting discrete
equations. The basic idea behind the OSM is to reduce multi-dimensional equations into mul-
tiple one-dimensional problems. The OSM is very robust and accurate in evaluating finite
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difference discretizations. The rest of the paper is organized as follows. Section 2 provides
a basic information and discuss the payoff of two-asset step-down ELS. Section 3 introduces
the Black-Scholes model with two underlying assets. Section 4 presents the finite difference
discretizations for the BSPDE and a numerical solution algorithm using the OSM. Section 5
presents the computational results showing the performance of the method for option pricing
problems with two underlying assets: cash-or-nothing and step-down ELS. Conclusions are
presented in Section 6.

2. TWO-ASSET STEP-DOWN ELS

The payoff of two-asset step-down ELS is as follows:

• Early obligatory redemption occurs and a given rate of return is paid if the value of
the worst performer is greater than or equal to the prescribed exercise price on the
given observation date. Here, Here the worst performer is defined as one of the two
underlying assets whose value is lower than that of the other.

• If early obligatory redemptions did not occur until the maturity time, then the return is
determined by the Knock-In criterion.

The basic parameters of two-asset step-down ELS are as follows:

- Maturity : T
- Face value : F
- Underlying assets at time t : x(t) and y(t)
- Worst performer : St = min [x(t), y(t)]
- Conditions for early redemption : Let N be the number of observation dates.

Observation date t1 t2 · · · tN = T
Exercise price K1 K2 · · · KN

Rate of return c1 c2 · · · cN

Case 1) Early obligatory redemptions happened
If the value of the worst performer Sti is greater than or equal to the exercise price

Ki at time t = ti, then (1 + ci)F is paid, and the contract expires.

Case 2) Early obligatory redemptions did not happen
Let D denote the Knock-In barrier level and d denote a dummy.

(i) If a Knock-in event does not occur, that is, mT = min {St| 0 ≤ t ≤ T} > D, then
(1 + d)F is paid.

(ii) If a Knock-in event occurs, (1 + ST /S0)F is paid.

We now summarize the payoff function. Let χi = χAi , where χi denotes the characteristic
function of Ai = {x ≥ Ki and y ≥ Ki}. Here Ki is the exercise price at time ti. Let u(x, y, t)
denote the value of the option. Generally, the payoff function of two-asset step-down ELS is
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constructed as follows:

u (x, y, ti) =





χ1 = 1 Payoff = (1 + c1)F

χ1 = 0





χ2 = 1 Payoff = (1 + c2)F

χ2 = 0





χ3 = 1 Payoff = (1 + c3)F

χ3 = 0





χ4 = 1 Payoff = (1 + c4)F

χ4 = 0





mT > D, then
Payoff = (1 + d)F

mT ≤ D, then
Payoff = (1 + ST /S0)F

In this paper, we chose the following parameters: the reference price K0 = 100, the interest
rate r = 5%, the volatilities of the underlying assets σ1 = 25%, σ2 = 30%, the total time
T = 1 year, the face price F = 100, the Knock-In barrier level D = 0.6K0, and the dummy
rate d = 16%. The other parameters are listed in Table 1. Figure 1 shows the profit-and-loss
diagram of two-asset step-down ELS.

Worst
performer

60% 75% 80% 85% 90%

Profit & Loss

−100%

−40%
−25%

0%

5.5%

11%

16%
16.5%

22%

Starting
index level

(1) After 3 months

(2) After 6 months

(3) After 9 months

(4) At maturity

(6) Knock-In event occurs

(5) Knock-In event does not occur

FIGURE 1. Profit-and-loss diagram at early redemption and maturity for two-
asset step-down ELS.
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Observation date t1 t2 t3 t4 = T
Exercise price K1 = 0.90K0 K2 = 0.85K0 K3 = 0.80K0 K4 = 0.75K0

Return rate c1 = 5.5% c2 = 11% c3 = 16.5% c4 = 22%

TABLE 1. Parameters of two-asset step-down ELS.

3. THE BLACK-SCHOLES MODEL WITH TWO UNDERLYING ASSETS

In the Black-Scholes model [2], the underlying assets x and y satisfy the following stochastic
differential equations:

dx(t) = µ1x(t)dt+ σ1x(t)dW1,

dy(t) = µ2y(t)dt+ σ2y(t)dW2,

where µ1 and µ2 are the instantaneous expected rates of return, σ1 and σ2 are the constant
volatilities, and W1(t) and W2(t) are the standard Brownian motions of assets x and y, respec-
tively. The terms dW1 and dW2 contain randomness which is a key feature of asset prices and
assumed to be a Wiener process. The Wiener processes are correlated by 〈 dW1dW2 〉 = ρdt,
where ρ is the correlation value between the two Wiener processes. An increase in ρ results
in asymmetry in the distribution of W1(t) and W2(t). Then by the Itô lemma and the non-
arbitrage principle, the two-dimensional Black-Scholes partial differential equation is

∂u(x, y, t)

∂t
= −1

2
σ2
1x

2∂
2u(x, y, t)

∂x2
− 1

2
σ2
2y

2∂
2u(x, y, t)

∂y2
− ρσ1σ2xy

∂2u(x, y, t)

∂x∂y

−rx
∂u(x, y, t)

∂x
− ry

∂u(x, y, t)

∂y
+ ru(x, y, t), (3.1)

u(x, y, T ) = Φ(x, y),

where r > 0 is a constant as risk-free interest rate and Φ(x, y) is a payoff function.

4. NUMERICAL SOLUTION

In this section, we describe the numerical discretization of Eq. (3.1). We also present the
operator-splitting algorithm in detail.

4.1. Discretization. Let LBS be the operator

LBS =
1

2
σ2
1x

2∂
2u

∂x2
+

1

2
σ2
2y

2∂
2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru.

Then the two-dimensional Black-Scholes equation can be rewritten as
∂u

∂τ
= LBS , for (x, y, τ) ∈ Ω× (0, T ],

where τ = T − t and T is the expiration time. The original option pricing problems are defined
in the unbounded domain {(x, y, τ) | x ≥ 0, y ≥ 0, τ ∈ [0, T ]}. We truncate this domain into
a finite computational domain {(x, y, τ) | 0 ≤ x ≤ L, 0 ≤ y ≤ M, τ ∈ [0, T ]}, where L and
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M are large enough so that the error of the price u arisen by the truncation is negligible. For
example, L and M can be two or three times greater than the exercise price [6]. We have the
linear boundary conditions [8, 9, 11, 14] for the artificial boundaries

∂2

∂x2
u(0, y, τ) =

∂2

∂x2
u(L, y, τ) =

∂2

∂y2
u(x, 0, τ) =

∂2

∂y2
u(x,M, τ) = 0,

for 0 ≤ x ≤ L, 0 ≤ y ≤ M and 0 ≤ τ ≤ T.

The numbers of grid steps are denoted by Nx, Ny, and Nτ in the x-, y- and τ -directions,
respectively. We first discretize the given computational domain Ω = (0, L) × (0,M) as a
uniform grid with a space step h = L/Nx = M/Ny and a time step ∆τ = T/Nτ . Denote the
numerical approximation of the solution by

unij ≡ u(xi, yj , τ
n) = u ((i− 0.5)h, (j − 0.5)h, n∆τ) ,

where i = 1, . . . , Nx, j = 1, . . . , Ny and n = 0, . . . , Nτ . We use a cell-centered discretization
because we use the following linear boundary condition:

u0j = 2u1j − u2j , uNx+1,j = 2uNx,j − uNx−1,j for j = 1, · · · , Ny,

ui0 = 2ui1 − ui2, ui,Ny+1 = 2ui,Ny − ui,Ny−1 for i = 1, · · · , Nx.

4.2. Operator-splitting method. The basic idea behind the operator-splitting method is to re-
duce multi-dimensional equations into multiple one-dimensional problems [3, 5]. We introduce
the basic OS scheme for the two-dimensional Black-Scholes equation as follows:

un+1
ij − unij

∆τ
= Lx

BSu
n+ 1

2
ij + Ly

BSu
n+1
ij , (4.1)

where the discrete difference operators Lx
BS and Ly

BS are defined by

Lx
BSu

n+ 1
2

ij =
(σ1xi)

2

2

u
n+ 1

2
i−1,j − 2u

n+ 1
2

ij + u
n+ 1

2
i+1,j

h2

+λ1σ1σ2ρxiyj
uni+1,j+1 + unij − uni,j+1 − uni+1,j

h2

+rxi
u
n+ 1

2
i+1,j − u

n+ 1
2

ij

h
− λ2ru

n+ 1
2

ij ,

Ly
BSu

n+1
ij =

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2

+(1− λ1)σ1σ2ρxiyj
u
n+ 1

2
i+1,j+1 + u

n+ 1
2

ij − u
n+ 1

2
i,j+1 − u

n+ 1
2

i+1,j

h2

+ryj
un+1
i,j+1 − un+1

ij

h
− (1− λ2)ru

n+1
ij .
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The first step is implicit in the x-direction, whereas the second step is implicit in the y-direction.
The OS scheme moves from the time level n to an intermediate time level n + 1

2 and then to
the time level n + 1. Through this process, the OS method is to split two problems. We then
approximate each subproblem by an implicit scheme:

u
n+ 1

2
ij − unij

∆τ
= Lx

BSu
n+ 1

2
ij , (4.2)

un+1
ij − u

n+ 1
2

ij

∆τ
= Ly

BSu
n+1
ij . (4.3)

Note that combining two Eqs. (4.2) and (4.3) results in Eq. (4.1). The following describes an
algorithm of the OS method.
Algorithm OS

• Step 1
Eq. (4.2) is rewritten as follows. For each j, we have

αiu
n+ 1

2
i−1j + βiu

n+ 1
2

ij + γiu
n+ 1

2
i+1j = fij , (4.4)

where

αi = −1

2

σ2
1x

2
i

h2
, βi =

1

∆τ
+

σ2
1x

2
i

h2
+

rxi
h

+ λ2r,

γi = −1

2

σ2
1x

2
i

h2
− rxi

h
, for i = 1, ..., Nx

and

fij = λ1ρσ1σ2xiyj
uni+1,j+1 − uni+1,j − uni,j+1 + unij

h2
+

unij
∆τ

. (4.5)

The first step of the OS method is then implemented in a loop over the y-direction:

for j = 1 : Ny

for i = 1 : Nx

Set fij by Eq. (4.5)
end

Solve Axu
n+ 1

2
1:Nx,j

= f1:Nx,j by using Thomas algorithm (see Fig. 2(a))

end



AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION 181

Here the matrix Ax is a tridiagonal matrix constructed from Eq. (4.4) with a linear
boundary condition

Ax =




2α1 + β1 γ1 − α1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . . . . . . . .

...
0 0 0 . . . βNx−1 γNx−1

0 0 0 . . . αNx − γNx βNx + 2γNx




.

· · ·

· · ·

· · ·

· · ·

· · ·

u
1j

u
2j

u
Nxj

(a) Step 1

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

u
i1

u
i2

u
iNy

(b) Step 2

FIGURE 2. Two steps of the OSM.

• Step 2

As in Step 1, Eq. (4.3) is rewritten as follows:

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij , (4.6)

where

αj = −1

2

σ2
2y

2
j

h2
, βj =

1

∆τ
+

σ2
2y

2
j

h2
+

ryj
h

+ (1− λ2)r,

γj = −1

2

σ2
2y

2
j

h2
− ryj

h
, for j = 1, ..., Ny

and

gij = (1− λ1)ρσ1σ2xiyj
u
n+ 1

2
i+1,j+1 − u

n+ 1
2

i+1,j − u
n+ 1

2
i,j+1 + u

n+ 1
2

ij

h2
+

u
n+ 1

2
ij

∆τ
. (4.7)

As with Step 1, Step 2 is then implemented in a loop over the x-direction:
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for i = 1 : Nx

for j = 1 : Ny

Set gij by Eq. (4.7)
end
Solve Ayu

n+1
i,1:Ny

= gi,1:Ny by using Thomas algorithm (see Fig. 2(b))

end

Here Ay is tridiagonal matrix constructed from Eq. (4.6) with a linear boundary condition

Ay =




2α1 + β1 −α1 + γ1 0 . . . 0 0
α2 β2 γ2 . . . 0 0
0 α3 β3 . . . 0 0
...

...
. . . . . . . . .

...
0 0 0 . . . βNy−1 γNy−1

0 0 0 . . . αNy − γNy βNy + 2γNy




.

5. COMPUTATIONAL RESULTS

This section presents the convergence test (which determined the accuracy of the OS method)
and the numerical experiments for two-asset step-down ELS.

5.1. Convergence test. Since the two-asset cash-or-nothing option can be useful building
block for constructing more complex and exotic option products, consider the European two-
asset cash-or-nothing call option [4]. Given two stock prices x and y, the payoff of the call
option is

u(x, y, 0) =

{
Cash if x ≥ K1 and y ≥ K2,
0 otherwise, (5.1)

where K1 and K2 are the strike prices of x and y, respectively. The formula for the exact value
of the cash-or-nothing option is known [4]. To estimate the convergence rate, we performed
numerical simulations with a set of increasingly finer grids up to T = 1. We considered a
computational domain, Ω = [0, 300] × [0, 300]. The initial condition was Eq. (5.1) with the
strike prices K1 = K2 = 100 and Cash = 1. The volatilities were σ1 = 0.25, σ2 = 0.3,
the correlation was ρ = 0.5, and the risk-free interest rate was r = 0.05. Also, the weighting
factors were λ1 = λ2 = 0.5. The error of the numerical solution was defined as eij = ueij−uij
for i = 1, · · · , Nx and j = 1, · · · , Ny, where ueij is the exact solution and uij is the numerical
solution. We computed discrete l2 norm of the error, ‖e‖2. We also used the root mean square
error (RMSE). The RMSE was defined as

RMSE =

√√√√ 1

N

N∑

i,j

(
ueij − uij

)2
,
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where N is the number of points on the gray region in Fig. 3.

y

xX10.9X1 1.1X1

X2

0.9X2

1.1X2

FIGURE 3. The gray region is part where the RMSE is estimated.

Table 2 shows the discrete l2 norms of the errors in a quarter of the domain, [0, 150] ×
[0, 150], the RMSE which is estimated in the gray region shown in Fig. 3 and the rates of
convergence for ‖e‖2 and RMSE. The results suggest that the scheme has first-order accuracy
and the RMSE has second-order accuracy in space and time.

Mesh h ∆t ‖e‖2 order RMSE order
128× 128 2.3437 0.1000 0.005344 0.000177
256× 256 1.1719 0.0500 0.002716 0.9764 0.000053 1.7397
512× 512 0.5859 0.0250 0.001335 1.0246 0.000011 2.2685
1024× 1024 0.2930 0.0125 0.000679 0.9754 0.000003 1.8745

TABLE 2. Convergence test.

5.2. Numerical test of a two-asset step-down ELS. Let u and v be the solutions with payoffs
which knock-in event happens and does not happen, respectively. Fig. 4(a) and (b) show the
initial configurations of u and v, respectively.

And Fig. 5(a) and (b) show the final profiles of u and v, respectively, at T = 1 with
Nx = Ny = 100, K0 = 100, L = 300, and the parameters listed in Table. 1.

The final two-asset step-down ELS price is obtained by a weighted average of u and v by
each probability. By performing a Monte Carlo (MC) simulation [7] for 20000 samples, we
estimated that a knock-in event occurs with a probability of approximately 0.1. Therefore,
we defined the final ELS value as 0.1u + 0.9v. Fig. 6 (a) shows the weighted average value
0.1u+ 0.9v, and (b) shows the overlapped contour lines of the weighted average values.
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FIGURE 4. Initial conditions for u and v, respectively.
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FIGURE 5. Numerical results for u and v, respectively, at T = 1.
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FIGURE 6. (a) The weighted average value 0.1u + 0.9v at T = 1. (b) The
contour lines of the weighted average values.
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Usually, the position of current underlying assets does not coincide with the numerical grid
points. Therefore, we needed to use an interpolation method. As shown in Fig. 7, we obtained
the numerical values at the specific point X by using the bilinear interpolation.

A B

CD

E

F

X

α 1 − α

β

1 − β

E = (1− α)A+ αB

F = (1− α)D + αC

∴ X = (1− β)F + βE

FIGURE 7. A diagram of the bilinear interpolation: the specific value X is
obtained from the numerical solutions A,B,C, and D near the specific point
X by the bilinear interpolation.

Table 3 shows the results for two-asset step-down ELS obtained using the OSM at the point
(100, 100) with different meshes and time steps.

Mesh Nt v(100, 100) u(100, 100) Weighted average 0.1u+ 0.9v
300× 300 365 103.041093 101.306561 102.867640
600× 600 730 103.028876 101.359551 102.861944

1200× 1200 1460 103.007394 101.369623 102.843617
2400× 2400 2920 102.987068 101.361671 102.824528

TABLE 3. Two-asset step-down ELS prices u, v, and the weighted average
value 0.1u+0.9v obtained using the OSM at the point (100, 100) with different
meshes and time steps.

Fig. 8 shows the two-asset step-down ELS price at position (x, y) = (100, 100) obtained
using the OSM and the MC simulation. The solid line is the result obtained using the OSM
with a 2400 × 2400 mesh. The symbol lines are the results from three trial MC simulations
with an increasing number of samples. Generally, MC simulations in computational finance are
easy to apply than the FDM. Because results obtained using the MC simulation are affected by
the distribution of random numbers, the accuracy of MC simulation can be guaranteed through
many trials.

6. CONCLUSIONS

In this paper, we presented a numerical algorithm for the two-asset step-down ELS option
by using the OSM. We modeled the value of ELS option by using a modified Black-Scholes
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FIGURE 8. Two-asset step-down ELS price obtained using the OSM and the
Monte-Carlo simulation versus the number of simulations.

partial differential equation. A finite difference method was used to discretize the governing
equation, and the OSM was applied to solve the resulting discrete equations. We provided a
detailed numerical algorithm and computational results demonstrating the performance of the
method for two underlying asset option pricing problems such as cash-or-nothing and step-
down ELS. In addition, we applied a weighted average value with a probability obtained using
the MC simulation to obtain the option value of two-asset step-down ELS.
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