Bessel Equation of Order One-Half

• The Bessel Equation of order one-half is

$$x^{2}y'' + xy' + \left(x^{2} - \frac{1}{4}\right)y = 0$$

We assume solutions have the form

$$y(x) = \phi(r, x) = \sum_{n=0}^{\infty} a_n x^{r+n}$$
, for $a_0 \neq 0$, $x > 0$

Substituting these into the differential equation, we obtain

$$\sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n} + \sum_{n=0}^{\infty} a_n (r+n)x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} - \frac{1}{4} \sum_{n=0}^{\infty} a_n x^{r+n} = 0$$

Recurrence Relation

· Using results of previous slide, we obtain

$$\sum_{n=0}^{\infty} \left[(r+n)(r+n-1) + (r+n) - \frac{1}{4} \right] a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0$$

or

$$\left(r^{2} - \frac{1}{4}\right)a_{0}x^{r} + \left[(r+1)^{2} - \frac{1}{4}\right]a_{1}x^{r+1} + \sum_{n=2}^{\infty} \left\{ \left[(r+n)^{2} - \frac{1}{4}\right]a_{n} + a_{n-2}\right\}x^{r+n} = 0$$

- The roots of indicial equation are $r_1 = 1/2$, $r_2 = -1/2$, and note that they differ by a positive integer.
- The recurrence relation is

$$a_n(r) = -\frac{a_{n-2}(r)}{(r+n)^2 - 1/4}, \quad n = 2, 3, \dots$$

First Solution: Coefficients

• Consider first the case $r_1 = 1/2$. From the previous slide,

$$\left(r^2 - 1/4\right) a_0 x^r + \left[(r+1)^2 - \frac{1}{4} \right] a_1 x^{r+1} + \sum_{n=2}^{\infty} \left\{ \left[(r+n)^2 - \frac{1}{4} \right] a_n + a_{n-2} \right\} x^{r+n} = 0$$

• Since $r_1 = 1/2$, $a_1 = 0$, and hence from the recurrence relation, $a_1 = a_3 = a_5 = ... = 0$.

For the even coefficients, we have

$$a_{2m} = -\frac{a_{2m-2}}{(1/2 + 2m)^2 - 1/4} = -\frac{a_{2m-2}}{2m(2m+1)}, m = 1, 2, ...$$

• It follows that $a_2 = -\frac{a_0}{3!}$, $a_4 = -\frac{a_2}{5 \cdot 4} = \frac{a_0}{5!}$,... and

$$a_{2m} = \frac{(-1)^m a_0}{(2m+1)!}, m=1,2,...$$

Bessel Function of First Kind, Order One-

$$y_1(x) = x^{1/2} \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m}{(2m+1)!} x^{2m} \right], \quad x > 0$$

$$= x^{-1/2} \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} x^{2m+1} \right], \quad x > 0$$

$$= x^{-1/2} \sin x, \quad x > 0$$

• The Bessel function of the first kind of order one-half, $J_{1/2}$, is defined as

$$J_{1/2}(x) = \left(\frac{2}{\pi}\right)^{1/2} y_1(x) = \left(\frac{2}{\pi x}\right)^{1/2} \sin x, \ x > 0$$

Second Solution: Even Coefficients

$$\left(r^2 - 1/4\right) a_0 x^r + \left[(r+1)^2 - \frac{1}{4} \right] a_1 x^{r+1} + \sum_{n=2}^{\infty} \left\{ \left[(r+n)^2 - \frac{1}{4} \right] a_n + a_{n-2} \right\} x^{r+n} = 0$$

• Since $r_2 = -1/2$, $a_1 =$ arbitrary. For the even coefficients,

$$a_{2m} = -\frac{a_{2m-2}}{(-1/2 + 2m)^2 - 1/4} = -\frac{a_{2m-2}}{2m(2m-1)}, m = 1, 2, ...$$

It follows that

$$a_2 = -\frac{a_0}{2!}, \ a_4 = -\frac{a_2}{4 \cdot 3} = \frac{a_0}{4!}, \dots$$

and

$$a_{2m} = \frac{(-1)^m a_0}{(2m)!}, m = 1, 2, \dots$$

Second Solution: Odd Coefficients

· For the odd coefficients,

$$a_{2m+1} = -\frac{a_{2m-1}}{(-1/2 + 2m + 1)^2 - 1/4} = -\frac{a_{2m-1}}{2m(2m+1)}, m = 1, 2, ...$$

It follows that

and
$$a_3 = -\frac{a_1}{3!}, a_5 = -\frac{a_3}{5 \cdot 4} = \frac{a_1}{5!}, \dots$$

$$a_{2m+1} = \frac{(-1)^m a_1}{(2m+1)!}, m = 1, 2, \dots$$

Second Solution

Therefore

$$y_2(x) = x^{-1/2} \left[a_0 \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{(2m)!} + a_1 \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{(2m+1)!} \right], \quad x > 0$$

$$= x^{-1/2} \left[a_0 \cos x + a_1 \sin x \right], \quad x > 0$$

The second solution is usually taken to be the function

$$J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \cos x, \ x > 0$$

where $a_0 = (2/\pi)^{1/2}$ and $a_1 = 0$.

 The general solution of Bessel's equation of order onehalf is

$$y(x) = c_1 J_{1/2}(x) + c_2 J_{-1/2}(x)$$

Graphs of Bessel Functions, Order One-Half

- Graphs of $J_{1/2}$, $J_{-1/2}$ are given below.
- Note behavior of $J_{1/2}$, $J_{-1/2}$ similar to J_0 , Y_0 for large x, with phase shift of $\pi/4$.

$$J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \cos x, \qquad J_{1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \sin x$$

$$J_0(x) \cong \left(\frac{2}{\pi x}\right)^{1/2} \cos\left(x - \frac{\pi}{4}\right), \quad Y_0(x) \cong \left(\frac{2}{\pi x}\right)^{1/2} \sin\left(x - \frac{\pi}{4}\right), \text{ as } x \to \infty$$

J1 = besselj(1/2,x);

J2 = besselj(-1/2,x);

xlabel('x','fontsize',30)

axis([0 10 -0.5 1.5])

set(gca,'fontsize',30)

grid on;

box on

plot(x,J1,'r-','LineWidth',2);

plot(x,J2,'b-','LineWidth',2);

MATLAB Code

Bessel Equation of Order One

The Bessel Equation of order one is

$$x^{2}y'' + xy' + (x^{2} - 1)y = 0$$

We assume solutions have the form

$$y(x) = \phi(r, x) = \sum_{n=0}^{\infty} a_n x^{r+n}$$
, for $a_0 \neq 0$, $x > 0$

Substituting these into the differential equation, we obtain

$$\sum_{n=0}^{\infty} a_n (r+n)(r+n-1)x^{r+n} + \sum_{n=0}^{\infty} a_n (r+n)x^{r+n}$$
$$+ \sum_{n=0}^{\infty} a_n x^{r+n+2} - \sum_{n=0}^{\infty} a_n x^{r+n} = 0$$

Recurrence Relation

Using the results of the previous slide, we obtain

$$\sum_{n=0}^{\infty} \left[(r+n)(r+n-1) + (r+n) - 1 \right] a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0$$

or

$$(r^{2}-1)a_{0}x^{r} + [(r+1)^{2}-1]a_{1}x^{r+1} + \sum_{n=2}^{\infty} \{[(r+n)^{2}-1]a_{n} + a_{n-2}\}x^{r+n} = 0$$

- The roots of indicial equation are $r_1 = 1$, $r_2 = -1$, and note that they differ by a positive integer.
- The recurrence relation is

$$a_n(r) = -\frac{a_{n-2}(r)}{(r+n)^2 - 1}, \quad n = 2, 3, \dots$$

First Solution: Coefficients

• Consider first the case $r_1 = 1$. From previous slide,

$$(r^{2}-1)a_{0}x^{r} + [(r+1)^{2}-1]a_{1}x^{r+1} + \sum_{n=2}^{\infty} \{[(r+n)^{2}-1]a_{n} + a_{n-2}\}x^{r+n} = 0$$

• Since $r_1 = 1$, $a_1 = 0$, and hence from the recurrence relation, $a_1 = a_3 = a_5 = ... = 0$. For the even coefficients, we have

$$a_{2m} = -\frac{a_{2m-2}}{(1+2m)^2-1} = -\frac{a_{2m-2}}{2^2(m+1)m}, m = 1, 2, ...$$

It follows that

$$a_2 = -\frac{a_0}{2^2 \cdot 2 \cdot 1}, \ a_4 = -\frac{a_2}{2^2 \cdot 3 \cdot 2} = \frac{a_0}{2^4 \cdot 3! \cdot 2!}, \dots$$

and

$$a_{2m} = \frac{(-1)^m a_0}{2^{2m} (m+1)! m!}, m = 1, 2, \dots$$

Bessel Function of First Kind, Order One

$$y_1(x) = a_0 x \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m}{2^{2m} (m+1)! m!} x^{2m} \right], \quad x > 0$$

• Taking $a_0 = 1/2$, the **Bessel function of the first kind of order one**, J_1 , is defined as

$$J_1(x) = \frac{x}{2} \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{2^{2m} (m+1)! m!} x^{2m} \right], \quad x > 0$$

• The series converges for all x and hence J_1 is analytic everywhere.

Second Solution

• For the case $r_1 = -1$, a solution of the form

$$y_2(x) = a J_1(x) \ln x + x^{-1} \left[1 + \sum_{n=1}^{\infty} c_n x^{2n} \right], \quad x > 0$$

is guaranteed by Theorem 5.7.1.

• The coefficients c_n are determined by substituting y_2 into the ODE and obtaining a recurrence relation, etc. The result is:

$$y_2(x) = -J_1(x) \ln x + x^{-1} \left[1 - \sum_{m=1}^{\infty} \frac{(-1)^m (H_m + H_{m-1})}{2^{2m} m! (m-1)!} x^{2n} \right], \quad x > 0$$

where H_k is as defined previously.

• Note that $J_1 \rightarrow 0$ as $x \rightarrow 0$ and is analytic at x = 0, while y_2 is unbounded at x = 0 in the same manner as 1/x.

Bessel Function of Second Kind, order of

$$Y_1(x) = \frac{2}{\pi} \left[-y_2(x) + (\gamma - \ln 2) J_1(x) \right], \quad x > 0$$

where γ is the Euler-Mascheroni constant.

The general solution of Bessel's equation of order one is

$$y(x) = c_1 J_1(x) + c_2 Y_1(x), x > 0$$

• Note that J_1 , Y_1 have same behavior at x = 0 as observed on previous slide for J_1 and J_2 .

