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Abstract A scaffold is a three-dimensional matrix that
provides a structural base to fill tissue lesion and provides
cells with a suitable environment for proliferation and dif-
ferentiation. Cell-seeded scaffolds can be implanted imme-
diately or be cultured in vitro for a period of time before
implantation. To obtain uniform cell growth throughout the
entire volume of the scaffolds, an optimal strategy on cell
seeding into scaffolds is important. We propose an efficient
and accurate numerical scheme for a mathematical model to
predict the growth and distribution of cells in scaffolds. The
proposed numerical algorithm is a hybrid method which uses
both finite difference approximations and analytic closed-
form solutions. The effects of each parameter in the math-
ematical model are numerically investigated. Moreover, we
propose an optimization algorithm which finds the best set of
model parameters that minimize a discrete l2 error between
numerical and experimental data. Using the mathematical
model and its efficient and accurate numerical simulations,
we could interpret experimental results and identify domi-
nating mechanisms.

Keywords Scaffolds · Numerical simulation · Multigrid ·
Cell growth · Cell mobility

1 Introduction

Tissue engineering covers a broad field that applies the princi-
ples of engineering and life sciences to develop the biological
substitutes for restoring, maintaining or improving tissue or
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organ functions (Yang et al. 2001a; Nerem and Sambanis
1995; Skalak and Fox 1988; Lanza et al. 2000). One of
the principle methods behind tissue engineering involves
growing the relevant cells in vitro into the required three-
dimensional organ or tissue. Three-dimensional tissues can
be achieved by seeding the cells onto porous matrices, known
as scaffolds, to which the cells attach and colonize for pro-
liferation and differentiation within a suitable environment
(Langer and Vacanti 1993; Hori et al. 2004). Therefore, scaf-
folds of different shapes, structure, and materials have been
realized and studied (Eisenbarth 2007; Patel and Fisher 2008;
Flaibani et al. 2010).

In designing scaffolds for tissue regeneration, special
characteristics such as biological and mechanical require-
ments should be considered. The designed scaffold must
facilitate cell attachment, growth of tissue, and the transport
of nutrients and it must provide structural support of tissue
regeneration (Fang et al. 2005). The methods for investi-
gating mechanical properties of porous scaffolds were pri-
marily based on using experimental approaches (Hing et al.
1999; Bose et al. 2002) and the finite element numerical anal-
ysis (Beaupr and Hayes 1985; Williams and Lewis 1982;
Cahill et al. 2009). Moreover, a computer-aided characteris-
tic approach was presented by Fang et al. (2005) and Flaibani
et al. (2010). A fully three-dimensional structural approach
was used for computer simulation of tissue differentiation
(Nishimura et al. 2003). And another fully three-dimensional
approach to bone regeneration in scaffolds was developed
using porosity, Young’s modulus, and dissolution rate of scaf-
folds (Byrne et al. 2007).

In constructing scaffolds, efficient cell seeding process
primarily influences the overall performance of the resul-
tant tissue-engineered constructs (Li et al. 2001; Yang et al.
2001b). Since mathematical models for cell growth in scaf-
folds are useful in vitro tools for interpreting experimental
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results, identifying the dominating mechanisms, and under-
standing the biological phenomena (Galban and Locke
1999), we need to set up mathematical models and design
their accurate numerical methods to systematically investi-
gate optimal seeding strategies.

For the individual cell growth, using a multiphase porous
mixture theory for each component of the tissue, a mathemat-
ical model has been developed (Lemon et al. 2006). For the
collective behavior of a large number of cells, cellular auto-
mata techniques were used (Longo et al. 2004; Ermentrout
and Edelstein-Keshet 1993). Moreover, the evolution of cell
density depending on spatial and temporal grids was math-
ematically modeled by a reaction–diffusion system (Murray
2002). Malda et al. (2004) developed a mathematical model
for oxygen gradient calculations in a three-dimensional poly-
meric scaffold and compared simulation results with exper-
imental data. Pisu et al. (2004) took into account suitable
population balances to describe nutrients and cell density
with respect to time and space. Considering the nutrients as
oxygen, Obradovic et al. (2000) demonstrated development
of spatial tissue heterogeneities in scaffolds for cell densities.
However, interaction between nutrients and cell distributions
for spatial and temporal predictions has comparably studied
little, it needs to be studied more experimentally and mathe-
matically (Lewis et al. 2005).

In this paper, we focus on a mathematical model consider-
ing nutrient diffusion and cell proliferation inside scaffolds.
This mathematical model has been developed and simu-
lated (Landman and Cai 2007; Dunn et al. 2006; Lewis
et al. 2005). Lewis et al. (2005) developed a mathematical
model in one-dimensional coordinate system and the pre-
dictions were compared with experimental data of Malda
et al. (2004). In Dunn et al. (2006), using experimental mea-
surements, in vitro cell growth in three-dimensional scaf-
folds was simulated with the initial cell seedings such as
all seeding and alternating seeding. The cell density pro-
file from experimental data was generally in good agreement
with simulation of cell growth based on the mathematical
model. However, there was some discrepancy between the
numerical simulation results and experiment data of cell dis-
tribution in the scaffolds. To overcome this, we shall con-
sider cell migration in our model which was suggested in
Dunn et al. (2006) for the possible discrepancy. Moreover,
we shall keep the time evolution for the nutrient concentra-
tion whereas a quasi-steady state was assumed in Dunn et al.
(2006).

Our primary aim of this paper is to develop an efficient
and accurate numerical scheme to find optimal model param-
eters to match simulation results with experimental data in
cell growth in scaffolds. The paper is organized as follows.
The governing equations are presented in Sect. 2. We propose
a hybrid numerical method in Sect. 3. In Sect. 4, we pres-
ent several numerical results in order to investigate effects

of each model parameter. Finally, conclusions are derived in
Sect. 5.

2 Governing equations

In this section, we derive a cell growth equation and a nutrient
concentration equation in a scaffold. Let U (x, t) and C(x, t)
be the cell density [cell/mL] and the nutrient concentration
[mole/mL] in scaffolds, respectively. Here, the space coor-
dinate x = (x, y, z) is in domain � = (0, Lx ) × (0, L y) ×
(0, Lz) and t denotes time.

The growth of cells in scaffolds can be modeled using a
modified logistic growth law (Lewis et al. 2005). The cell
growth rate depends on the cell density U and also on the
nutrient concentration C . The cell grows until the cell den-
sity reaches the carrying capacity Umax [cell/mL]. We assume
that cell migration is a random process and its dynamics is
modeled by a diffusion term with the cell mobility M[cm2/s].
Therefore, the cell growth equation is given by

∂U (x, t)

∂t
= M�U (x, t)+λC(x, t)U (x, t)

(
1− U (x, t)

Umax

)
,

(1)

where λ is the kinetic constant for the specific rate of cell
growth [mL/(s mole)].

The nutrient concentration follows the diffusion equation
(Galban and Locke 1997; Lewis et al. 2005) with a constant
diffusion coefficient. The nutrient concentration diffuses
across the scaffold with a diffusion coefficient D[cm2/s]
and is consumed by cells with the specific consumption rate
of the nutrient V [mL/(s cell)]. The nutrient concentration
equation is given by

∂C(x, t)

∂t
= D�C(x, t) − V C(x, t)U (x, t). (2)

The governing equations are an extension of the previous
model by Dunn et al. (2006). The difference is that we include
diffusion term in the cell growth equation to investigate the
effect of cell mobility. We note that we do not consider the
cell death in this modeling approach.

The approximated parameter values are as follows: The
diffusion coefficient for the nutrient concentration is
D = 2 × 10−5 cm2/s, the dissolved nutrient concentration
in the bulk fluid is C0 = 102 nmole/mL, the consumption
rate is V = 10−8 mL/(s cell), and the maximal cell density
is Umax = 107 cells/mL. In the experiment, each scaffold
was seeded with 1 × 105 MC3T3 cells in 100 µL of α-mini-
mum essential medium. For more details about experimental
scaffold fabrication, processing of histology, cell culture, and
tissue culture system, see Dunn et al. (2006).

Now, we introduce dimensionless variables C ′ = C/C0,

U ′ = U/Umax, M ′ = M/M0, x ′ = x/L , y′ = y/L ,
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Fig. 1 Shaded region is the computational domain with the axisym-
metric system

(Cn n)

Ct = K C (multigrid method)

(C∗ n)

Ct = −RCU (analytic solution)

(Cn+1 n)

Ut = M U (multigrid method)

(Cn+1,U∗)

Ut = CU(1 − U) (analytic solution)

(Cn+1,U n+1)

,U

,U

,U

Fig. 2 A hybrid numerical method

z′ = z/L , and t ′ = t/T , where L = √
D/(V Um), T =

1/(λC0), and M0 = L2/T . In typical cells, the growth rate
λC0 is 1/day. Thus, T = one day. With these values, a charac-
teristic length scale L is 140 μm and M0 = 2.3×10−9 cm2/s.

Then, Eq. (2) is replaced by nondimensional variables.

C0∂C ′

T ∂t ′
= DC0

L2 �′C ′ − C0UmaxV C ′U ′.

After canceling out and changing variables, we obtain

∂C ′

∂t ′
= K�′C ′ − RC ′U ′, (3)

where two nondimensional values are defined as K =
T D/L2 and R = T V Umax. Also, we have the following
equation for the cell growth.

Umax

T

∂U ′

∂t ′
= λC ′C0U ′Umax

(
1 − UmaxU ′

Umax

)

+M0 M ′ Umax�U ′

L2 ,

then,

∂U ′

∂t ′
= M ′�U ′ + C ′U ′(1 − U ′). (4)

After dropping primes, Eqs. (3) and (4) can be written as

∂C

∂t
= K�C − RCU, (5)

∂U

∂t
= M�U + CU (1 − U ). (6)

The initial conditions of C and U are C(x, y, z, 0) = 1
and U (x, y, z, 0) = U0/Umax, where U0 is the initial cell
density. The system of partial differential equations (5) and

(a) Contstruct A (b) Contstruct B

Fig. 3 Stacking initial seeding patterns for constructs, A (alternating seeded slices) and B (uniform seeded slices)

0
10

20
29

0
10

20
29
0

0.5

1

zr

C

(a)
0

10
20

29

0
10

20
29
0

0.5

1

z
r

U

(b)

Fig. 4 Initial conditions of concentration and cell density. a C(r, z, 0) = 1 and b U (r, z, 0) = 0.016 on the first, the third, and the fifth scaffolds
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Fig. 5 Numerical results of cell density on top portion of the third
scaffold at T = 10 with spatial and temporal grid refinements

(6) are solved in the axisymmetric (r − z) geometry. There-
fore, we consider only two variables; r is the radial direction
and z is the axial direction. The governing equations in the
axisymmetric geometry are expressed as

∂C

∂t
= K

[
1

r
(rCr )r + Czz

]
− RCU, (7)

∂U

∂t
= M

[
1

r
(rUr )r + Uzz

]
+ CU (1 − U ). (8)

In Fig. 1, the shaded region shows the computational domain
with the axisymmetric system.

The boundary conditions are as follows. Due to the sym-
metry at the column axis r = 0, the Neumann boundary con-
ditions are applied, i.e., Cr (0, z, t) = 0, Ur (0, z, t) = 0.

We assume the nutrient concentration is constant in the
exterior of the scaffold. Therefore, at the rigid wall r =
R, C(R, z, t) = 1, Ur (R, z, t) = 0, where R is the radius of
the domain. At the top and bottom of the scaffold, the bound-
ary conditions are C(r, 0, t) = C(r, H, t) = 1, Uz(r, 0, t) =
Uz(r, H, t) = 0, where H is the height of the domain.

3 Numerical solution

We solve governing equations using a finite difference
scheme depending both on spatially and temporally. The
nutrient concentration C and the cell density U are defined on
cell-centered grids. Let us first discretize the given computa-
tional domain � = (0, R) × (0, H) as a uniform grid with a
space step h = R/Nr = H/Nz and a time step �t = T/Nt .
Let us denote the numerical approximations of the solution
by
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Fig. 6 Measured cell density for a middle (circled) and b top (squared)
portions of the third scaffold in construct A on day 10. Error bar rep-
resents the standard deviation of measured cell density

Cn
ik ≡ C(ri , zk, tn) = C ((i − 0.5)h, (k − 0.5)h, n�t) ,

U n
ik ≡ U (ri , zk, tn) = U ((i − 0.5)h, (k − 0.5)h, n�t) ,

where i = 1, . . . , Nr , k = 1, . . . , Nz , and n = 0, . . . , Nt .
Here, Nr , Nz , and Nt are the number of cells in r, z, and t
directions, respectively.

In this paper, we propose an operator splitting method for
governing Eqs. (7) and (8). The basic idea of this method
is to split the original problem into a sequence of simpler
problems.

Step 1 We solve implicitly the first part in Eq. (7) by a
multigrid method (Briggs 1987; Trottenberg et al. 2001).

C∗
ik − Cn

ik

�t
= K�hC∗

ik = K

h2

[ri+ 1
2 ,k

rik

(
C∗

i+1,k − C∗
ik

)

−
ri− 1

2 ,k

rik

(
C∗

ik − C∗
i−1,k

) + C∗
i,k−1 − 2C∗

ik + C∗
i,k+1

]
.
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Fig. 7 Measured experimental data of cell density in the third stack of
construct A on day 10 and shape-preserving interpolated data at each
numerical grid point by experimental data. Here, a middle portion and
b top portion

Step 2 Then, the remaining term ∂C/∂t = −RCU in Eq. (7)
is solved analytically by the method of separation of vari-
ables (Stuart and Humphries 1998) and the solution is given
as

Cn+1
ik = C∗

ike−�t RU n
ik .

Step 3 We solve implicitly the first term in Eq. (8) using a
multigrid method.

U∗
ik − U n

ik

�t
= M�hU∗

ik .

Step 4 We solve the second equation ∂U/∂t = CU (1−U ) in
Eq. (8) analytically by the method of separation of variables
and the solution is given as
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Fig. 8 Measured and simulated cell densities for the third scaffold
in construct A. Middle portion (circled line) and top portion (squared
line). Error bar represents the standard deviation of measured cell den-
sity. Numerical simulation were done with K = 9.17, R = 11.44,

M = 0, �t = 0.01, and T = 10

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14
x 10

6

distance from edge in μm 

cell/cm3

experiment mid
experiment top
numerical mid
numerical top

Fig. 9 Measured and simulated cell densities for the third scaffold in
construct A. Middle portion (circled line) and top portion (squared
line). Error bar represents the standard deviation of measured cell
density. Numerical simulation were done with K = 9, R = 11,

M = 0.002, �t = 0.01, T = 10

U n+1
ik = U∗

ik

U∗
ik + (

1 − U∗
ik

)
e−�tCn+1

ik

.

In summary, our proposed numerical scheme to the sys-
tem of Eqs. (7) and (8) consists of Steps 1, 2, 3, and 4. Figure
2 shows our proposed numerical algorithm schematically.
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Fig. 10 Effect of varying the diffusivity of the nutrient concentration. The cell density for a the middle portion and b the top portion with
K = 4.5, 9, 18, 27, and 36
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Fig. 11 Effect of varying the consumption rate of the nutrient on the cell density. The cell density for a the middle portion and b the top portion
with R = 5.5, 11, 16.5, 27.5, and 44
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Fig. 12 Effect of varying the cell mobility. The cell density for a the middle portion and b the top portion with M = 0, 0.002, 0.01, 0.02, and
0.03

123



Mathematical model and numerical simulation of the cell growth in scaffolds 683

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14 x 10
6

T

distance from edge in μm 

cell/cm3

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14 x 10
6

T

distance from edge in μm 

cell/cm3

(b)

Fig. 13 Effect of varying the value of the time scale. The cell density for a the middle portion and b the top portion with T = 5, 10, 15, 25,

and 50

4 Computational results

In this section, we perform several numerical experiments
such as convergence test, effects of each model parame-
ter, and comparison with experimental data. Scaffolds are
stacked in two initial seeding patterns as shown in Fig. 3. Con-
struct A (Fig. 3a) contains five, stacked scaffolds, alternating
between cell-seeded and unseeded. Construct B (Fig. 3b)
contains five all cell-seeded scaffolds.

As the cell growth depends on the nutrient concentration,
and the highest source of nutrients is at the scaffold inter-
face, the growth of cells would be faster at the interface than
inside the scaffold (Galban and Locke 1999). We use the
experimental data from Dunn et al. (2006) for the initial con-
ditions to compare numerical results. Figure 6 shows mea-
sured cell density for middle (circled line) and top (squared
line) portions of the third scaffold in construct A on day 10.
Error bar represents the standard deviation of measured cell
density. This result shows higher cell density toward to the
core of scaffolds in the top portions than the middle on the
third scaffold. To find the optimal model parameters match-
ing the experimental data, we focus on the region around
1,000–4,000 μm from the scaffold edge.

4.1 Convergence test

To confirm that our proposed numerical scheme is conver-
gent, we perform a number of simulations with a set of
increasingly finer spatial and temporal grids. We compute
the numerical solutions on uniform grids, 4h, 2h, h, h/2, and
h/4. For each case, we run the calculation up to time T = 10
with time steps 4�t, 2�t,�t,�t/2, and �t/4. Time step
�t = 0.1 and space step h = 1/128 are used. The following
parameters are used: K = 9, R = 11, and M = 0.002.
In this paper, we take L = 167 µm for all numerical

experiments. The initial conditions are C(r, z, 0) = 1 and
U (r, z, 0) = 0.016 on the first, the third, and the fifth scaf-
folds (see Fig. 4).

Figure 5 shows the result of convergence test and we can
confirm that the proposed scheme converges with respect to
spatial and temporal refinements.

4.2 Optimal model parameter estimation

To estimate an optimal model parameter set, we propose a
simple numerical algorithm. For simplicity of exposition, we
will describe the algorithm with M = 0. With nonzero M , the
algorithm can be similarly defined. The numerical algorithm
consists of the following steps:

Step 1 First, we interpolate experimental data at numerical
grid points ri from Fig. 6 by using shape-preserving
piecewise cubic hermite interpolation (Fritsch and
Carlson 1980). Let umid

ex and utop
ex be the original

experimental data at middle and top portions in the
third scaffold and vmid

ex and v
top
ex be the correspond-

ing interpolated data at grid points ri (see Fig. 7).
Step 2 Choose initial guess for K and R. We solve

Eqs. (7) and (8) using the proposed hybrid numeri-
cal method described in Sect. 3 with 0.9K , K , 1.1K
and 0.9R, R, 1.1R. This will result in nine numeri-
cal solutions with different K and R values. Among
these results, we choose a parameter set which min-
imizes l2-norm of error between experimental and
numerical data. Then, we repeat this procedure until
there is no change in the minimizing parameter set.

The details of overall steps are given in Algorithm 1.
Figure 8 shows measured and simulated cell densities for

the third scaffold in construct A using Algorithm 1. The
algorithm returns an optimal model parameter set, K = 9.17
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Fig. 14 The time evolution of the numerical solutions, a C and b U with K = 9, R = 11, M = 0.002,�t = 0.01, and 256 × 256 mesh

and R = 11.44 with M = 0. A circled line (middle portion)
and squared line (top portion) are numerical results. From
the experimental data, the cell density in the top portion of
the third scaffold is slightly higher than that in the middle
portion of the third scaffold.

Next, we include nonzero M values in our algorithm and
Fig. 9 shows measured and simulated cell densities for the

third scaffold in construct A using Algorithm 1. The algo-
rithm returns an optimal model parameter set, K = 9,

R = 11, and M = 0.002. A circled line (middle portion)
and squared line (top portion) are numerical results. From
the experimental data, the cell density in the top portion of
the third scaffold is slightly higher than that in the middle
portion of the third scaffold.
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Algorithm 1 Estimation of optimal model parameter

Require: Interpolated data vmid
ex , v

top
ex from experimental data

umid
ex , utop

ex .
procedure Find Optimal Parameter(test K , test R)

test K = 50 and test R = 50 � Initial guess for K and R
δ = 1.0E + 10 � Arbitrary large value
�t = 0.01, T = 10, Nr = Nz = 128, i tmax = T/�t
repeat

K = test K , R = test R
for k = 1; k ≤ 3; k++ do

for r = 1; r ≤ 3; r++ do
K = (0.8 + 0.1k)K � Parameter setting
R = (0.8 + 0.1r)R
for t = 1; t ≤ i tmax; t++ do � Time loop

Perform four steps of the hybrid method (see Fig. 2)
end for

errmid =
√

1

N

∑N
i=1

(
umid

i − vmid
ex,i

)2 � Evaluate

l2-error

err top =
√

1

N

∑N
i=1

(
utop

i − v
top
ex,i

)2

result = 0.5(errmid + err top)

if result < δ then � Find the smallest l2-error
δ = result, test K = K , test R = R

end if
end for

end for
until |test K − K | ≤ 0.01K and |test R − R| ≤ 0.01R

end procedure

4.3 Effects of model parameters

In this section, we investigate the effects of each model
parameters.

4.3.1 Effect of K

In this model, K represents the diffusivity of the nutrient con-
centration. To investigate the effect of K , we perform several
simulations with varying K values. Figure 10 shows the cell
density for (a) the middle portion and (b) the top portion of
the third scaffold with K = 4.5, 9, 18, 27, and 36. With
increasing values of K , we can observe more cell densities
deep inside the scaffolds at both middle and top portions.

4.3.2 Effect of R

R represents the consumption rate of the nutrient by the cell.
Figure 11 shows the cell density for (a) the middle portion
and (b) the top portion with R = 5.5, 11, 16.5, 27.5, and 44.
With decreasing values of R, we observe higher cell densities
in the top portion than the middle.

4.3.3 Effect of M

M represents the cell mobility. Figure 12 shows the cell den-
sity for (a) the middle portion and (b) the top portion with
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0.8

1

z
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U

Fig. 15 Slice plot of nutrient concentration and cell density, C and U ,
at the axis of symmetry

Fig. 16 Construct C

M = 0, 0.002, 0.01, 0.02, and 0.03. As we increase values
of the mobility, the cell density at the top and the middle
portions becomes uniform.

4.3.4 Effect of T

T represents the value of the time scale. Figure 13 shows the
cell density for (a) the middle portion and (b) the top portion
with T = 5, 10, 15, 25, and 50.

In Fig. 14, we plot the time evolution of the numerical solu-
tions, C and U , with K = 9, R = 11, �t = 0.01, T = 10,
and M = 0.002. As time evolves, concentrations of nutrient
C is decreasing and cell density U is increasing.

In Fig. 15, the slice plot around core of scaffolds is
depicted. On the middle and the top portion of the third stack,
we can check that cell grows more in the top portion. Initially,
nutrient concentration profile was uniform and cell seeding
was also constant on the first, the third, and the fifth scaf-
folds. As time evolves, cell consumes the nutrient and grows
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Fig. 17 The time evolution of the numerical solutions on Construct C, a C and b U with K = 9.0, R = 11.0, M = 0.002,�t = 0.01, and
256 × 256 mesh

uniformly. However, at later time, nonuniform distribution of
the nutrient concentration occurs due to the limited diffusion.
And this triggers higher cell density along the top portion of
the third scaffold.

4.4 Another construct: alternating concentric annulus
seeding

We consider another construct, which is an alternating con-
centric annulus seeding as shown in Fig. 16. For the param-
eter set, we use K = 9.0, R = 11.0, �t = 0.01, T = 10,
and M = 0.002 with a 256 × 256 spatial mesh.

In Fig. 17, we plot the time evolution of the numerical
solutions with initial condition (Fig. 16) at T = 10 with a
128 × 128 spatial mesh. As time evolves, concentration of
nutrients C is decreasing and the cell density U is increasing.

Figure 18 shows comparison between measured cell den-
sities for the third scaffold on construct A and simulated cell

densities in construct A and C at T = 10. (a) Middle portion
(circle markers represent experimental data on Construct A)
and (b) top portion (squared markers represent experimen-
tal data on Construct A). Error bar represents the standard
deviation of the measured cell density. As the alternating
concentric annulus seeding supplies enough nutrients into
inside scaffolds, the cell density becomes higher in the cell
core. This result suggests that we can design cell distribution
by changing cell seeding techniques.

5 Conclusions

In this paper, we proposed an efficient and accurate hybrid
numerical scheme of a mathematical model to predict the
growth and distribution of cells in scaffolds. The numeri-
cal algorithm is a hybrid method which uses both finite dif-
ference approximations and analytic closed-form solutions.
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Fig. 18 Measured and simulated cell densities for the third scaffold in
construct A and C (alternating concentric annulus seeding) at T = 10
with K = 9.0, R = 11.0, and M = 0.002. a Middle portion (circle
markers represent experiment data on Construct A) and b top portion
(squared markers represent experiment data on Construct A). Error bar
represents the standard deviation of measured cell density

Moreover, we proposed an optimization algorithm which
finds the best set of model parameters that minimize a discrete
l2 error between numerical and experimental data. Using the
mathematical model and its efficient and accurate numeri-
cal simulations, we could interpret experimental results and
identify dominating mechanisms. The effects of each model
parameter were numerically investigated. As a future work,
we plan to incorporate stress effects into the mathematical
model since stresses play a role on the cell growth in scaf-
folds (Correa-Duarte et al. 2004).
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