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ABSTRACT. In this paper we introduce 6-fold symmetry crystal growth using new phase-field
models based on the modified Allen–Cahn equation. The proposed method is a hybrid method
which uses both analytic and numerical solutions. We then show this method can be extended
to k-fold case. The Wulff construction procedure is provided to understand and predict the
shape of crystals. We also present a detailed mathematical proof of the validity of the Wulff
construction. For computational results, we verify the accuracy and efficiency of the method
for snow crystal growth.

1. INTRODUCTION

In nonlinear dynamical systems, the physics of phase transformations has attracted con-
siderable interest. Crystal growth is an essential part of phase transformations from the liq-
uid phase to the solid phase via heat transfer. To simulate crystal growth, cellular automaton
[25, 44, 45, 46, 47], Monte-Carlo [29, 33], boundary integral [26, 27, 34, 36], front-tracking
[1, 12, 21], level-set [6, 10, 17, 41], and phase-field [4, 5, 7, 8, 11, 14, 15, 16, 18, 28, 30, 31,
32, 35, 37, 39, 40, 43] methods have been developed. Also, many numerical methods such
as explicit [12, 13, 16, 31, 39], mixed implicit-explicit [30, 40, 43], and adaptive methods
[5, 7, 28, 32, 35] have been proposed for crystal growth problems.

Analysis of this paper using the phase field method extends our study to the various cases
k = 3, 4, 5, 6, · · · , and n with k-fold symmetry. Beside that, one of the crucial to our crystal
growth is a method of the multiple time-step algorithm that uses a larger time step for the flow-
field calculations while reserving a finer time step for the phase-field evolution was proposed
in [37]. Thus, we show that our scheme can give rise to many shapes with n-fold symmetry.

In particular, we focus on six-fold symmetric crystal growth, have some physical meaning
that snow crystal while, mathematically, we can extend it to the n-fold case. In the six-fold case,
water has the unique chemical property known as a hydrogen bond. The attractive interaction
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between the hydrogen and oxygen atoms in different water molecules arranges the solid state
water molecules to form a hexagonal shape. For such a reason, in specific temperature, snow
crystal grows into six-fold symmetric crystal [24]. The thickness and width of snow crystal
are in the ratio of 1 : 50, so snow crystal problems can be simplified into two-dimensional
problems. We consider here the solidification of a pure substance from its supercooled melt in
two-dimensional space.

In addition, we elaborate on the Wulff construction procedure for the equilibrium crystal
shapes with a given interface energy function. We also present a detailed mathematical proof
of the validity of the Wulff construction.

This paper is organized as follows: in Section 2, we briefly review basic theoretical concepts
about the Wulff construction. The governing equations for crystal growth based on the phase-
field medal are given in Section 3. In Section 4, we describe the computationally efficient
operator splitting algorithm. In Section 5, we present numerical results of snow crystal growth
simulations in 2D. Finally, conclusions are given in Section 6.

2. THE WULFF CONSTRUCTION

The equilibrium crystal shape is determined by minimizing the total interfacial free energy.
We use the following k-fold symmetric interfacial energy equation:

ϵ(θ) = ϵ0 [1 + ϵk cos(kθ)] ,

where ϵ0 is the mean interfacial tension and 0 ≤ ϵk < 1 is the anisotropy parameter.
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FIGURE 1. The Wulff construction. (a) Interfacial free-energy density ϵ(θ)
in the polar coordinates. (b) Equilibrium crystal shape (bold line) for k = 6,
ϵ0 = 1, and ϵ6 = 0.1.

In this paper, we focus on k = 6 case. The equilibrium shape is easily constructed by the
Wulff’s theorem [42]. We describe the construction of the equilibrium shape geometrically [3].
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Let M = (ϵ(θ), θ) be a point on the interfacial energy function in the polar coordinates (see
Fig. 1(a)). The construction starts from the origin O and draw the line segment OM to the
point M . Draw the perpendicular line

←→
AB to the line segment OM . Then the inner convex

hull made from all such perpendiculars is an equilibrium crystal shape as shown in Fig. 1(b).

φ
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T = (x(φ), y(φ))

p(φ)
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FIGURE 2. Parameter definitions.

Conversely, let us assume the equilibrium shape is known and (r, θ) be the polar coordinates
of a point T of the crystal boundary S, that is, T = (r, θ). And let T = (x(ϕ), y(ϕ)) be the
corresponding Cartesian coordinates, where ϕ is a parameter and is the angle between x-axis
and the perpendicular line to the tangent line

←→
AB at the point T . Let M be the intersection

point of the line
←→
AB and the perpendicular line containing the origin to

←→
AB. Let the length of

the line segment OM be p(ϕ). In Fig. 2, we can see these parameter definitions. Then p(ϕ)
can be obtained from the right triangle△OTM :

p(ϕ) = r cos(ϕ− θ) = r cosϕ cos θ + r sinϕ sin θ = x(ϕ) cosϕ+ y(ϕ) sinϕ. (2.1)

We can express (x(ϕ), y(ϕ)) in terms of p(ϕ). First, take a derivative to p(ϕ), then we have

pϕ(ϕ) = xϕ(ϕ) cosϕ− x(ϕ) sinϕ+ yϕ(ϕ) sinϕ+ y(ϕ) cosϕ. (2.2)

Since the normal vector (cosϕ, sinϕ) and the tangent vector (xϕ, yϕ) are orthogonal, that is,
(cosϕ, sinϕ) · (xϕ, yϕ) = 0, we can simplify Eq. (2.2) as

pϕ = −x sinϕ+ y cosϕ. (2.3)
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Now, by solving Eqs. (2.1) and (2.3) we have

x(ϕ) = p(ϕ) cosϕ− pϕ(ϕ) sinϕ, y(ϕ) = p(ϕ) sinϕ+ pϕ(ϕ) cosϕ. (2.4)

Let F and A be the total edge free energy and the area of crystal, respectively and be defined
as

F =

∫
ϵ(ϕ)

√
(xϕ(ϕ))2 + (yϕ(ϕ))2dϕ, (2.5)

A =
1

2

∫
(x(ϕ)yϕ(ϕ)− y(ϕ)xϕ(ϕ))dϕ. (2.6)

Using Eq. (2.4), we can rewrite Eqs. (2.5) and (2.6) in the form

F =

∫
ϵ(ϕ)(p(ϕ) + pϕϕ(ϕ))dϕ,

A =
1

2

∫
p(ϕ)(p(ϕ) + pϕϕ(ϕ))dϕ.

We want to minimize F with subject to a constant area constraint of A. Using the Lagrange
multiplier λ, we seek to minimize

F + λA =

∫ (
ϵ(ϕ) +

λ

2
p(ϕ)

)
(p(ϕ) + pϕϕ(ϕ))dϕ.

And then, the Euler–Lagrange equation is

∂Q

∂p
− d

dϕ

(
∂Q

∂pϕ

)
+

d2

dϕ2

(
∂Q

∂pϕϕ

)
= 0, (2.7)

where

Q =

(
ϵ+

λ

2
p

)
(p+ pϕϕ). (2.8)

From these two Eqs. (2.7) and (2.8), we get

p+ pϕϕ = − 1

λ
(ϵ+ ϵϕϕ). (2.9)

A solution of differential equation (2.9) is

p(ϕ) = − 1

λ
ϵ(ϕ).

This result implies that in a crystal at equilibrium, the distances of the faces from the center
of the crystal are proportional to their surface free energies per unit area [3].

For large ϵ6 values, the crystal shape will be energy minimizing when certain orientations
are missing. Missing orientations occur when the polar plot of r = 1/ϵ(θ) changes convexity
[9]. The curvature of a polar plot r(θ) is κ = (r2+2r2θ−rrθθ)/(r

2+r2θ)
3
2 . For r(θ) = 1/ϵ(θ),

the curvature is κ = (ϵ+ ϵθθ)/[1 + ( ϵθϵ )
2]

3
2 . So convexity changes whenever

ϵ+ ϵθθ = ϵ0(1− 35ϵ6 cos 6θ) < 0.



PHASE-FIELD SIMULATION OF SNOW CRYSTAL GROWTH 19

If values of ϵ6 are larger than 1/35, then missing orientations occur. In other words, some
orientations do not appear on the equilibrium shape of a crystal. Figure 3 shows the 6-fold
Wulff equilibrium shapes ((x(ϕ), y(ϕ)) for 0 ≤ ϕ ≤ 2π) with two different ϵ6 values: (a)
ϵ6 = 1/50 and (b) ϵ6 = 1/10 (which shows the missing orientation). Figure 4 shows the trace
of (x(ϕ), y(ϕ)) with different intervals. ϕm is defined as the smallest non-zero value which
satisfies y(ϕm) = 0.

(a) ϵ6 = 1/50 (b) ϵ6 = 1/10

FIGURE 3. The 6-fold Wulff equilibrium shapes with two different ϵ6 values.

(a) 0 ≤ ϕ ≤ ϕm (b) ϕm ≤ ϕ ≤ π/3− ϕm (c) π/3− ϕm ≤ ϕ ≤ π/3

FIGURE 4. Trace of (x(ϕ), y(ϕ)) with different intervals and y(ϕm) = 0.
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3. THE PHASE-FIELD MODEL

The phase-field model for the crystal growth is given by

ϵ2(c)
∂c

∂t
= ∇ · (ϵ2(c)∇c) + [c− λU(1− c2)](1− c2)

+

(
|∇c|2ϵ(c)∂ϵ(c)

∂cx

)
x

+

(
|∇c|2ϵ(c)∂ϵ(c)

∂cy

)
y

(3.1)

∂U

∂t
= D∆U +

1

2

∂c

∂t
,

where c is the order parameter, ϵ(c) is the anisotropic function, λ is the dimensionless coupling
parameter, and U = cp(T − TM )/L is the dimensionless temperature field. Here cp is the
specific heat at constant pressure, TM is the melting temperature, L is the latent heat of fusion,
D = ατ0/ϵ

2
0, α is the thermal diffusivity, τ0 is the characteristic time, and ϵ0 is the character-

istic length. The order parameter is defined by c = 1 in the solid phase and c = −1 in the
liquid phase. The interface is defined by c = 0 and λ is given as λ = D/a2 with a2 = 0.6267
[15, 16]. We define a normal vector of c as (cx, cy) and an angle between normal vector and x-
axis as ϕ that satisfies tanϕ = cy/cx. Then by replacing ϵ(c) with ϵ(ϕ) = ϵ0(1 + ϵ6 cos(6ϕ)),
we can simplify the following terms in Eq. (3.1):(
|∇c|2ϵ(ϕ)∂ϵ(ϕ)

∂cx

)
x

=

(
(c2x + c2y)ϵ(ϕ)ϵ

′(ϕ)

(
− cy
c2x + c2y

))
x

= −
(
ϵ′(ϕ)ϵ(ϕ)cy

)
x
.

In a similar way, we get (
|∇c|2ϵ(ϕ)∂ϵ(ϕ)

∂cy

)
y

= (ϵ′(ϕ)ϵ(ϕ)cx)y .

Hence we can rewrite the governing equations of 6-fold symmetric crystal growth as following:

ϵ2(ϕ)
∂c

∂t
= ∇ · (ϵ2(ϕ)∇c) + [c− λU(1− c2)](1− c2)

−
(
ϵ′(ϕ)ϵ(ϕ)cy

)
x
+
(
ϵ′(ϕ)ϵ(ϕ)cx

)
y

(3.2)

∂U

∂t
= D∆U +

1

2

∂c

∂t
. (3.3)

4. NUMERICAL SOLUTION

In this section, we propose a robust hybrid numerical method for crystal growth simulation.
For simplicity of exposition we shall discretize Eqs. (3.2) and (3.3) in two-dimensional space,
i.e., Ω = (−l1, l1) × (−l2, l2). Let Nx and Ny be positive even integers, h = 2l1/Nx be
the uniform mesh size, and Ωh = {(xi, yj) : xi = (i − 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤
Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Let cnij be approximations of c(xi, yj , n∆t),
where ∆t = T/Nt is the time step, T is the final time, and Nt is the total number of time steps.
The discrete differentiation operator is ∇dcij = (ci+1,j − ci−1,j , ci,j+1 − ci,j−1)/(2h). We
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then define the discrete Laplacian by ∆dcij = (ci+1,j + ci−1,j − 4cij + ci,j+1 + ci,j−1)/h
2.

We discretize Eqs. (3.2) and (3.3):

ϵ2(ϕn)
cn+1 − cn

∆t
= ϵ2(ϕn)∆dc

n+1,2 + 2ϵ(ϕn)∇dϵ(ϕ
n) · ∇dc

n

−F ′(cn+1)− 4λUnF (cn+1,1)

−
(
ϵ′(ϕ) · ϵ(ϕ)cy

)n
x
+
(
ϵ′(ϕ) · ϵ(ϕ)cx

)n
y
,

Un+1 − Un

∆t
= D∆dU

n+1 +
cn+1 − cn

2∆t
,

where F (c) = 0.25(c2 − 1)2 and F ′(c) = c(c2 − 1). Here cn+1,k for k = 1, 2 are defined in
the operator splitting scheme. We propose the following operator splitting scheme:

ϵ2(ϕn)
cn+1,1 − cn

∆t
= 2ϵ(ϕn)∇dϵ(ϕ

n) · ∇dc
n

−
(
ϵ′(ϕ) · ϵ(ϕ)cy

)n
x
+
(
ϵ′(ϕ) · ϵ(ϕ)cx

)n
y
,

ϵ2(ϕn)
cn+1,2 − cn+1,1

∆t
= ϵ2(ϕn)∆dc

n+1,2 − 4λUnF (cn+1,1),

ϵ2(ϕn)
cn+1 − cn+1,2

∆t
= −F ′(cn+1). (4.1)

We can solve Eq. (4.1) analytically by the method of separation of variables [22, 23]. The
solution is given as follows:

cn+1 =
cn+1,2√

e
− 2∆t

ϵ2(ϕn) + (cn+1,2)2
(
1− e

− 2∆t
ϵ2(ϕn)

) .

Finally, the proposed scheme can be written as follows:

ϵ(ϕn)
cn+1,1 − cn

∆t
= 2ϵ(ϕn)xc

n
x + 2ϵ(ϕn)yc

n
y −

(
ϵ′(ϕ) · cy

)n
x
+
(
ϵ′(ϕ) · cx

)n
y
,

ϵ2(ϕn)
cn+1,2 − cn+1,1

∆t
= ϵ2(ϕn)∆dc

n+1,2 − 4λUnF (cn+1,1), (4.2)

cn+1 =
cn+1,2√

e
− 2∆t

ϵ2(ϕn) + (cn+1,2)2
(
1− e

− 2∆t
ϵ2(ϕn)

) ,

Un+1 − Un

∆t
= D∆dU

n+1 +
cn+1 − cn

2∆t
. (4.3)

Equations (4.2) and (4.3) can be solved by a multigrid method [2, 38].



22 Y. LI, D.S. LEE, H.G. LEE, D.J. JEONG, C.Y. LEE, D.Y. YANG, AND J.S. KIM

5. NUMERICAL RESULTS

In this section we perform numerical experiments for two-dimensional solidification to val-
idate that our proposed scheme is accurate, efficient, and robust. Unless otherwise specified,
we take the initial state as

c(x, y, 0) = tanh

(
R0 −

√
x2 + y2√
2

)
and U(x, y, 0) =

{
0 if c > 0
∆ else.

The zero level set (c = 0) represents a circle of radius R0. From the dimensionless variable
definition the value U = 0 corresponds to the melting temperature of the pure material, while
U = ∆ is the initial undercooling. The capillary length, d0, is defined as d0 = a1/λ [4, 20, 32]
with a1 = 0.8839 [15, 16, 32] and λ = 3.1913 [32].

5.1. Convergence test. To obtain an estimate of the convergence rate, we perform a number
of simulations for 6-fold crystal growth problem on a set of increasingly finer grids. The
computational domain is Ω = (−100, 100)2 and we take R0 = 15d0, ϵ6 = 0.02, and ∆ =
−0.55. The numerical solutions are computed on the uniform grids h = 200/2n and with
corresponding time steps ∆t = 0.6/2n−8 for n = 8, 9, 10, and 11. The calculations are run up
to time T = 150. We define the error to be the discrete of l2-norm of the difference between
that grid and the average of the next finer grid cells covering it:

eh/h
2 ij

= chij − (ch
2 2i−1,2j−1

+ ch
2 2i−1,2j

+ ch
2 2i,2j−1

+ ch
2 2i,2j

)/4.

The rate of convergence is defined as:

log2(∥ eh/h
2
∥2 / ∥ eh

2
/h
4
∥2).

The errors and rates of convergence are given in Table 1. The results suggest that the scheme
is indeed second order accurate in space. Figure 5 shows the convergence of numerical results
under mesh refinement.

TABLE 1. Error and l2 convergence result.

256− 512 Rate 512− 1024 Rate 1024− 2048
5.477E−4 1.96 1.405E−4 2.01 3.487E−5

Next, we consider the evolution of the interface with different time steps in order to investi-
gate the effect of time step. A 1024×1024 mesh is used on the domain Ω = (−200, 200)2 with
R0 = 50d0, ϵ6 = 0.02, and ∆ = −0.55. Figure 6(a) shows the interfaces at time T = 1200
with different time steps ∆t = 0.6, 0.3, and 0.15. Figure 6(b) shows the velocity of the tip
versus time. For the calculation of the crystal tip velocity, refer to Ref. [22]. The velocity V
of the tip at time T = 1200 versus time step is shown in Fig. 6(c). Here, we define the error
between the fitting velocity Ṽ and V as Ei = |Ṽi − Vi|/Vi. In Fig. 6(c), the linear fit Ṽ is
done using the MATLAB function “polyfit” and the errors on the index i are calculated by the
MATLAB function “polyval” on the results of the linear fit. In this test, the l2 error is 0.54%.
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FIGURE 5. Convergence of numerical results under mesh refinement.

Therefore the results suggest that the convergence rate of the tip velocity is linear with respect
to the time step.

5.2. Stability test. In this section, we perform a number of simulations on a set of increasingly
finer grids to show that our proposed method is more stable than the previous methods which
suffer from time restrictions ∆t ≤ O(h2) for stability. The computational domain is Ω =
(−200, 200)2 and we take R0 = 15d0, ϵ6 = 0.02, and ∆ = −0.55. The numerical solutions
are computed on the uniform grids h = 400/2n with corresponding time steps ∆t = 3h for
n = 8, 9, and 10. Figure 7 shows the crystal growth with different time steps at T = 70.31. In
general, large time steps may cause large truncation errors. However, as can be seen in Fig. 7,
we obtain stable solutions with large time steps.

Next, we calculate the maximum ∆t corresponding to different spatial grid sizes h so that
stable solutions can be computed after 20 time step iterations. The results are shown in Table
2 and we obtain stable solutions for all three mesh sizes. Note that there is a linear relation
between the time step and mesh sizes. Thus, for finer mesh sizes we may use larger time steps
than previous conventional methods.

TABLE 2. Stability constraint of ∆t for the proposed scheme.

Mesh size h = 400/256 h = 400/512 h = 400/1024
Time step ∆t ≤ 12h ∆t ≤ 10h ∆t ≤ 8h

5.3. Effect of ϵ6. To investigate the effect of ϵ6, we consider the evolution of the interface
with different ϵ6 = 0.002, 0.02, and 0.05. A 1024 × 1024 mesh is used on the domain Ω =
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FIGURE 6. (a) The interfaces at T = 1200 for different time steps. (b) shows
the velocity of the tip versus time. (c) The numerical experimental and linear
fitting velocities versus time step.

(−100, 100)2 and we take R0 = 50d0, ∆ = −0.55, ∆t = 0.3, and T = 1200. Figures 8(a),
(b), and (c) are the evolution of crystal growth with ϵ6 = 0.002, 0.02, and 0.05, respectively. As
advised in the previous paper, If ϵ6 < 1

35 , all of tangent planes lie outside and all orientations
appear on the equilibrium shape. Detail view is drawn in Fig. 8(a). Otherwise, there is missing
orientations shown in Fig. 8(c). While if ϵ6 is not more smaller than 1

35 , the crystal also works
well shown in Fig. 8(b). Thus the Wulff construction is not strictly correlated with ϵ6 in crystal
growth, but provide guidelines for parameter selection.

5.4. Effect of undercooling. Now we investigate the effects of undercooling of the initial
solid seed. For each test, a 1024 × 1024 mesh is used on the domain Ω = (−200, 200)2 and
we choose R0 = 15d0, ϵ6 = 0.02, ∆t = 0.3, and T = 1080. Figure 9 shows sequences of
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FIGURE 7. The stability of crystal growth with different mesh sizes: (a) 256×
256 mesh (∆t = 4.68), (b) 512×512 mesh (∆t = 2.34), and (c) 1024×1024
mesh (∆t = 1.17).
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FIGURE 8. The effect of ϵ6. (a), (b), and (c) are the evolution of crystal growth
with ϵ6 = 0.002, 0.02, and 0.05, respectively. The times are t = 0, 120, 240,
360, 480, 600, 720, 840, 960, 1080, and 1200.

interfaces with different undercooling sizes ∆ = −0.45, ∆ = −0.55, and ∆ = −0.65. We
observe that the large initial undercooling causes the dendrite to grow faster.
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FIGURE 9. Sequences of interfaces with different undercooling sizes ∆ =
−0.45, ∆ = −0.55, and ∆ = −0.65.
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5.5. k-fold symmetric crystal growth. If we set the energy function by ϵ(ϕ) = ϵ0(1 +
ϵk cos(kϕ)), then our proposed method can simulate the k-fold crystal growth in general. To
show this, we simulate sequences of computational experiments of k-fold symmetric crystal
growth for k = 4, . . . , 9. A 1024× 1024 mesh is used on the domain Ω = (−200,−200)2 and
we take R0 = 15d0, ∆ = −0.55, and ∆t = 0.3. Note that we use ϵk = 1/(k2 − 1) to respond
to the Wulff’s algorithm. The evolutions for each k are shown in Fig. 10.
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FIGURE 10. The evolutions of k-fold crystal growth after time: (a) T = 720,
(b) T = 1200, (c) T = 1680, (d) T = 2160, (e) T = 2520, and (f) T = 2880.

5.6. Comparison with the previous study. An isotropic finite-difference scheme for simu-
lating 6-fold symmetric dendritic solidification is presented in [19]. The author showed that the
stability criterion becomes ∆t ≤ (3/8)h2. But, as we can see in Section 5.2, the time restric-
tion of our proposed method is ∆t ∼ O(h). In order to show the improvement of our proposed
method, we use the same numerical parameters as in [19], e.g., λ = 1.7680, ϵ0 = 1.1312,
ϵ6 = 0.05, D = 2, and R0 = 5. Note that in [19], the author took the step size as h = 0.4
in the progressively increased mesh sizes as 500 × 500 for 0 ≤ t ≤ 150, to 800 × 800 for
150 ≤ t ≤ 250, and to 1200 × 1200 for 250 ≤ t ≤ 400. Here we take a 1280 × 1280 mesh
size. This simulation is run up to T = 400 with ∆t = 0.2. Our proposed method took about
only 5 hours of CPU time, which is drastically reduced faster than the CPU time (1000 hours)
in [19].
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6. CONCLUSION

In this paper we presented an accurate and efficient numerical method for phase-field models
of k-fold snow crystal growth. We described the Wulff construction procedure for the equilib-
rium crystal shapes with a given interface energy function. For the interfacial energy larger
than a particular value, convexity changes and missing orientations occur. Focusing on 6-fold
symmetric shape, we calculated the particular value. We also provided a detailed mathematical
proof of the validity of the Wulff construction. The proposed method is a hybrid method which
uses both analytic and numerical solutions. We extended the model to k-fold symmetric crystal
growth. Computational results showed the accuracy and efficiency of the method.
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