
Chapter 5

Cocontinuous morphologies in

polymer blends (3D simulation)

Polymer-polymer blends offer an important route to materials with unique combinations of properties

not available in a single polymer [127]. Such materials can be produced via intense mixing of immisci-

ble polymer blends and subsequent cooling below the melt temperature of one of the components [88]

to produce a solid. During mixing, a variety of non-equilibrium heterogeneous microstructures (mor-

phologies) can form which can then be trapped during the cooling process. Possible non-equilibrium mi-

crostructures include droplet/matrix, fibers, lamella, and cocontinuous, sponge-like structures in which

each component phase is continuous. Sample SEM images of blends with cocontinuous and droplet

morphologies are presented in Fig. 5.1, which shows SEM images of PEO/PS blends; a 50/50 blend

with PEO removed by water extraction (left) and a 90/10 blend with PS removed by toluene extraction

(right). This image is taken from [66].

Cocontinuous microstructures are distinguished by having interpenetrating, and self-supporting con-

tinuous phases in three dimensions. The resulting fluid is sponge-like. A precise mathematical definition

is posed in section 5.4 that is suitable for our 3D numerical simulations and comparison with experi-

ments. Let us illustrate the droplet/matrix and cocontinuous morphologies by a cartoon. Fig. 5.2 shows

12% volume fraction droplet/matrix phase before extraction of matrix phase and Fig. 5.3 shows after

extraction of the matrix phase, it is not self-supportive. But, interface is shown in Fig. 5.4, which is

50% volume fraction cocontinuous phase remains a self-supportive morphology in Fig. 5.5 even after

extraction of the other phase.

Blends with cocontinuous morphology have several applications including conductive packaging for

81

static dissipation, materials with improved mechanical properties, and barrier film structures. Although

cocontinuous polymer blends have found numerous applications, their formation is not well understood.

In addition, cocontinuity in polymer-polymer blends is difficult to confirm experimentally. The goals of

this research include the development of numerical methods capable of simulating the coalescence cas-

cade to form co-cocontinuous structures, the investigation of optimal processing conditions and testing

detection techniques1.

Figure 5.1: SEM images of PEO/PS blends; a 50/50 blend with PEO removed by water extraction (left) and a 90/10

blend with PS removed by toluene extraction (right) [66].

Intuitively, the amount of interface per unit area increases as the amount of minor component in-

creases and then decreases when the morphology becomes cocontinuous as elongated structures become

connected to reduce the interfacial area. This is confirmed in preliminary experiments [66].

Finally, current experimental detection techniques are indirect and involve the measurements of con-

ductivity and of surface area, for example. In a simulation, however, we can directly determine whether

a cocontinuous structure is present.

5.1 Governing equations

Cocontinuous morphology is a fully three dimensional phenomenon, therefore it is necessary to simu-

late the evolution in three dimensions. In the numerical experiments presented here, we approximate

1Project joint with John Lowengrub and Chris Macosko (Chem. Eng., U. Minn), Vittoro Cristini and Jeff Galloway.

82

Figure 5.2: Before extraction (12%). Figure 5.3: After extraction (12%).

Figure 5.4: Before extraction (50%). Figure 5.5: After extraction (50%).

83

polymers by Newtonian viscous fluids, so the governing equations are

ut + u · ∇u = −∇p+
1

Re
∇ · [η(c)(∇u + ∇uT)] − ε

We
(∆c∇c− 1

2
∇|∇c|2), (5.1.1)

∇ · u = 0, (5.1.2)

∂c

∂t
+ ∇ · (cu) =

1

Pe
∇ · (M(c)∇µ), (5.1.3)

µ =
dF (c)

dc
− ε2∆c, (5.1.4)

where

M(c) = c(1 − c), F (c) =
1

4
c2(1 − c)2.

The non-dimensional numbers (Re, We, and Pe) were defined at the chapter 4.

5.2 3 Dimensional Discretization of Cahn-Hilliard equation

Let s = −∇ · (cu), then the discretization of Eq. (5.1.3) is

cn+1
ijk − cnijk

∆t
=

1

Pe
∇ · [M(c

n+ 1
2

ijk)∇µn+ 1
2

ijk] + s
n+ 1

2

ijk .

cn+1
ijk

∆t
−

M(c
n+ 1

2

i+ 1
2

,jk
)(µ

n+ 1
2

i+1,jk − µ
n+ 1

2

ijk) −M(c
n+ 1

2

i− 1
2

,jk
)(µ

n+ 1
2

ijk − µ
n+ 1

2

i−1,jk)

Pe∆x2

−
M(c

n+ 1
2

i,j+ 1
2
,k

)(µ
n+ 1

2

i,j+1,k − µ
n+ 1

2

ijk) −M(c
n+ 1

2

i,j− 1
2

,k
)(µ

n+ 1
2

ijk − µ
n+ 1

2

i,j−1,k)

Pe∆y2

−
M(c

n+ 1
2

ij,k+ 1
2

)(µ
n+ 1

2

ij,k+1 − µ
n+ 1

2

ijk) −M(c
n+ 1

2

ij,k− 1
2

)(µ
n+ 1

2

ijk − µ
n+ 1

2

ij,k−1)

Pe∆z2

=
cnijk

∆t
+ s

n+ 1
2

ijk

84

cn+1
ijk

∆t
+



M(c

n+ 1
2

i+ 1
2
,jk

) +M(c
n+ 1

2

i− 1
2
,jk

)

Pe∆x2
+
M(c

n+ 1
2

i,j+ 1
2
,k

) +M(c
n+ 1

2

i,j− 1
2
,k

)

Pe∆y2
(5.2.5)

+
M(c

n+ 1
2

ij,k+ 1
2

) +M(c
n+ 1

2

ij,k− 1
2

)

Pe∆z2


µn+ 1

2

ijk

=
M(c

n+ 1
2

i+ 1
2

,jk
)µ

n+ 1
2

i+1,jk +M(c
n+ 1

2

i− 1
2
,jk

)µ
n+ 1

2

i−1,jk

Pe∆x2

+
M(c

n+ 1
2

i,j+ 1
2
,k

)µ
n+ 1

2

i,j+1,k +M(c
n+ 1

2

i,j− 1
2
,k

)µ
n+ 1

2

i,j−1,k

Pe∆y2

+
M(c

n+ 1
2

ij,k+ 1
2

)µ
n+ 1

2

ij,k+1 +M(c
n+ 1

2

ij,k− 1
2

)µ
n+ 1

2

ij,k−1

Pe∆z2
+
cnijk

∆t
+ s

n+ 1
2

ijk

And the discretization of Eq. (5.1.4) is

µ
n+ 1

2

ijk =
1

2
(f(cn+1

ijk) + f(cnijk)) − ε2

2
(∆cn+1

ijk + ∆cnijk).

−[
ε2

∆x2
+

ε2

∆y2
+

ε2

∆z2
]cn+1

ijk + µ
n+ 1

2

ijk =
1

2
f(cn+1

ijk) +
1

2
f(cnijk) − ε2

2
∆cnijk − ε2

2∆x2
(cn+1

i+1,jk + cn+1
i−1,jk)

− ε2

2∆y2
(cn+1

i,j+1,k + cn+1
i,j−1,k) − ε2

2∆z2
(cn+1

ij,k+1 + cn+1
ij,k−1).

Linearize f(cn+1
ijk) about cmijk to get

f(cn+1
ijk) = f(cmijk) +

df

dc
(cmijk)(cn+1

ijk − cmijk).

Then

−
[
ε2

∆x2
+

ε2

∆y2
+

ε2

∆z2
+

1

2

df

dc
(cmijk)

]
cn+1
ijk + µn+1

ijk =
1

2
f(cnijk) − ε2

2
∆cnijk +

1

2
f(cmijk)

−1

2

df

dc
(cmijk)cmijk − ε2

2∆x2
(cn+1

i+1,jk + cn+1
i−1,jk) (5.2.6)

− ε2

2∆y2
(cn+1

i,j+1,k + cn+1
i,j−1,k) − ε2

2∆z2
(cn+1

ij,k+1 + cn+1
ij,k−1).

We use discrete Eqs. (5.2.5) and (5.2.6) in the relaxation step in a multigrid solver which we described

in chapter 2.

85

5.3 3D discretization of Navier-Stokes equations

Let F = − ε
We

(∆c∇c− 1
2∇|∇c|2), then the discretizations of Eqs. (5.1.1) and (5.1.2) are

un+1 − un

∆t
+ [u · ∇u]n+ 1

2 = −∇pn+ 1
2 +

1

2Re
∇ · [ηn(∇un + (∇un)T)]

+
1

2Re
∇ · [ηn+1(∇un+1 + (∇un+1)T)] + Fn+ 1

2 ,

∇ · un+1 = 0.

We use the projection method [6]. In projection method, the procedure is given by

Step 1: Solve for the intermediate velocity field u∗

u∗ − un

∆t
+ [u · ∇u]n+ 1

2 = −∇pn− 1
2 +

1

2Re
∇ · [ηn(∇un + (∇un)T)] (5.3.7)

+
1

2Re
∇ · [ηn+1(∇u∗ + (∇u∗)T)] + Fn+ 1

2 .

Step 2: Perform the projection

u∗ = un+1 + ∆t∇φ,

∆φ = ∇ ·
(

u∗ − un

∆t

)
.

Step 3: Update the pressure

pn+ 1
2 = pn− 1

2 + φ.

Now, we describe this procedure in more detail. Let’s rewrite Eq. (5.3.7)

u∗ − ∆t

2Re
∇ · [ηn+1(∇u∗ + (∇u∗)T)] = un − ∆t[u · ∇u]n+ 1

2 − ∆t∇pn− 1
2 (5.3.8)

+
∆t

2Re
∇ · [ηn(∇un + (∇u∗)T)] + ∆tFn+ 1

2 .

Let right hand side of equation (5.3.8) be Sn.

u∗ − ∆t

2Re
∇ · [ηn+1(∇u∗ + (∇u∗)T)] = Sn = (s1

n, s2
n, s3

n),

86

Then by using a Gauss-Seidel iteration, the relaxation scheme (smoother) becomes as follows :

[1 +
∆t

2h2Re
(2ηi+ 1

2
,jk + 2ηi− 1

2
,jk + ηi,j+ 1

2
,k + ηi,j− 1

2
,k + ηij,k+ 1

2
+ ηij,k− 1

2
)]u∗i,j

= s1
n +

∆t

2h2Re
[2ηi+ 1

2
,jku

∗
i+1,jk + 2ηi− 1

2
,jku

∗
i−1,jk + ηi,j+ 1

2
,ku

∗
i,j+1,k

+ ηi,j− 1
2
,ku

∗
i,j−1,k + ηij,k+ 1

2
u∗ij,k+1 + ηij,k− 1

2
u∗ij,k−1

+
ηi,j+ 1

2
,k(v∗i+1,j+1,k − v∗i−1,j+1,k + v∗i+1,jk − v∗i−1,jk)

4

−
ηi,j− 1

2
,k(v∗i+1,jk − v∗i−1,jk + v∗i+1,j−1,k − v∗i−1,j−1,k)

4

+
ηij,k+ 1

2
(w∗

i+1,j,k+1 − w∗
i−1,j,k+1 + w∗

i+1,jk − w∗
i−1,jk)

4

−
ηij,k− 1

2
(w∗

i+1,jk − w∗
i−1,jk + w∗

i+1,j,k−1 − w∗
i−1,j,k−1)

4
],

[1 +
∆t

2h2Re
(ηi+ 1

2
,jk + ηi− 1

2
,jk + 2ηi,j+ 1

2
,k + 2ηi,j− 1

2
,k + ηij,k+ 1

2
+ ηij,k− 1

2
)]v∗i,j

= s2
n +

∆t

2h2Re
[ηi+ 1

2
,jkv

∗
i+1,jk + ηi− 1

2
,jkv

∗
i−1,jk + 2ηi,j+ 1

2
,kv

∗
i,j+1,k

+ 2ηi,j− 1
2
,kv

∗
i,j−1,k + ηij,k+ 1

2
v∗ij,k+1 + ηij,k− 1

2
v∗ij,k−1

+
ηi+ 1

2
,jk(u∗i+1,j+1,k − u∗i+1,j−1,k + u∗i,j+1,k − u∗i,j−1,k)

4

−
ηi− 1

2
,jk(u∗i,j+1,k − u∗i,j−1,k + u∗i−1,j+1,k − u∗i−1,j−1,k)

4

+
ηij,k+ 1

2
(w∗

i,j+1,k+1 − w∗
i,j−1,k+1 + w∗

i,j+1,k − w∗
i,j−1,k)

4

−
ηij,k− 1

2
(w∗

i,j+1,k − w∗
i,j−1,k + w∗

i,j+1,k−1 − w∗
i,j−1,k−1)

4
],

87

[1 +
∆t

2h2Re
(ηi+ 1

2
,jk + ηi− 1

2
,jk + ηi,j+ 1

2
,k + ηi,j− 1

2
,k + 2ηij,k+ 1

2
+ 2ηij,k− 1

2
)]w∗

i,j

= s3
n +

∆t

2h2Re
[ηi+ 1

2
,jkw

∗
i+1,jk + ηi− 1

2
,jkw

∗
i−1,jk + ηi,j+ 1

2
,kw

∗
i,j+1,k

+ ηi,j− 1
2
,kw

∗
i,j−1,k + 2ηij,k+ 1

2
w∗

ij,k+1 + 2ηij,k− 1
2
w∗

ij,k−1

+
ηi+ 1

2
,jk(u∗i+1,j,k+1 − u∗i+1,j,k−1 + u∗ij,k+1 − u∗ij,k−1)

4

−
ηi− 1

2
,jk(u∗ij,k+1 − u∗ij,k−1 + u∗i−1,j,k+1 − u∗i−1,j,k−1)

4

+
ηi,j+ 1

2
,k(v∗i,j+1,k+1 − v∗i,j+1,k−1 + v∗ij,k+1 − v∗ij,k−1)

4

−
ηi,j− 1

2
,k(v∗ij,k+1 − v∗ij,k−1 + v∗i,j−1,k+1 − v∗i,j−1,k−1)

4
].

We suppressed the n + 1 superscript time indices on the viscosity term η for clear expressions. We

solve this u∗ by using a linear multigrid method which we described in chapter 2 appendix 8.B.

The viscous terms ∇ · [η(∇u + ∇uT)] are discretized as follows:

∇ · [η(∇u + ∇uT)] = ∇ ·


η




2ux uy + vx uz + wx

vx + uy 2vy vz + wy

wx + uz wy + vz 2wz







=




2(ηux)x + (ηuy)y + (ηvx)y + (ηuz)z + (ηwx)z

(ηuy)x + (ηvx)x + 2(ηvy)y + (ηvz)z + (ηwy)z

(ηwx)x + (ηuz)x + (ηwy)y + (ηvz)y + 2(ηwz)z




The first component of the viscous term ∇ · [η(c)(∇u + ∇uT)] is discretized as

88

(L)1ijk =




2η
i+ 1

2
,jk

(ui+1,jk−uijk)−2η
i− 1

2
,jk

(uijk−ui−1,jk)

∆x2

+
η

i,j+ 1
2

,k
(ui,j+1,k−uijk)−η

i,j− 1
2

,k
(uijk−ui,j−1,k)

∆y2

+
η

ij,k+ 1
2

(uij,k+1−uijk)−η
ij,k−

1
2

(uijk−uij,k−1)

∆z2

+
η

i,j+ 1
2

,k
(vi+1,j+1,k−vi−1,j+1,k+vi+1,jk−vi−1,jk)

4∆x∆y

−
η

i,j− 1
2

,k
(vi+1,jk−vi−1,jk+vi+1,j−1,k−vi−1,j−1,k)

4∆x∆y

+
η

ij,k+ 1
2

(wi+1,j,k+1−wi−1,j,k+1+wi+1,jk−wi−1,jk)

4∆x∆z

−
η

ij,k−
1
2

(wi+1,jk−wi−1,jk+wi+1,j,k−1−wi−1,j,k−1)

4∆x∆z




,

The second component of the viscous term ∇ · [η(c)(∇u + ∇uT)] is discretized as

(L)2ijk =




η
i+ 1

2
,jk

(vi+1,jk−vijk)−η
i− 1

2
,jk

(vijk−vi−1,jk)

∆x2

+
2η

i,j+ 1
2

,k
(vi,j+1,k−vijk)−2η

i,j− 1
2

,k
(vijk−vi,j−1,k)

∆y2

+
η

ij,k+ 1
2

(vij,k+1−vijk)−η
ij,k−

1
2

(vijk−vij,k−1)

∆z2

+
η

i+ 1
2

,jk
(ui+1,j+1,k−ui+1,j−1,k+ui,j+1,k−ui,j−1,k)

4∆x∆y

−
η

i− 1
2

,jk
(ui,j+1,k−ui,j−1,k+ui−1,j+1,k−ui−1,j−1,k)

4∆x∆y

+
η

ij,k+ 1
2

(wi,j+1,k+1−wi,j−1,k+1+wi,j+1,k−wi,j−1,k)

4∆y∆z

−
η

ij,k−
1
2

(wi,j+1,k−wi,j−1,k+wi,j+1,k−1−wi,j−1,k−1)

4∆y∆z




,

The third component of the viscous term ∇ · [η(c)(∇u + ∇uT)] is discretized as

89

(L)3ijk =




η
i+ 1

2
,jk

(wi+1,jk−wijk)−η
i− 1

2
,jk

(wijk−wi−1,jk)

∆x2

+
η

i,j+ 1
2

,k
(wi,j+1,k−wijk)−η

i,j− 1
2

,k
(wijk−wi,j−1,k)

∆y2

+
2η

ij,k+ 1
2

(wij,k+1−wijk)−2η
ij,k−

1
2

(wijk−wij,k−1)

∆z2

+
η

i+ 1
2

,jk
(ui+1,j,k+1−ui+1,j,k−1+uij,k+1−uij,k−1)

4∆x∆z

−
η

i− 1
2

,jk
(uij,k+1−uij,k−1+ui−1,j,k+1−ui−1,j,k−1)

4∆x∆z

+
η

i,j+ 1
2

,k
(vi,j+1,k+1−vi,j+1,k−1+vij,k+1−vij,k−1)

4∆y∆z

−
η

i,j− 1
2

,k
(vij,k+1−vij,k−1+vi,j−1,k+1−vi,j−1,k−1)

4∆y∆z




,

where

ηi+ 1
2
,jk =

1

2
[η(cijk) + η(ci+1,jk)],

ηi,j+ 1
2
,k =

1

2
[η(cijk) + η(ci,j+1,k)],

ηij,k+ 1
2

=
1

2
[η(cijk) + η(cij,k+1)].

The nonlinear advection terms [u · ∇u]n+ 1
2 , are evaluated using an explicit predictor-corrector

scheme and require only the available data at tn.

Predictor. In the predictor we extrapolate the velocity and density to the cell edges at tn+ 1
2 using a

second-order Taylor series expansion.

For edge (i+ 1
2 , j, k) this gives

u
n+ 1

2
,L

i+ 1
2
,jk

= un
ijk +

∆x

2
un

x,ijk +
∆t

2
un

t,ijk

c
n+ 1

2
,L

i+ 1
2
,jk

= cnijk +
∆x

2
cnx,ijk +

∆t

2
cnt,ijk

extrapolating from (ijk), and

u
n+ 1

2
,R

i+ 1
2
,jk

= un
i+1,jk − ∆x

2
un

x,i+1,jk +
∆t

2
un

t,i+1,jk

c
n+ 1

2
,R

i+ 1
2
,jk

= cni+1,jk − ∆x

2
cnx,i+1,jk +

∆t

2
cnt,i+1,jk

90

extrapolating from (i+ 1, j, k).

For edge (i, j + 1
2 , k) this gives

u
n+ 1

2
,B

i,j+ 1
2

,k
= un

ijk +
∆y

2
un

y,ijk +
∆t

2
un

t,ijk

c
n+ 1

2
,B

i,j+ 1
2
,k

= cnijk +
∆y

2
cny,ijk +

∆t

2
cnt,ijk

extrapolating from (ijk), and

u
n+ 1

2
,F

i,j+ 1
2
,k

= un
i,j+1,k − ∆y

2
un

y,i,j+1,k +
∆t

2
un

t,i,j+1,k

c
n+ 1

2
,F

i,j+ 1
2
,k

= cni,j+1,k − ∆y

2
cny,i,j+1,k +

∆t

2
cnt,i,j+1,k

extrapolating from (i, j + 1, k).

For edge (ij, k + 1
2) this gives

u
n+ 1

2
,D

ij,k+ 1
2

= un
ijk +

∆z

2
un

z,ijk +
∆t

2
un

t,ijk

c
n+ 1

2
,D

ij,k+ 1
2

= cnijk +
∆z

2
cnz,ijk +

∆t

2
cnt,ijk

extrapolating from (ijk), and

u
n+ 1

2
,U

ij,k+ 1
2

= un
ij,k+1 −

∆z

2
un

z,ij,k+1 +
∆t

2
un

t,ij,k+1

c
n+ 1

2
,U

ij,k+ 1
2

= cnij,k+1 −
∆z

2
cnz,ij,k+1 +

∆t

2
cnt,ij,k+1

extrapolating from (ij, k + 1).

91

The differential equation (5.1.3) is then used to eliminate the time derivatives to obtain

u
n+ 1

2
,L

i+ 1
2

,jk
= un

ijk + (
∆x

2
−
un

ijk∆t

2
)un

x,ijk − ∆t

2
(v̂uy)ijk − ∆t

2
(ŵuz)ijk

+
∆t

2
(

1

Re
∇ · [η(∇un

ijk + ∇un
ijk

T)] −∇pn− 1
2

ijk + Fn
ijk), (5.3.9)

u
n+ 1

2
,R

i+ 1
2
,jk

= un
i+1,jk − (

∆x

2
+
un

i+1,jk∆t

2
)un

x,i+1,jk − ∆t

2
(v̂uy)i+1,jk − ∆t

2
(ŵuz)i+1,jk

+
∆t

2
(

1

Re
∇ · [η(∇un

i+1,jk + ∇un
i+1,jk

T)] −∇pn− 1
2

i+1,jk + Fn
i+1,jk), (5.3.10)

u
n+ 1

2
,B

i,j+ 1
2
,k

= un
ijk + (

∆y

2
−
vn

ijk∆t

2
)un

y,ijk − ∆t

2
(ûux)ijk − ∆t

2
(ŵuz)ijk

+
∆t

2
(

1

Re
∇ · [η(∇un

ijk + ∇un
ijk

T)] −∇pn− 1
2

ijk + Fn
ijk), (5.3.11)

u
n+ 1

2
,F

i,j+ 1
2
,k

= un
i,j+1,k − (

∆y

2
+
vn

i,j+1,k∆t

2
)un

y,i,j+1,k − ∆t

2
(ûux)i,j+1,k − ∆t

2
(ŵuz)i,j+1,k

+
∆t

2
(

1

Re
∇ · [η(∇un

i,j+1,k + ∇un
i,j+1,k

T)] −∇pn− 1
2

i,j+1,k + Fn
i,j+1,k), (5.3.12)

u
n+ 1

2
,D

ij,k+ 1
2

= un
ijk + (

∆z

2
−
wn

ijk∆t

2
)un

z,ijk − ∆t

2
(ûux)ijk − ∆t

2
(v̂uy)ijk

+
∆t

2
(

1

Re
∇ · [η(∇un

ijk + ∇un
ijk

T)] −∇pn− 1
2

ijk + Fn
ijk), (5.3.13)

u
n+ 1

2
,U

ij,k+ 1
2

= un
ij,k+1 − (

∆z

2
+
wn

ij,k+1∆t

2
)un

z,i,j+1,k − ∆t

2
(ûux)ij,k+1 −

∆t

2
(v̂uy)ij,k+1

+
∆t

2
(

1

Re
∇ · [η(∇un

ij,k+1 + ∇un
ij,k+1

T)] −∇pn− 1
2

ij,k+1 + Fn
ij,k+1) (5.3.14)

Here, ∆h is the standard seven -point finite difference approximation to the Laplacian. Above equa-

tions represent the final form of the predictor. Analogous formulae are used to predict values at each of

the other edges of the cell. In evaluated using a monotonicity-limited fourth-order centered-difference

slope approximation [8]. The limiting is done on the components of the velocity individually. The

transverse derivative terms (v̂uy in this case) are evaluated by first extrapolating from above and below

to construct edge states, using normal derivatives only, and then choosing between these states using the

upwinding procedure defined below. In particular, we define

92

ûL
i+ 1

2
,jk = un

ijk + (
∆x

2
− uijk∆t

2
)un

x,ijk

ûR
i+ 1

2
,jk = un

i+1,jk − (
∆x

2
+
ui+1,jk∆t

2
)un

x,i+1,j

ûB
i,j+ 1

2
,k = un

ijk + (
∆y

2
− vijk∆t

2
)un

y,ijk

ûF
i,j+ 1

2
,k = un

i,j+1,k − (
∆y

2
+
vi,j+1,k∆t

2
)un

y,i,j+1,k

ûD
ij,k+ 1

2

= un
ijk + (

∆z

2
− wijk∆t

2
)un

z,ijk

ûU
ij,k+ 1

2

= un
ij,k+1 − (

∆z

2
+
wij,k+1∆t

2
)un

z,ij,k+1

where ux,uy, and uz are limited slopes in the x, y, and z-direction, respectively. Using the upwinding

procedure we first define the normal advective velocity on the edges:

ûadv
i+ 1

2
,jk =





ûL if ûL > 0, ûL + ûR > 0,

ûR if ûR < 0, ûL + ûR < 0,

0 otherwise.

v̂adv
i,j+ 1

2
,k =





v̂B if v̂B > 0, v̂B + v̂F > 0,

v̂T if v̂F < 0, v̂B + v̂F < 0,

0 otherwise.

ŵadv
ij,k+ 1

2

=





ŵD if ŵD > 0, ŵD + ŵU > 0,

ŵU if ŵU < 0, ŵD + ŵU < 0,

0 otherwise.

(We suppress the (i + 1
2 , j, k), (i, j + 1

2 , k), (ij, k + 1
2) spatial indices on the bottom and top states

here and in the next equation.)

We now upwind u based on ûadv
i+ 1

2
,jk
, v̂adv

i,j+ 1
2
,k
, ŵadv

ij,k+ 1
2

:

ûi+ 1
2

,jk =





ûL if ûadv
i+ 1

2
,jk

> 0,

1
2 (ûL + ûR) if ûadv

i+ 1
2
,jk

= 0,

ûR if ûadv
i+ 1

2
,jk

< 0.

93

ûi,j+ 1
2
,k =





ûB if v̂adv
i,j+ 1

2
,k
> 0,

1
2 (ûB + ûF) if v̂adv

i,j+ 1
2
,k

= 0,

ûF if v̂adv
i,j+ 1

2
,k
< 0.

ûij,k+ 1
2

=





ûD if ŵadv
ij,k+ 1

2

> 0,

1
2 (ûD + ûU) if ŵadv

ij,k+ 1
2

= 0,

ûU if ŵadv
ij,k+ 1

2

< 0.

After constructing ûi− 1
2
,jk, ûi,j− 1

2
,k, ûij,k− 1

2
in a similar manner, we use these upwind values to

form an approximation to the transverse derivative in (5.3.9 -5.3.14):

(ûux)ijk =
1

2∆x
(ûadv

i+ 1
2
,jk + ûadv

i− 1
2

,jk)(ûi+ 1
2
,jk − ûi− 1

2
,jk).

(v̂uy)ijk =
1

2∆y
(v̂adv

i,j+ 1
2
,k + v̂adv

i,j− 1
2
,k)(ûi,j+ 1

2
,k − ûi,j− 1

2
,k).

(ŵuz)ijk =
1

2∆z
(ŵadv

ij,k+ 1
2

+ ŵadv
ij,k− 1

2

)(ûij,k+ 1
2
− ûij,k− 1

2
).

Once we have computed u
n+ 1

2
,L/R

i+ 1
2
,jk

, v
n+ 1

2
,B/F

i,j+ 1
2
,k

, v
n+ 1

2
,D/U

ij,k+ 1
2

, we are in a position to construct the

normal face-centered edge velocities at tn+ 1
2 :

uADV
i+ 1

2
,jk , v

ADV
i,j+ 1

2
,k, w

ADV
ij,k+ 1

2

.

Given u
n+ 1

2
,L/R

i+ 1
2
,jk

, v
n+ 1

2
,B/F

i,j+ 1
2
,k

, v
n+ 1

2
,D/U

ij,k+ 1
2

,

we use an upwinding procedure to choose u
n+ 1

2

i+ 1
2

,jk
, v

n+ 1
2

i,j+ 1
2
,k
, and w

n+ 1
2

ij,k+ 1
2

:

u
n+ 1

2

i+ 1
2
,jk

=





uL if uL > 0, uL + uR > 0,

uR if uR < 0, uL + uR < 0,

0 otherwise.

v
n+ 1

2

i,j+ 1
2
,k

=





vB if vB > 0, vB + vF > 0,

vF if vF < 0, vB + vF < 0,

0 otherwise.

94

w
n+ 1

2

i,j+ 1
2
,k

=





wD if wD > 0, wD + wU > 0,

wU if wU < 0, wD + wU < 0,

0 otherwise.

These normal velocities on cell faces at tn+ 1
2 ,

u
n+ 1

2

i+ 1
2
,jk
, v

n+ 1
2

i,j+ 1
2
,k
, w

n+ 1
2

ij,k+ 1
2

are second-order accurate but do not, in general, satisfy the discrete divergence-free condition. In order

to make these velocities divergence-free, we apply the MAC projection [8].

The equation

DMACGMACφ = DMACun+ 1
2

is solved for φ, where

DMACun+ 1
2 =

u
n+ 1

2

i+ 1
2

,jk
− u

n+ 1
2

i− 1
2
,jk

∆x
+
v

n+ 1
2

i,j+ 1
2

,k
− v

n+ 1
2

i,j− 1
2
,k

∆y
+
w

n+ 1
2

ij,k+ 1
2

− v
n+ 1

2

ij,k− 1
2

∆z

and

(GMACφ)x
i+ 1

2
,jk =

φi+1,jk − φijk

∆x
,

(GMACφ)y

i,j+ 1
2

,k
=
φi,j+1,k − φijk

∆y
,

(GMACφ)z
ij,k+ 1

2

=
φij,k+1 − φijk

∆z
.

Then define advection velocities by

uADV
i+ 1

2
,jk := u

n+ 1
2

i+ 1
2
,jk

− (GMACφ)x
i+ 1

2
,jk,

vADV
i,j+ 1

2
,k := v

n+ 1
2

i,j+ 1
2
,k
− (GMACφ)y

i,j+ 1
2

,k
,

wADV
ij,k+ 1

2

:= w
n+ 1

2

ij,k+ 1
2

− (GMACφ)z
ij,k+ 1

2

.

The next step, after constructing the advective velocities

uADV
i+ 1

2
,jk, v

ADV
i,j+ 1

2
,k, w

ADV
ij,k+ 1

2

is to choose the appropriate states u
n+ 1

2

i+ 1
2
,jk
, c

n+ 1
2

i+ 1
2
,jk

given the left and right states:

u
n+ 1

2
,L/R

i+ 1
2

,jk
, c

n+ 1
2
,L/R

i+ 1
2

,jk
, u

n+ 1
2
,B/T

i,j+ 1
2
,k

, c
n+ 1

2
,B/F

i,j+ 1
2
,k

, u
n+ 1

2
,D/U

ij,k+ 1
2

, c
n+ 1

2
,D/U

ij,k+ 1
2

.

We have

95

u
n+ 1

2

i+ 1
2
,jk

=





uL if uADV > 0,

1
2 (uL + uR) if uADV = 0,

uR if uADV < 0,

u
n+ 1

2

i,j+ 1
2

,k
=





uB if vADV > 0,

1
2 (uB + uF) if vADV = 0,

uF if vADV < 0,

u
n+ 1

2

ij,k+ 1
2

=





uD if wADV > 0,

1
2 (uD + uU) if wADV = 0,

uU if wADV < 0,

c
n+ 1

2

i+ 1
2
,jk

=





cL if uADV > 0,

1
2 (cL + cR) if uADV = 0,

cR if uADV < 0,

c
n+ 1

2

i,j+ 1
2
,k

=





cB if vADV > 0,

1
2 (cB + cF) if vADV = 0,

cF if vADV < 0,

c
n+ 1

2

ij,k+ 1
2

=





cD if wADV > 0,

1
2 (cD + cU) if wADV = 0,

cU if wADV < 0,

96

where we have again suppressed the spatial indices (i + 1
2 , jk), (i, j + 1

2 , k) and (i, j, k + 1
2). We

follow a similar procedure to construct ui− 1
2
,jk , ui,j− 1

2
,k and uij,k− 1

2
.

[u · ∇u]n+ 1
2 = uux + vuy + wuz =

1

2∆x
(uADV

i+ 1
2
,jk + uADV

i− 1
2
,jk)(ui+ 1

2
,jk − ui− 1

2
,jk)

+
1

2∆y
(vADV

i,j+ 1
2
,k + vADV

i,j− 1
2
,k)(ui,j+ 1

2
,k − ui,j− 1

2
,k)

+
1

2∆z
(wADV

ij,k+ 1
2

+ wADV
ij,k− 1

2

)(uij,k+ 1
2
− uij,k− 1

2
).

[u · ∇c]n+ 1
2 = ucx + vcy + wcz =

1

2∆x
(uADV

i+ 1
2
,jk + uADV

i− 1
2
,jk)(ci+ 1

2
,jk − ci− 1

2
,jk)

+
1

2∆y
(vADV

i,j+ 1
2
,k + vADV

i,j− 1
2
,k)(ci,j+ 1

2
,k − ci,j− 1

2
,k)

+
1

2∆z
(wADV

ij,k+ 1
2

+ vADV
ij,k− 1

2

)(cij,k+ 1
2
− cij,k− 1

2
).

The Godunov method is an explicit difference scheme and, as such, requires a time-step restriction.

A linear, constant-coefficient analysis shows that for stability we must require

max
ijk

(
|uijk |∆t

∆x
,
|vijk |∆t

∆y
,
|wijk |∆t

∆z
) = σ ≤ 1,

where σ is the CFL number. The time-step restriction of the Godunov method is used to set the time step

for the overall algorithm.

3.A Discretization of the projection

In this section we describe the “approximate projection” in Step 2.

Given the discrete vector field

u∗ − un

∆t
, (5.3.15)

we decompose (5.3.15) into approximately divergence free part

un+1 − un

∆t
(5.3.16)

and the discrete gradient of a scalar φ, i.e.,

u∗ − un

∆t
=

un+1 − un

∆t
+ ∇φ, (5.3.17)

where the discrete gradient ∇ in (5.3.17) is defined as

97

∇φijk =

(
φi+ 1

2
,j+ 1

2
,k+ 1

2
+ φi+ 1

2
,j− 1

2
,k+ 1

2
+ φi+ 1

2
,j+ 1

2
,k− 1

2
+ φi+ 1

2
,j− 1

2
,k− 1

2

4∆x

−
φi− 1

2
,j+ 1

2
,k+ 1

2
+ φi− 1

2
,j− 1

2
,k+ 1

2
+ φi− 1

2
,j+ 1

2
,k− 1

2
+ φi− 1

2
,j− 1

2
,k− 1

2

4∆x
,

φi+ 1
2

,j+ 1
2
,k+ 1

2
+ φi− 1

2
,j+ 1

2
,k+ 1

2
+ φi+ 1

2
,j+ 1

2
,k− 1

2
+ φi− 1

2
,j+ 1

2
,k− 1

2

4∆y

−
φi+ 1

2
,j− 1

2
,k+ 1

2
+ φi− 1

2
,j− 1

2
,k+ 1

2
+ φi+ 1

2
,j− 1

2
,k− 1

2
+ φi− 1

2
,j− 1

2
,k− 1

2

4∆y
,

φi+ 1
2

,j+ 1
2
,k+ 1

2
+ φi− 1

2
,j+ 1

2
,k+ 1

2
+ φi+ 1

2
,j− 1

2
,k+ 1

2
+ φi− 1

2
,j− 1

2
,k+ 1

2

4∆z

−
φi+ 1

2
,j+ 1

2
,k− 1

2
+ φi− 1

2
,j+ 1

2
,k− 1

2
+ φi+ 1

2
,j− 1

2
,k− 1

2
+ φi− 1

2
,j− 1

2
,k− 1

2

4∆z

)
.

The approximate projection is computed by solving

∆φ = ∇ ·
(

u∗ − un

∆t

)
(5.3.18)

for φ, where

∆φijk =
φi+1,jk − 2φijk + φi−1,jk

∆x2
+
φi,j+1,k − 2φijk + φi,j−1,k

∆y2
+
φij,k+1 − 2φijk + φij,k−1

∆z2
.

and

∇ · ui+ 1
2
,j+ 1

2
,k+ 1

2
=

ui+1,j+1,k+1 + ui+1,j−1,k+1 + ui+1,j+1,k−1 + ui+1,j−1,k−1

4∆x

−ui−1,j+1,k+1 + ui−1,j−1,k+1 + ui−1,j+1,k−1 + ui−1,j−1,k−1

4∆x

+
vi+1,j+1,k+1 + vi−1,j+1,k+1 + vi+1,j+1,k−1 + vi−1,j+1,k−1

4∆y

−vi+1,j−1,k+1 + vi−1,j−1,k+1 + vi+1,j−1,k−1 + vi−1,j−1,k−1

4∆y

+
wi+1,j+1,k+1 + wi−1,j+1,k+1 + wi+1,j−1,k+1 + wi−1,j−1,k+1

4∆z

−wi+1,j+1,k−1 + wi−1,j+1,k−1 + wi+1,j−1,k−1 + wi−1,j−1,k−1

4∆z
.

After (5.3.18) is solved, we get un+1,

un+1 = u∗ − ∆t∇φ,

and update pn+ 1
2 ,

pn+ 1
2 = pn− 1

2 + φ.

98

5.4 Cocontinuity detection algorithm

We define a measure of cocontinuity as follows. We first determine n the number of connected compo-

nents of the flow. Then, for each component that touches all six boundaries of the box, we define the

degree of cocontinuity of that phase: di = Vi/V where Vi is the volume of the phase and V is the total

volume of the dispersed phase. The structure is fully cocontinuous n = 1 and Vi/V = 1. A blend is only

considered fully cocontinuous if 100 % of one of the components can be extracted and the remaining

piece is still self-supporting.

To find the degree of cocontinuity in our numerical simulation, we developed the following coconti-

nuity detection algorithm. The algorithm starts with the point, (1,1,1) in the cubic domain, nx×ny×nz.

For a given cubic array A[][][], we want to find how many connected components it has and the degree

of cocontinuity of each component.

Begin algorithm

components = 0;

cocontinuity = 0.0;

total =
∑

A[i][j][k]>0.5 1,

for (k = 1; k <= nz; k + +){

for (j = 1; j <= ny; j + +){

for (i = 1; i <= nx; i+ +){

if (A[i][j][k] > 0.5){

m = i, n = j, l = k;

flag1 = 0, f lag2 = 1, count = 1;

99

for (ii = 1; ii <= nx; ii+ +){

for (jj = 1; jj <= ny; jj + +){

for (kk = 1; kk <= nz; kk + +){

B[ii][jj][kk] = 0.0;

}

}

}

while (flag1 < flag2) {
detection(A, B, m, n, l, register);

flag1++;

m = register[i][1];

n = register[i][2];

l = register[i][3];

flag2 = count;

}

component++;

Check whether B[][][] touches all six boundaries, then this component is continuous and coconti-

nuity of this connection component is (
∑

B[i][j][k]>0.5 1) /total, otherwise it is not cocontinuous.

void detection(double ***A, double ***B, int m, int n, int l, int register[][4])

{
B[m][n][l] = 1.0;

A[m][n][l] = 0.0;

for (i=-1; i ≤1; i=i+1) {
for (j=-1; j≤ 1; j=j+1) {

for (k=-1; k ≤ 1; k=k+1) {

if (0 < m+ i < nx+ 1 and 0 < n+ j < ny + 1 and 0 < l + k < nz + 1) {

100

if (A[i+m][j+n][k+l] > 0.5) {

count=count+1;

register[count-1][1] = i+m;

register[count-1][2] = j+n;

register[count-1][3] = k+l;

B[i+m][j+n][k+l] = A[i+m][j+n][k+l];

A[i+m][j+n][k+l] = 0.0; }
}

}
}

}
}

End algorithm

5.5 Numerical Simulations

Figure 5.6: Schematic of computational domain

101

Simulations are for Newtonian viscous fluids. The domain is [0,1]x[0,1]x[0,1] with periodic bound-

ary conditions applied on the side walls and the chaotic shear is applied at the z = 0, 1 walls 5.6. That

is

u(x, y, 1) = −u(x, y, 0) = sin(πt/T),

v(x, y, 1) = −v(x, y, 0) = cos(πt/T),

where t is the time and T is a period. See the reference [102] for the details about the chaotic shear

boundary conditions. The flow is started from rest and the initial concentration field consists of either

randomly distributed ellipsoids at specific volume fractions (Figs. 5.7-5.27) or random perturbations of

the uniform concentration consistent with the specified volume fraction (Figs. 5.33-5.36).

The simulation parameters are

η1/η2 = 1.0, ρ1/ρ2 = 1.0, Re = 1.0, We = 100.0; ε = 0.01, Pe = 10.0/ε,

these nondimensional parameters were defined at chapter 4. At high enough volume fractions (35%

or greater), the initial distribution undergoes a coalescence cascade and co-continuous microstructures

form, consistent with experimental observations [66].

Fig. 5.7 shows 20 % volume fraction interface and Fig. 5.8, Fig. 5.9, and Fig. 5.10 are 2-D slices

of the concentration field normal to x-axis, y-axis, and z-axis, respectively. In these plots, the c = 0.5

contours are shown as filled. Similarly, Figs. 5.11, 5.15, 5.15, 5.15, 5.19, 5.23, and 5.27 show 25 %, 30

%, 35 %, 40 %, 45 %, and 50 % volume fractions. In these figures, the interfacial surface corresponding

to c = 0.5 is plotted. Convex particles, such as a disk suspended in a matrix, have a convex area equal to

the real area and thus have zero surrounded area. Particles that have some concave interface structure will

’surround’ the material in the concave area. In systems where the two phases are heavily inter-wined,

each phase surrounds a significant amount of the other phase. This idea is exploited in the 2-D image

analysis in [72] that is used to detect co-continuous structures. In the 2-D slices we have shown here,

this effect can be seen although much more information is gained by viewing and analyzing the full 3D

domain.

102

Figure 5.7: 20 % volume fraction

Figure 5.8: x slices (x=0.2, 0.3 and 0.8)

Figure 5.9: y slices (y=0.2, 0.3 and 0.8)

Figure 5.10: z slices (z=0.2, 0.3 and 0.8)

103

Figure 5.11: 30 % volume fraction

Figure 5.12: x slices (x=0.2, 0.3 and 0.8)

Figure 5.13: y slices (y=0.2, 0.3 and 0.8)

Figure 5.14: z slices (z=0.2, 0.3 and 0.8)

104

Figure 5.15: 35 % volume fraction

Figure 5.16: x slices (x=0.2, 0.3 and 0.8)

Figure 5.17: y slices (y=0.2, 0.3 and 0.8)

Figure 5.18: z slices (z=0.2, 0.3 and 0.8)

105

Figure 5.19: 40 % volume fraction

Figure 5.20: x slices (x=0.2, 0.3 and 0.8)

Figure 5.21: y slices (y=0.2, 0.3 and 0.8)

Figure 5.22: z slices (z=0.2, 0.3 and 0.8)

106

Figure 5.23: 45 % volume fraction

Figure 5.24: x slices (x=0.2, 0.3 and 0.8)

Figure 5.25: y slices (y=0.2, 0.3 and 0.8)

Figure 5.26: z slices (z=0.2, 0.3 and 0.8)

107

Figure 5.27: 50 % volume fraction

Figure 5.28: x slices (x=0.2, 0.3 and 0.8)

Figure 5.29: y slices (y=0.2, 0.3 and 0.8)

Figure 5.30: z slices (z=0.2, 0.3 and 0.8)

108

Figure 5.31: Experiment result [66].

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.6

0.8

1

1.2

1.4

Cocontinuous

Interface area

Volume fraction

Figure 5.32: Numerical simulation

5.A Interfacial area per unit area

Experimentally [66], the interfacial area per unit volume exhibits a maxima for blend compositions at

the boundary between droplet and cocontinuous morphologies. This is seen in Fig. 5.31, the average

length of interface per unit area of the micrographs is shown as a function of blend composition. Two

local maxima appear in this plot, one at a blend composition of 35% PEO and another at a composi-

tion of 65% PEO. Solvent extraction experiments confirmed that these peaks represent the boundaries

of the region of cocontinuity for these PEO-PS polymer blends [67]. Blends outside of this region have

droplet morphologies, while blends within this region exhibit cocontinuous microstructures. This sug-

gests that, like solvent extraction, interfacial area measurement using SEM with image analysis can be

used to detect the region of cocontinuity in a polymer-polymer system. In Fig. 5.32, the corresponding

numerical results (interface area per unit area) are shown with different volume fractions. Unlike the

experiments, peaks in the area curve are observed at 40% and 60% volume fractions. Consistent with

the experiments, the interface area is roughly flat within the co-continuous domain. There are several

possible explanations for this deviation that are currently under study. For example, in the experiment,

there is significant annealing of the blend before the area measurement is taken (Macosko, private com-

munication). Moreover, the experimental fluids are non-Newtonian and viscoelastic effects are neglected

in our simulations.

In Figs. 5.33-5.36, the evolution of an initially fine, random dispersion of drops (30%, 35%, 45%,

109

and 50% volume fractions) under simple shear (shear rate γ̇ = 1.0) are shown. Observe the development

of structure. To characterize the structure, we define a measure of cocontinuity as follows. We first

determine n the number of connected components of the flow. Then, for each component that touches all

six boundaries of the box, we define the degree of cocontinuity of that phase: di = Vi/V where Vi is the

volume of the phase and V is the total volume of the dispersed phase. The structure is fully cocontinuous

n = 1 and Vi/V = 1.

Interpretation of the cocontinuity function

Values of the cocontinuity that are near zero indicate discrete, convex particles suspended in a matrix. As

the cocontinuity approaches 0.3, some combination of increased suspended phase and partially concave

discrete particle morphology is present in the image. Cocontinuity values from 0.3 to 0.6 are obtained

when the particle-matrix interface morphology is significantly concave without much interpenetration of

the particles from the same phases or, in special cases of highly coordinated structures, from the same

phase.

The degree of cocontinuity di for this flow is presented in the tables below each simulation result.

In all cases, we find that there is never more than a single component in contact with all the boundaries.

For example, when the volume fraction is 35%, a cocontinuous structure forms approximately at time

t = 1.95 and persists until approximately t = 6.75. The structure is formed by a coalescence cascade

and is eventually broken by the simple shearing flow. The final flow configuration consists of a series of

fiber-like tubes of second-phase fluid.

110

t=0.3 t=1.35 t=4.2 t=10.05

Figure 5.33: 30 % volume fraction

case 30 % t=0.3 1.35 1.8 1.95 4.2 6.9 10.05

connected components 154 85 68 68 29 23 20

cocontinuity 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.1: Cocontinuity of 30 % concentration of dispersed phase

t=0.3 t=1.35 t=4.2 t=10.05

Figure 5.34: 35 % volume fraction

case 35 % t=0.3 1.35 1.8 1.95 4.2 6.9 10.05

connected components 126 44 30 26 10 13 15

cocontinuity 0.0 0.0 0.0 0.0 0.95 0.0 0.0

Table 5.2: Cocontinuity of 35% concentration of dispersed phase

111

t=0.3 t=1.35 t=4.2 t=10.05

Figure 5.35: 45% volume fraction

case 45 % t=0.3 1.35 1.8 1.95 4.2 6.9 10.05

connected components 11 4 4 1 1 2 5

cocontinuity 0.996 0.999 0.998 1.0 1.0 0.998 0.935

Table 5.3: Cocontinuity of 45% concentration of dispersed phase

t=0.3 t=1.35 t=4.2 t=10.05

Figure 5.36: 50% volume fraction

case 50 % t=0.3 1.35 1.8 1.95 4.2 6.9 10.05

connected components 4 6 2 1 2 3 3

cocontinuity 0.999 0.999 0.9999 1.0 0.9999 0.999 0.0

Table 5.4: Cocontinuity of 50% concentration of dispersed phase

112

2 4 6 8 10
0

2

4

6

8

10

12

14

30% continuity
30% surface energy
35% continuity
35% surface energy
45% continuity
45% surface energy
50% continuity
50% surface energy

Co−continuity

TIME

Interfacial Energy

Figure 5.37: The values of cocontinuity and interface Energy are plotted against time

Finally, in Fig. 5.37 the total interface area per unit area and the degree of cocontinuity are plotted

as functions of time for the simulations presented in Figs. 5.33-5.36 . All volume fractions show a

decrease in interface area. The 30% case shows zero cocontinuity until time t = 6.0, and has a degree

of cocontinuity approximately 0.5 in the time interval t = 6.0 and t = 8.0. The 35% is co-continuous

between t = 2.0 and t = 7.0. The 45% and 50% are cocontinuous throughout the simulation. This is

due in part to the choice of initial conditions and is currently under study.

113

Figure 5.38: t=0 Figure 5.39: t=0

Figure 5.40: t=1500 Figure 5.41: t=1500

Figure 5.42: t=3500 Figure 5.43: t=3500

Figure 5.44: t=5000 Figure 5.45: t=5000

Figure 5.46: Left column σ = 1.0, right column σ = 50.0

114

5.B The Influence of interfacial tension

In Fig. 5.46, evolutions are presented using two different surface tensions. The first column in the figure

is the evolution with σ = 1.0, and the second is with σ = 50.0. And the initial configurations are same

and the other parameters are as in Fig. (5.7) except that there is no applied shear flow. The evolution is

driven by surface tension relaxation. In the σ = 1 case, there is little observed evolution. In the σ = 50

case, on the other hand, there is much more rapid evolution and there is break-up due to the Rayleigh

instability and a subsequent coarsening of microstructure through interface coalescence.

5.C Conclusions

Numerical simulations show qualitative agreement with experimental data. Surface tension, flow field,

and volume fractions are all important factors for the blends to form cocontinuous morphologies.

115

