

저작자표시 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

Contents

Abstract iii

Acknowledgments iv

Chapter 1. Introduction 1

1.1. Motivation and objectives 1

1.2. Outline of thesis 4

Chapter 2. The model of solidification in physical 5

2.1. Modeling the solidification of a pure material 5

Chapter 3. Crystal growth modeling 8

3.1. Phase–field model 8

3.2. Phase–field modeling for crystal growth 19

3.3. Four-fold crystal growth 26

3.4. The Wulff construction 28

Chapter 4. Numerical solutions 34

4.1. Time discretisation 36

4.2. Calculation of the crystal tip position and velocity 43

Chapter 5. Adaptive mesh refinement 44
-i-

5.1. Hierarchical structured Cartesian grids 44

5.2. Creation of the grid hierarchy 46

5.3. Boundary interpolation 49

5.4. Algorithm for mesh plots 52

Chapter 6. Adaptive mesh refinement multigrid algorithm 55

Chapter 7. Numerical results 60

7.1. Evolution for crystal growth in two- and three-dimensional spaces 61

7.2. Stability of the operator splitting algorithm 65

7.3. Convergence test 68

7.4. Effect of time step and mesh 71

7.5. Effect of radius 75

7.6. Effect of undercooling 76

7.7. Comparison between our proposed adaptive method, explicit adaptive

method, and uniform mesh simulation 78

7.8. Dendritic growth at low undercooling 80

7.9. Accuracy of our proposed method 83

Chapter 8. Conclusions 86

Appendix 87

Bibliography 93

-ii-

Abstract

A great challenge in the simulation of crystal growth with various supercoolings

is the large difference in time and length scales. The use of mesh adaptivity, which is

based on the choice of a suitable time integration method, is a natural choice to over-

come this problem. However adaptive technology also suffers the time step restriction

and crystal growth simulation with various supercoolings is still very difficult. There-

fore we need a scheme that allows the use of a sufficiently large time step without the

technical limitations. In this dissertation, we will review our research on overcoming

the stability restriction by introducing a fast, robust, and accurate operator splitting

method. Then we extend this work by incorporating adaptive mesh refinement.

After giving a brief introduction to the model of solidification in physics, we will

describe the crystal growth modeling. Later, we will introduce the fast, robust, and

accurate operator splitting method for phase-field simulations of crystal growth. And

then the description of adaptive mesh refinement method will be drawn. Finally we

will demonstrate stability, robustness, and accuracy of the proposed method by a set of

representative numerical experiments.

-iii-

Acknowledgments

I am very grateful for my advisor, Prof. Junseok Kim, for his guidance, encour-

agement, and assistance to my professional development. My appreciation also goes

to Prof. Woonjae Hwang, Prof. Inkyung Ahn, Prof. Chunjae Park, and Prof. Kiwoon

Kwon for serving on my committee. I would also like to thank my colleagues and

friends for their help and friendship in our research group. In particular, I thank Prof.

Junseok Kim for providing a productive environment for research. Under his guidance,

I have published ten SCI papers with the members of our research group, during the

past four years. In addition, I would like to thank my parents and grandparents for

their support and love. Finally, I want to thank my wife, Binhu Xia, for her love and

understanding.

-iv-

1

Chapter 1

Introduction

1.1. Motivation and objectives

Crystal growth is a classical example of phase transformations from the liquid

phase to the solid phase via heat transfer. In the past, to understand and simulate

crystal growth, several methods have been developed including boundary integral [33,

40, 47, 51], cellular automaton [32, 61, 63, 64], front-tracking [3, 18, 21, 55, 62],

level-set [9, 17, 26, 56], Monte-Carlo [42, 49], and phase-field [8, 10, 11, 13, 19, 22,

23, 24, 27, 37, 38, 39, 43, 44, 45, 46, 48, 54, 57, 58, 60] methods. Among these vari-

ous methods, the phase-field method is popular and widely used. Its advantage is that

the explicit tracking of the interface is unnecessary by introducing an order parameter,

i.e., a phase-field variable. In this chapter, we focus the phase-field method for crystal

growth problems which avoids difficulties associated with tracking the interface and

computes complex crystal shapes.

We consider the solidification of a pure substance from its supercooled melt in both

two- and three-dimensional spaces. A great challenge in the simulation with various

supercoolings is the large difference in time and length scales. In order to overcome

1.1. MOTIVATION AND OBJECTIVES 2

this, many numerical methods have been proposed such as explicit [20, 21, 23, 45, 58],

mixed implicit-explicit [44, 57, 60], and adaptive methods [10, 11, 43, 46, 48]. In the

case of explicit methods, which are widely used, the solutions become unstable for

large time steps. For this reason, in [21, 58], the authors suggested ∆t < h2/(4D) for

stability of explicit methods. Here, ∆t is the time step, h is the mesh size, and D is the

thermal diffusivity. In [21], the time step is also restricted to ∆t ≤ h/(10|Vmax|), where

|Vmax| is the magnitude of the maximum value of the interface velocity. And, in [58],

the authors showed that ∆t = h2/(5DL) works well through numerical experiments.

Here, DL =Mϕϵ
2, Mϕ is the kinetic mobility, and ϵ is the interface energy anisotropy.

Implicit methods allow relatively larger time steps, however they are more expensive

per step than explicit ones. Another classical method [54] is a multiple time-step algo-

rithm that uses a larger time step for the flow-field calculations while reserving a fine

time step for the phase-field evolution. The use of mesh adaptivity, which is based on

the choice of a suitable time integration method, is a natural choice to overcome this

problem. However adaptive technology also suffers the time step restriction and the

crystal growth simulation with various supercoolings is still very difficult. Therefore

we need a scheme that allows the use of a sufficiently large time step without technical

limitations.

This dissertation consists of published papers

1.1. MOTIVATION AND OBJECTIVES 3

1. Phase-field simulations of crystal growth with adaptive mesh refinement, Yibao

Li and Junseok Kim, International Journal of Heat and Mass Transfer, 55 (2012)

7926–7932.

2. A fast, robust, and accurate operator splitting method for phase-field simula-

tions of crystal growth, Yibao Li, Hyun Geun Lee, and Junseok Kim, Journal of

Crystal Growth, 321 (2011) 176–182.

3. A robust and accurate phase-field simulation of snow crystal growth, Yibao Li,

Dongsun Lee, Hyun Geun Lee, Darae Jeong, Chaeyoung Lee, Donggyu Yang,

and Junseok Kim, Journal of the Korean Society for Industrial and Applied

Mathematics, 16 (2012) 15–29.

1.2. OUTLINE OF THESIS 4

1.2. Outline of thesis

In Chapter 2, we give a brief introduction to the model of solidification in physics.

Here we review the modeling the solidification of a pure material.

In Chapter 3, we give a discussion on implementing the interfacial and anisotropic

interfacial energy. And then we derive the phase–field modeling of crystal growth.

In Chapter 4, we present an operator splitting method for phase field method of

crystal growth was introduced in our previous study [37, 38, 39]. We split the gov-

erning phase–field equation into three parts. The first equation is calculated by using

an explicit Euler’s method. The second one is a heat equation with source term and

is solved by a fast solver such as a multigrid method. The third one is a nonlinear

equation and is evaluated using a closed form solution.

In Chapter 5, we give a brief description of adaptive mesh refinement method in-

cluding: hierarchical structured Cartesian grids, creation of the grid hierarchy, bound-

ary interpolation, and algorithm for mesh plots.

In Chapter 6, adaptive mesh refinement multigrid algorithm is introduced.

In Chapter 7, various numerical methods are presented to demonstrate the accuracy

and robustness of the proposed operator splitting method.

Finally, conclusions are drawn in Chapter 8.

5

Chapter 2

The model of solidification in physical

2.1. Modeling the solidification of a pure material

The model for the solidification of a pure liquid is formulated as a moving boundary

problem [30]. It is known as a Stefan problem, which typically involve the evolution

of smooth boundaries or interfaces between different phases of a pure substance.

The situation is that the liquid changes to solid due to the generated latent heat.

Meanwhile this latent carries away from the interface due to the changing of liquid.

The rate of solidification is limited by the diffusion of latent heat away from the solid-

liquid interface. The heat conduction equation which is valid in bulk solid and liquid

phases is presented:

∂U

∂t
= D∆U. (2.1)

The term U = (T −Tm)/(L/Cp) denotes the dimensionless temperature and T , Tm, L,

and Cp represent temperature, melting point of planer interface, latent heat of fusion,

and specific heat at constant pressure, respectively. The term D is thermal diffusivity

which is assumed to be different in the solid and liquid phases. There are also two

2.1. MODELING THE SOLIDIFICATION OF A PURE MATERIAL 6

boundary conditions at the solid-liquid interface. The first condition is the Stefan con-

dition whose motion is expressed as energy conservation at the interface under phase

transformation:

Vn = (Dn · ∇U)Solid − (Dn · ∇U)Liquid. (2.2)

Here Vn is the velocity of the interface normal to the phase boundary and n is the

unit normal vector to the interface. The subscripts Solid and Liquid stand for solid

and liquid phase, respectively. Equation (2.2) can be described as that the interface

velocity is proportional to the discontinuity in the heat flux across the interface.

The second boundary condition is Gibbs–Thomson condition which defines the

equilibrium temperature of the interface of solid and liquid phases:

Uinterface = −d(θ)κ− β(θ)Vn (2.3)

Equation (2.3) describes that the interface temperature, Uinterface is shifted as a

function of the local curvature κ and interface kinetics. d(θ) = γ(θ)TmCp/L
2 is the

anisotropic capillary length, which is proportional to the surface tension γ(θ). β(θ) is

the anisotropic kinetic coefficient. θ is the angle between the local normal vector at

the interface. Traditionally, the expressions β(θ) = β0(1 + βk cos(kθ)) and d(θ) =

2.1. MODELING THE SOLIDIFICATION OF A PURE MATERIAL 7

β + βθθ = β0 (1− (k2 − 1)βk cos(kθ)) are used for a system with k-fold symmetry,

where βk is a measure of the anisotropy strength.

8

Chapter 3

Crystal growth modeling

In the past, to understand and simulate crystal growth, several methods have been

developed including boundary integral, cellular automaton, front-tracking, level-set,

Monte-Carlo, and phase-field methods. Among these various methods, the phase-field

method is popular and widely used. Its advantage is that the explicit tracking of the

interface is unnecessary by introducing an order parameter, i.e., a phase-field variable.

3.1. Phase–field model

The phase-field model is a most popular technique for simulating dendritic growth

and solving image analysis. It avoids front tracking by introducing an auxiliary order

parameter, or phase-field ϕ(x, t) that couples to the evolution of the thermal field. The

phase-field interpolates between the two mixtures ϕ = (m1 −m2)/(m1 +m2), where

m1 and m2 are the masses of two mixtures (see Fig. 3.1(a)). We note that the quantity

ϕ(x, t) ∈ [−1, 1]. The variable ϕ known as the order parameter represents the local

state of the entire system (see Fig. 3.1(b)). For example, ϕ = 1 in the one phase

3.1. PHASE–FIELD MODEL 9

whose mass is m1 and ϕ = −1 in the other phase. The interface between two phases

is defined by Γ = {x ∈ Ω|ϕ(x, t) = 0}.

Ω

Γ

m2

m1

(a)

−1

0

1

(b)

FIGURE 3.1. (a) Schematic illustration of two mixtures. (b) Schematic
illustration of the definition of order parameter.

Because the interface is implicitly tracked, complicated topology changes are han-

dled easily. Furthermore, the extension of the phase–field model to higher dimensions

is straightforward. The phase–field varies smoothly from two phases within the diffuse

interface, thus the phase is treated as diffuse rather than the sharp interface used in the

usual sharp interface method. An illustration of sharp interface and diffuse interface is

given in Fig. 3.2.

The Helmholtz free energy functional is defined as

E(ϕ) =
∫
Ω

(
F (ϕ) +

ε2

2
|∇ϕ|2

)
dx, (3.1)

where Ω ⊂ Rd (d = 1, 2, 3) and ε is the gradient energy coefficient related to the

interfacial energy. F (ϕ) = 0.25(ϕ2− 1)2 is the Helmholtz free energy per unit volume

3.1. PHASE–FIELD MODEL 10

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ

(b)

FIGURE 3.2. (a) Sharp interface and (b) Diffuse interface.

of homogeneous system of composition ϕ (see Fig. 3.3) and ε2

2
|∇ϕ|2 is a gradient

energy. Various numerical methods are intensively studied with Neumann, periodic,

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

composition

fr
ee

 e
ne

rg
y

FIGURE 3.3. Helmholtz free energy density F (ϕ) = 0.25(ϕ2 − 1)2.

contact angle, or Dirichlet boundary conditions. Here we only describe this problem

3.1. PHASE–FIELD MODEL 11

with zero Neumann boundary condition,

∂ϕ

∂n
(x, t) = 0, x ∈ ∂Ω. (3.2)

where ∂
∂n

denotes the normal derivative on ∂Ω.

3.1. PHASE–FIELD MODEL 12

3.1.1. Allen–Cahn equation. The Allen–Cahn equation (AC) [1] was originally

introduced as a phenomenological model for anti-phase domain coarsening in a binary

alloy. It has been applied to a wide range of problems such as phase transitions, image

analysis, the motion by mean curvature flows, and crystal growth. The AC equation is

the L2-gradient flow of the total free energy E(ϕ). Now, we review a derivation of the

AC equation as a gradient flow [12, 16].

It is natural to seek a law of evolution in the form

∂ϕ

∂t
= −MδE

δϕ
. (3.3)

The symbol “δ” here denotes the gradient on the manifold in L2(Ω) space and the

coefficient, M , is a constant mobility. Let the domain of definition for the functional

E be D = {ϕ ∈ H2(Ω)| ∂ϕ
∂n

= 0 on ∂Ω}. Let ϕ, ψ ∈ D. Then, we have

d

dθ
E(ϕ+ θψ)

∣∣
θ=0

= lim
θ→0

1

θ

(
E(ϕ+ θψ)− E(ϕ)

)
=

∫
Ω

(
F ′(ϕ)− ε2∆ϕ

)
ψdx+

∫
∂Ω

ε2
∂ϕ

∂n
ψ ds

=

∫
Ω

(
F ′(ϕ)− ε2∆ϕ

)
ψ dx.

where we have used an integration by parts and the boundary condition (3.2). We

identify

δE
δϕ
≡ F ′(ϕ)− ε2∆ϕ. (3.4)

Then Eq. (3.3) becomes the AC equation [16].

3.1. PHASE–FIELD MODEL 13

φ ≈ −1

φ ≈ 1

r

n

−n

φ = 0

FIGURE 3.4. Illustration of a small section of a interface showing the
order parameter, ϕ, and unit normal, n.

We differentiate the energy E(ϕ) to get

d

dt
E(ϕ) =

∫
Ω

(F ′(ϕ)ϕt + ε2∇ϕ · ∇ϕt)dx

=

∫
Ω

(F ′(ϕ)− ε2∆ϕ)ϕtdx

= −M
∫
Ω

(ϕt)
2dx ≤ 0, (3.5)

where we have used an integration by parts and the boundary condition (3.2). There-

fore, the total energy is non-increasing in time; that is, the total energy is a Lyapunov

functional for solutions of the AC equation. The AC equation and its various modified

forms are widely applied to solving the problem of image analysis [4, 14, 34, 35, 36]

due to its property of motion by mean curvature. We will review the property. Let

us define n = ∇ϕ/|∇ϕ| is the unit vector normal to the surfaces. Then it deduces

3.1. PHASE–FIELD MODEL 14

n · n = 1 and n · nr = 0, where nr is the rate of change of n in the direction of r

coordinate (see Fig. 3.4).

Now the term ∆ϕ can be rewritten as following:

∆ϕ = ∇ · ∇ϕ = ∇ · (|∇ϕ|n)

= ∇ · ((∇ϕ · n)n) = ∇ · (−ϕrn)

= −∇ϕr · n− ϕr∇ · n = −(∇ϕ)r · n− ϕr∇ · n

= (ϕrn)r · n− ϕr∇ · n

= (ϕrrn+ ϕrnr) · n− ϕr∇ · n = ϕrr + (κ1 + κ2)ϕr.

Since the divergence of unit normal vector to a surface is equal to the negative of the

mean curvature (κ1 + κ2), we can have it for the kinetic equation.

ϕt = −F ′(ϕ) + ε2ϕrr + ε2(κ1 + κ2)ϕr , (3.6)

where κ1 and κ2 are the principal curvatures of the surface. And for the planar interface

at equilibrium, the following holds

−F ′(ϕ) + ε2ϕrr ≈ 0. (3.7)

Therefore, Eq. (3.6) can be rewritten as

ϕt = ε2(κ1 + κ2)ϕr. (3.8)

3.1. PHASE–FIELD MODEL 15

At Γt = {(x, y, z)|ϕ(x, y, z, t) = 0}, the velocity of a constant ϕ surface in the inter-

face region is given by

0 =
d(ϕ(r, t))

dt

∣∣∣∣
Γt

= ϕrrt + ϕt ⇒ rt = −ϕt/ϕr = −ε2(κ1 + κ2) .

Therefore all surfaces of constant at a point in the interface will move with the same

velocity V , given by these above equations as

V = −ε2(κ1 + κ2) = −ε2
(

1

R1

+
1

R2

)
, (3.9)

where R1, R2 are the principal radii of curvatures at the point of the surface [1]. Fur-

thermore the AC type dynamics does not conserve the volume fractions, since the AC

equation satisfies

d

dt

∫
Ω

ϕdx =

∫
Ω

ϕtdx =

∫
Ω

M
(
−F ′(ϕ) + ε2∆ϕ

)
dx

=

∫
Ω

−MF ′(ϕ)dx+

∫
∂Ω

Mε2n · ∇ϕds

=

∫
Ω

−MF ′(ϕ)dx ̸≡ 0.

3.1. PHASE–FIELD MODEL 16

3.1.2. Phase-field model with anisotropic interfacial energy. To describe anisotrop-

ic interfacial energy, the gradient energy coefficient, ϵ to the depend on the angle of the

normal to the order parameter ϕ

ϵ(θ) = ϵ0(1 + ϵk cos(kθ)), (3.10)

where ϵ0 and ϵk are positive constants. The angle between normal vector and x-axis as

ϕ that satisfies

tan(θ) = ϕy/ϕx. (3.11)

Then we want to minimize the free energy functional

E(ϕ) =

∫
Ω

(
F (ϕ) +

ϵ(θ)2

2
|∇ϕ|2

)
dx, (3.12)

=

∫
Ω

E(ϕ,∇ϕ, θ)dx.

Then

δE(ϕ,∇ϕ, θ) =
∂E

∂ϕ
δϕ+

∂E

∂∇ϕ
δ∇ϕ+

∂E

∂θ
δθ

=
dF

dϕ
δϕ+ ϵ2∇ϕ · δ∇ϕ+ |∇ϕ|2ϵ dϵ

dθ
δθ. (3.13)

Thus

δE(ϕ) =

∫
Ω

δE(ϕ,∇ϕ, θ)dx

=

∫
Ω

(
dF

dϕ
δϕ+ ϵ2∇ϕ · δ∇ϕ+ |∇ϕ|2ϵ dϵ

dθ
δθ

)
dx

=

∫
Ω

dF

dϕ
δϕdx+

∫
Ω

ϵ2∇ϕ · δ∇ϕdx+

∫
Ω

|∇ϕ|2ϵ dϵ
dθ
δθdx.

3.1. PHASE–FIELD MODEL 17

The second integral can be rewritten as

∫
Ω

ϵ2∇ϕ · δ∇ϕdx = −
∫
Ω

δϕ∇ · (ϵ2∇ϕ)dx+

∫
∂Ω

∂(ϵ2∇ϕ)
∂n

δϕds

= −
∫
Ω

δϕ∇ · (ϵ2∇ϕ)dx, (3.14)

where we have used an integration by parts and the boundary condition (Eq. (3.2)).

The third integral can be rewritten as

∫
Ω

|∇ϕ|2ϵ dϵ
dθ
δθdx

=

∫
Ω

|∇ϕ|2ϵ dϵ
dθ
δθ(ϕx, ϕy)dx

=

∫
Ω

|∇ϕ|2ϵ dϵ
dθ

1

1 +
(
ϕy
ϕx

)2 [δϕyϕx − ϕyδϕx(ϕx)2

]
dx

=

∫
Ω

|∇ϕ|2ϵ dϵ
dθ

[
δϕyϕx − ϕyδϕx
(ϕy)2 + (ϕx)2

]
dx

=

∫
Ω

ϵ
dϵ

dθ
[δϕyϕx − ϕyδϕx]dx

=

∫
Ω

ϵ
dϵ

dθ
δϕyϕxdx−

∫
Ω

ϵ
dϵ

dθ
ϕyδϕxdx

= −
∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕx

)
y

dx+

∫
∂Ω

δϕϵ
dϵ

dθ
ϕxds

+

∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕy

)
x

dx−
∫
∂Ω

δϕϵ
dϵ

dθ
ϕyds

= −
∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕx

)
y

dx+

∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕy

)
x

dx. (3.15)

3.1. PHASE–FIELD MODEL 18

Here we have used the definition of the angle θ = arctan(ϕy/ϕx), the integration by

parts and the Neumann condition. Then substituting to Eq. (3.13), we get

δE(ϕ,∇ϕ, θ) =
∫
Ω

dF

dϕ
δϕdx−

∫
Ω

δϕ∇ · (ϵ2∇ϕ)dx

−
∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕx

)
y

dx+

∫
Ω

δϕ

(
ϵ
dϵ

dθ
ϕy

)
x

dx

=

∫
Ω

(
dF

dϕ
−∇ · (ϵ2∇ϕ)−

(
ϵ
dϵ

dθ
ϕx

)
y

+

(
ϵ
dϵ

dθ
ϕy

)
x

)
δϕdx. (3.16)

Finally, δE/δϕ is identified as

δE
δϕ

=
dF

dϕ
−∇ ·

(
ϵ2∇ϕ

)
−
(
ϵ
dϵ

dθ
ϕx

)
y

+

(
ϵ
dϵ

dθ
ϕy

)
x

. (3.17)

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 19

3.2. Phase–field modeling for crystal growth

The phase field molding for crystal growth is raised from anisotropic interfacial

energy with a source term

Ec(ϕ) =
∫
Ω

(
F (ϕ) +

ϵ(θ)2

2
|∇ϕ|2 + λUg(ϕ)

)
dx, (3.18)

Here U(x, t) is the temperature field and g(ϕ) = ϕ5/5 − 2ϕ3/3 + ϕ is chosen as its

minima make the double well potential fixed at ϕ = ±1, i.e., dg/dϕ = (1 − ϕ2)2. λ

controls the coupling between the order parameter and the thermal field. Taking the

functional derivative of Eq. (3.18), we get

δEc
δϕ

=
dF

dϕ
−∇ · (ϵ2∇ϕ) + λU

dg

dϕ
−
(
ϵ
dϵ

dθ
ϕx

)
y

+

(
ϵ
dϵ

dθ
ϕy

)
x

. (3.19)

Then the equation of motion for ϕ becomes

ϵ2(θ)
∂ϕ

∂t
= −δEc

δϕ

= ∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

− (ϵ′(θ)ϵ(θ)ϕy)x + (ϵ′(θ)ϵ(θ)ϕx)y . (3.20)

The equation for the thermal field is a diffusion equation with a source term that

depends on changes in the order parameter ϕ, which accounts for the liberation of

latent heat at the interface:

∂U

∂t
= D∆U +

1

2

∂ϕ

∂t
. (3.21)

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 20

Hence we summarize the governing equations of k-fold symmetric crystal growth

as following:

ϵ2(θ)
∂ϕ

∂t
= ∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

− (ϵ′(θ)ϵ(θ)ϕy)x + (ϵ′(θ)ϵ(θ)ϕx)y (3.22)

∂U

∂t
= D∆U +

1

2

∂ϕ

∂t
. (3.23)

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 21

3.2.1. Relation with physical problem. To be able to perform quantitative simu-

lations with the phase-field model, the equations of motion have to reduce to the free

boundary problem for the solidification of a pure substance, given in section 2.1. The

interface condition for the dimensionless temperature is given in Eq. (2.3) as

Uinterface = −d(θ)κ− β(θ)Vn

The above equation is a simple binary alloy of Gibbs–Tomson equation.

Then we can rewrite the above equation as

β(θ)Vn = d(θ)κ+ Uinterface. (3.24)

The normal interface speed is given

Vn = V · n = V ·
(
∇ϕ
|∇ϕ|

)
=
∂ϕ/∂t

|∇ϕ|
. (3.25)

Here V is the velocity of phase field. The expression for the curvature, κ, is given

κ = ∇ ·
(
∇ϕ
|∇ϕ|

)
. (3.26)

Since phase-field profile takes the following form across interface as

ϕ(r) = tanh
r√
2ϵ
, (3.27)

where a local coordinate r is from outside of the solid phase to inside normally and is

zero at the interface. ε > 0 is a transition parameter that is taken to be very small. If the

phase-field across the interface takes the form given by Eq. (3.27), then the following

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 22

equation satisfies

F (ϕ) =
(ϕ2 − 1)2

4
≈ ε2

2
|∇ϕ|2, (3.28)

which means |∇ϕ| = (1−ϕ2)/(
√
2ε). Now, using Eq. (3.28), we rearrange Eq. (3.26)

by

κ = ∇
(

1

|∇ϕ|

)
· ∇ϕ+

∆ϕ

|∇ϕ|

= ∇

(√
2ε

1− ϕ2

)
· ∇ϕ+

∆ϕ

|∇ϕ|

=
2
√
2εϕ|∇ϕ|2

(1− ϕ2)2
+

∆ϕ

|∇ϕ|

=

√
2ϕ

ε
+

∆ϕ

|∇ϕ|

=
1

|∇ϕ|

(
ϕ(ϕ2 − 1)

ε2
−∆ϕ

)
. (3.29)

Substituting Eqs. (3.25) and (3.29) into Eq. (3.24), we get

β(θ)
∂ϕ

∂t
= d(θ)

(
ϕ(ϕ2 − 1)

ε2
−∆ϕ

)
+ Uinterface|∇ϕ|

= d(θ)

(
ϕ(ϕ2 − 1)

ε2
−∆ϕ

)
+ U

1− ϕ2

√
2ε

= d(θ)

(
ϕ(ϕ2 − 1)

ε2
−∆ϕ

)
+ U

1− ϕ2

√
2ε

. (3.30)

Here U(1−ϕ2)/(
√
2ε) represents the themo-solutal driving force for ϕ by temperature.

Note that we can take U |∇ϕ| = Uinterface|∇ϕ|, since |∇ϕ| is zero in each phase. With

the anisotropic interfacial energy, we can the mentioned phase–field equation (3.22).

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 23

One difference is that the last term, 1− ϕ2 in Eq. (3.30), is replaced by (1−ϕ2)2 in Eq.

(3.22). These two equations are much similar as shown in Fig. 3.5. While the latter

form corresponds to a greater concentration of the driving force and helps stabilize the

front in the presence of a strong temperature gradient [23, 24]. It should be noted that

the physics of the simulated system is given by the capillary length and the kinetic

coefficient. In the phase-field simulations, the interface width ϵ can be artificially

increased without changing the physics of the system. This makes the phase-field

method so powerful.

−2 −1 0 1 2
−1

−0.5

0

0.5

1

x

φ
1−φ2

(1−φ2)2

FIGURE 3.5. Plots of 1− ϕ2 and (1−ϕ2)2. Here ϕ = tanh(x/(
√
2ε)).

Here we take ε = 0.2 to show a simple.

3.2.2. Non-dimensionalization. Asymptotic analysis the phase-field model (3.22)

and (3.23) are expressed in dimensionless forms. The dimensionless temperature field

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 24

is given by

U = cp(T − TM)/L.

Here cp is the specific heat at constant pressure, TM is the melting temperature, and L

is the latent heat of fusion. The diffusion factor is dimensioned as

D = ατ0/ϵ
2
0,

where α is the thermal diffusivity, τ0 is the characteristic time, and ϵ0 is the character-

istic length. In the limit of thin interface width ϵ0, The relation of parameters between

phase–field model and the Gibbs–Tomson equation are given by

d0 = a1
ϵ0
λ
, (3.31)

β = a1

(
γ(θ)

λϵ(θ)
− a2

ϵ(θ)

D

)
. (3.32)

The constants a1 = I/J and a2 = (K + JF)/(2I), where

I =

∫ ∞

−∞
(∂ηϕ0)

2dη, (3.33)

J = −
∫ ∞

−∞
∂ηϕ0g

0
ϕdη, (3.34)

K =

∫ ∞

−∞
∂ηϕ0g

0
ϕdη

∫ η

0

h0dζ, (3.35)

F =

∫ ∞

0

(h0 + 1)dη. (3.36)

3.2. PHASE–FIELD MODELING FOR CRYSTAL GROWTH 25

Here both g0ϕ = gψ(ϕ
0(η)) and h0(η) = ϕ0(η) are the functions of η. ϕ0(η) is the

solution of the following equation

(∂ηϕ0)
2 − fϕ(ϕ0) = 0. (3.37)

Then λ is given as λ = a1ϵ0/d0. It should be noted that in the numerical simulation,

we generally fix measurable d0, β0 and D, and determine λ and τ0 with known a1 =

0.8839 and a2 = 0.6267 [23, 24].

3.3. FOUR-FOLD CRYSTAL GROWTH 26

3.3. Four-fold crystal growth

If k = 4, we call the crystal as be four-fold crystal. And the phase–field modeling

of crystal growth can be expressed as another form. Let us recall the definition of the

gradient energy coefficient, ϵ,

ϵ(θ) = ϵ0(1 + ϵ4 cos(4θ)), (3.38)

θ = arctan(ϕy/ϕx). (3.39)

Then the following trigonometric functions can be represented as

sin(θ) =
ϕy
|∇ϕ|

,

cos(θ) =
ϕx
|∇ϕ|

,

sin(2θ) = 2 sin(θ) cos(θ) =
2ϕxϕy
|∇ϕ|2

,

cos(2θ) = cos2(θ)− sin2(θ) =
ϕ2
x − ϕ2

y

|∇ϕ|2
,

sin(4θ) = 2 sin(2θ) cos(2θ) =
4(ϕ3

xϕy − ϕxϕ3
y)

|∇ϕ|4
,

cos(4θ) = cos2(2θ)− sin2(2θ) =
4(ϕ4

x + ϕ4
y)− 3(ϕ2

x + ϕ2
y)

2

|∇ϕ|4
.

3.3. FOUR-FOLD CRYSTAL GROWTH 27

Here |∇ϕ| =
√
ϕ2
x + ϕ2

y. Thus

ϵ(θ) = ϵ0(1 + ϵ4 cos(4θ))

= ϵ0

(
1 + ϵ4

4(ϕ4
x + ϕ4

y)− 3(ϕ2
x + ϕ2

y)
2

|∇ϕ|4

)
= ϵ0(1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

ϕ4
x + ϕ4

y

|∇ϕ|4

)
. (3.40)

Also we can get

dϵ

dθ
= −4ϵ0ϵ4 sin(4θ) = −

16ϵ0ϵ4(ϕ
3
xϕy − ϕxϕ3

y)

|∇ϕ|4
.

In another way, by Eq. (3.40), we get

|∇ϕ|2 ∂ϵ
∂ϕx

= 4ϵ0ϵ4|∇ϕ|2
∂

∂ϕx

(
ϕ4
x + ϕ4

y

|∇ϕ|4

)
= 4ϵ0ϵ4|∇ϕ|2

∂

∂ϕx

(
ϕ4
x + ϕ4

y

(ϕ2
x + ϕ2

y)
2

)
= 16ϵ0ϵ4|∇ϕ|2

(
ϕ3
x(ϕ

2
x + ϕ2

y)
2 − ϕx(ϕ4

x + ϕ4
y)(ϕ

2
x + ϕ2

y)

(ϕ2
x + ϕ2

y)
4

)
= 16ϵ0ϵ4

(
ϕ3
xϕ

2
y − ϕxϕ4

y

|∇ϕ|4

)
= −dϵ

dθ
ϕy.

Similarly, we can get

|∇ϕ|2 ∂ϵ
∂ϕy

=
dϵ

dθ
ϕx.

3.4. THE WULFF CONSTRUCTION 28

The basic equations of the phase-field model, i.e., Eq. (3.22) can be derived by

ϵ2(ϕ)
∂ϕ

∂t
= ∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕx

)
x

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕy

)
y

(3.41)

Note that the solidification in three dimensions can be extended with the following

form:

ϵ2(ϕ)
∂ϕ

∂t
= ∇ · (ϵ2(ϕ)∇ϕ) + [ϕ− λU(1− ϕ2)](1− ϕ2)

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕx

)
x

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕy

)
y

+

(
|∇ϕ|2ϵ(ϕ)∂ϵ(ϕ)

∂ϕz

)
z

. (3.42)

The anisotropic function ϵ(ϕ) in three-dimensional space is defined in three–dimensional

space as:

ϵ(ϕ) = (1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

ϕ4
x + ϕ4

y + ϕ4
z

|∇ϕ|4

)
.

3.4. The Wulff construction

The equilibrium crystal shape, which constructed by the Wulff’s theorem [59], is

determined by minimizing the total interfacial free energy. We describe the construc-

tion of the equilibrium shape geometrically [7]. Let M = (ϵ(θ), θ) be a point on the

interfacial energy function in the polar coordinates (see Fig. 3.6). The construction

3.4. THE WULFF CONSTRUCTION 29

O

A

B

M

FIGURE 3.6. Interfacial free-energy density ϵ(θ) in the polar coordinates.

starts from the origin O and draw the line segment OM to the point M . Draw the per-

pendicular line
←→
AB to the line segment OM . Then the inner convex hull made from

all such perpendiculars is an equilibrium crystal shape.

(x(ψ), y(ψ))

S(ψ)

θ

ψ
r

O x

y

FIGURE 3.7. Parameter definitions.

Conversely, let us assume the equilibrium shape is known and (r, θ) be the polar

coordinates of a point T of the crystal boundary S, that is, T = (r, θ). And let T =

(x(ψ), y(ψ)) be the corresponding Cartesian coordinates, where ψ is a parameter and

3.4. THE WULFF CONSTRUCTION 30

is the angle between x-axis and the perpendicular line to the tangent line
←→
AB at the

point T . Let M be the intersection point of the line
←→
AB and the perpendicular line

containing the origin to
←→
AB. Let the length of the line segment OM be p(ψ). In Fig.

3.7, we can see these parameter definitions. Then p(ψ) can be obtained from the right

triangle△OTM :

p(ψ) = r cos(ψ − θ) = r cosψ cos θ + r sinψ sin θ

= x(ψ) cosψ + y(ψ) sinψ. (3.43)

We can express (x(ψ), y(ψ)) in terms of p(ψ). Taking a derivative to p(ψ), we have

pψ(ψ) = xψ(ψ) cosψ − x(ψ) sinψ + yψ(ψ) sinψ + y(ψ) cosψ. (3.44)

Here the normal vector (cosψ, sinψ) and the tangent vector (xψ, yψ) are orthogonal,

that is, (cosψ, sinψ) · (xψ, yψ) = 0. Thus Eq. (3.44) can be simplify as

pψ = −x(ψ) sinψ + y(ψ) cosψ. (3.45)

Now, by solving Eqs. (3.43) and (3.45) we have

x(ψ) = p(ψ) cosψ − pψ(ψ) sinψ, y(ψ) = p(ψ) sinψ + pψ(ψ) cosψ. (3.46)

3.4. THE WULFF CONSTRUCTION 31

Let F and A be the total edge free energy and the area of crystal, respectively. They

can be defined as

F =

∫
ϵ(ψ)

√
(xψ(ψ))2 + (yψ(ψ))2dψ, (3.47)

A =
1

2

∫
(x(ψ)yψ(ψ)− y(ψ)xψ(ψ))dψ. (3.48)

Using Eq. (3.46), we can rewrite Eqs. (3.47) and (3.48) in the form

F =

∫
ϵ(ψ)(p(ψ) + pψψ(ψ))dψ,

A =
1

2

∫
p(ψ)(p(ψ) + pψψ(ψ))dψ.

We want to minimize F with subject to a constant area constraint of A. Using the

Lagrange multiplier λ, we seek to minimize

F + λA =

∫ (
ϵ(ψ) +

λ

2
p(ψ)

)
(p(ψ) + pψψ(ψ))dψ.

And then, the Euler–Lagrange equation is

∂Q

∂p
− d

dψ

(
∂Q

∂pψ

)
+

d2

dψ2

(
∂Q

∂pψψ

)
= 0, (3.49)

where

Q =

(
ϵ+

λ

2
p

)
(p+ pψψ). (3.50)

From these two Eqs. (3.49) and (3.50), we get

p+ pψψ = −1

λ
(ϵ+ ϵψψ). (3.51)

3.4. THE WULFF CONSTRUCTION 32

A solution of differential equation (3.51) is

p(ψ) = −1

λ
ϵ(ψ).

This result implies that in a crystal at equilibrium, the distances of the faces from

the center of the crystal are proportional to their surface free energies per unit area [7].

For large ϵk values, the crystal shape will be energy minimizing when certain ori-

entations are missing. Missing orientations occur when the polar plot of r = 1/ϵ(θ)

changes convexity [15]. The curvature of a polar plot r(θ) is κ = (r2+2r2θ−rrθθ)/(r2+

r2θ)
3
2 . For r(θ) = 1/ϵ(θ), the curvature is κ = (ϵ + ϵθθ)/[1 + (ϵθ/ϵ)

2]
3
2 . So convexity

changes whenever

ϵ+ ϵθθ = ϵ0(1− (k2 − 1)ϵk cos kθ) < 0.

If values of ϵk are larger than 1/(k2 − 1), then missing orientations occur. In other

words, some orientations do not appear on the equilibrium shape of a crystal. Figure

3.8 shows the 6-fold Wulff equilibrium shapes ((x(ψ), y(ψ)) for 0 ≤ ψ ≤ 2π) with

two different ϵ6 values: (a) ϵ6 = 1/50 and (b) ϵ6 = 1/10 (which shows the missing

orientation).

3.4. THE WULFF CONSTRUCTION 33

(a) ϵ6 = 1/50 (b) ϵ6 = 1/10

FIGURE 3.8. The 6-fold Wulff equilibrium shapes with two different ϵ6 values.

34

Chapter 4

Numerical solutions

A great challenge in the simulation with various supercoolings is the large dif-

ference in time and length scales. In order to overcome this, many numerical meth-

ods have been proposed such as explicit [20, 21, 23, 45, 58], mixed implicit-explicit

[44, 57, 60], and adaptive methods [10, 11, 43, 46, 48]. In the case of explicit methods,

which are widely used, the solutions become unstable for large time steps. For this rea-

son, in [21, 58], the authors suggested ∆t < h2/(4D) for stability of explicit methods.

Here, ∆t is the time step, h is the mesh size, and D is the thermal diffusivity. In [21],

the time step is also restricted to ∆t ≤ h/(10|Vmax|), where |Vmax| is the magnitude

of the maximum value of the interface velocity. Also, in [58], the authors showed that

∆t = h2/(5DL) works well through numerical experiments, whereDL =Mϕϵ
2,Mϕ is

the kinetic mobility. Implicit methods allow relatively larger time steps, however they

are computationally more expensive per step than explicit ones. The use of mesh adap-

tivity, which is based on the choice of a suitable time integration method, is a natural

choice to overcome this problem. However adaptive technology also suffers the time

step restriction and crystal growth simulation with various supercoolings is still very

35

difficult. Therefore we need a scheme that allows the use of a sufficiently large time

step without the technical limitations. In this chapter, we review our proposed com-

putationally efficient, and robust operator splitting algorithms, which are introduced in

[37, 38, 39], for solving the crystal growth phase-field simulation.

4.1. TIME DISCRETISATION 36

4.1. Time discretisation

In this section, we propose a robust hybrid numerical method for crystal growth

simulation. For simplicity of exposition we shall discretize Eqs. (3.23) and (3.41)

in two-dimensional space, i.e., Ω = (a, b) × (c, d). Let Nx and Ny be positive even

integers, h = (b−a)/Nx = (d− c)/Ny be the uniform mesh size, and Ωh = {(xi, yj) :

xi = a + (i − 0.5)h, yj = c + (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of

cell-centers.

Let ϕnij be approximations of ϕ(xi, yj, n∆t), where ∆t = T/Nt is the time step, T

is the final time, and Nt is the total number of time steps. The discrete differentiation

operator is∇dϕij = (ϕi+1,j −ϕi−1,j, ϕi,j+1−ϕi,j−1)/(2h). We then define the discrete

Laplacian by ∆dϕij = (ϕi+1,j +ϕi−1,j − 4ϕij +ϕi,j+1+ϕi,j−1)/h
2. We discretize Eqs.

(3.23) and (3.41):

ϵ2(ϕn)
ϕn+1 − ϕn

∆t
= ϵ2(ϕn)∆dϕ

n+1,2 + 2ϵ(ϕn)∇dϵ(ϕ
n) · ∇dϕ

n

−F ′(ϕn+1)− 4λUnF (ϕn+1,1)

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n
x

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕy

)n
y

, (4.1)

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
, (4.2)

where F (ϕ) = 0.25(ϕ2 − 1)2 and F ′(ϕ) = ϕ(ϕ2 − 1). Here ϕn+1,m for m = 1, 2 are

defined in the operator splitting scheme. We propose the following operator splitting

4.1. TIME DISCRETISATION 37

scheme:

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(ϕn)∇dϵ(ϕ

n) · ∇dϕ
n (4.3)

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕx

)n
x

+

(
|∇dϕ|2ϵ(ϕ)

∂ϵ(ϕ)

∂ϕy

)n
y

,

ϵ2(ϕn)
ϕn+1,2 − ϕn+1,1

∆t
= −F ′(ϕn+1,2), (4.4)

ϵ2(ϕn)
ϕn+1 − ϕn+1,2

∆t
= ϵ2(ϕn)∆dϕ

n+1 − 4λUnF (ϕn+1,2). (4.5)

In Eq. (4.3), we can simplify the following terms

|∇dϕ|2
∂ϵ(ϕ)

∂ϕx
=

16ϵ4ϕx(ϕ
2
xϕ

2
y − ϕ4

y)

|∇dϕ|4
, |∇dϕ|2

∂ϵ(ϕ)

∂ϕy
=

16ϵ4ϕy(ϕ
2
xϕ

2
y − ϕ4

x)

|∇dϕ|4
.

With nine local points, we describe the following term(
ϕxϵ(ϕ)(ϕ

2
xϕ

2
y − ϕ4

y)

|∇dϕ|4

)n
x,ij

=

(
ϕxϵ(ϕ)(ϕ2xϕ

2
y−ϕ4y)

|∇dϕ|4

)n
i+ 1

2
,j
−
(
ϕxϵ(ϕ)(ϕ2xϕ

2
y−ϕ4y)

|∇dϕ|4

)n
i− 1

2
,j

h
,

where(
ϕxϵ(ϕ)(ϕ

2
xϕ

2
y − ϕ4

y)

|∇dϕ|4

)n
i+ 1

2
,j

=
(ϵ(ϕni+1,j) + ϵ(ϕnij))(ϕ

n
i+1,j − ϕnij)3(ϕni+1,j+1 − ϕni+1,j−1 + ϕni,j+1 − ϕni,j−1)

2/8

h
(
(ϕni+1,j − ϕnij)2 + (ϕni+1,j+1 − ϕni+1,j−1 + ϕni,j+1 − ϕni,j−1)

2/4
)2

+ δ

−
(ϵ(ϕnij) + ϵ(ϕni−1,j))(ϕ

n
i+1,j − ϕnij)(ϕni+1,j+1 − ϕni+1,j−1 + ϕni,j+1 − ϕni,j−1)

4/32

h
(
(ϕni+1,j − ϕnij)2 + (ϕni+1,j+1 − ϕni+1,j−1 + ϕni,j+1 − ϕni,j−1)

2/4
)2

+ δ
,

(
ϕxϵ(ϕ)(ϕ

2
xϕ

2
y − ϕ4

y)

|∇dϕ|4

)n
i− 1

2
,j

=
(ϵ(ϕnij) + ϵ(ϕni−1,j))(ϕ

n
ij − ϕni−1,j)

3(ϕni,j+1 − ϕni,j−1 + ϕni−1,j+1 − ϕni−1,j−1)
2/8

h
(
(ϕnij − ϕni−1,j)

2 + (ϕni,j+1 − ϕni,j−1 + ϕni−1,j+1 − ϕni−1,j−1)
2/4
)2

+ δ

−
(ϵ(ϕni−1,j) + ϵ(ϕni−2,j))(ϕ

n
ij − ϕni−1j)(ϕ

n
i,j+1 − ϕni−1,j−1 + ϕni−1,j+1 − ϕni−1,j−1)

4/32

h
(
(ϕnij − ϕni−1,j)

2 + (ϕni,j+1 − ϕni,j−1 + ϕni−1,j+1 − ϕni−1,j−1)
2/4
)2

+ δ
.

4.1. TIME DISCRETISATION 38

The other terms can be described in a similar manner. Note that we added a small

value δ = 1e−10 in the denominator |∇dϕ|4 to avoid singularities.

Eq. (4.4) can be considered as an approximation of the equation

ϕt =
ϕ− ϕ3

ϵ2
(4.6)

by an implicit Euler’s method with the initial condition ϕn+1,2. We can solve Eq. (4.6)

analytically by the method of separation of variables [52]. Here we will describe it in

detail. Assume there exits a continues function which satisfies

dψ

dt
=

ψ − ψ3

ϵ2
, (4.7)

ψ(0) = ϕn+1,1, (4.8)

ψ(∆t) = ϕn+1,2. (4.9)

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

ψ

ψ−ψ3

FIGURE 4.1. Plots of ψ − ψ3.

4.1. TIME DISCRETISATION 39

Assume ψ(0) ∈ (−1, 1) and refer to Fig. (4.1), we get

dψ

dt


> 0, if ψ(0) ∈ (0, 1),

< 0, if ψ(0) ∈ (−1, 0),
= 0, otherwise.

(4.10)

That is 
ϕn+1,2 > ϕn+1,1, if ϕn+1,1 > 0,

ϕn+1,2 < ϕn+1,1, if ϕn+1,1 < 0,

ϕn+1,2 = ϕn+1,1, otherwise.
(4.11)

Thus ϕn+1,1 and ϕn+1,2 are of the same sign for ϕn+1,1 ∈ (−1, 1). It should be noted

that if ϕn+1,1 > 1, Eq. (4.7) makes ϕn+1,2 converge to 1. Thus ϕn+1,1 and ϕn+1,2 are

always of the same sign for ϕn+1,1 ∈ R. Later we can consider ϕn+1,1 ∈ (0, 1) and

rewrite the Eq. (4.7) as

dt

ϵ2
=

dψ

ψ(1− ψ)(1 + ψ)

dt

ϵ2
=

(
1

ψ
+

1

2(1− ψ)
− 1

2(1 + ψ)

)
dψ∫

dt

ϵ2
=

∫ (
1

ψ
+

1

2(1− ψ)
− 1

2(1 + ψ)

)
dψ

t

ϵ2
+ c = ln(ψ)− ln(1− ψ)

2
− ln(1 + ψ)

2

ψ =
e

t
ϵ2

+c√
1 + e

2t
ϵ2

+2c

.

Here c is a constant. Applying the initial condition (Eqs. (4.8) and (4.9)), the following

function is defined

ϕn+1,1 = ψ(0) =
ec√

1 + e2c
,

ϕn+1,2 = ψ(∆t) =
e

∆t
ϵ2

+c√
1 + e

2∆t
ϵ2

+2c

.

4.1. TIME DISCRETISATION 40

Then

ϕn+1,2 =
ϕn+1,1√

e
− 2∆t

ϵ2(ϕn) + (ϕn+1,1)2
(
1− e−

2∆t
ϵ2(ϕn)

) . (4.12)

Note that if ϕn+1,1 ∈ (−1, 0), we can get the same equation with the similar deviation.

Also we know

lim
ϕn+1,1→0+

ϕn+1,2 = lim
ϕn+1,1→0−

ϕn+1,2 = ϕn+1,2
∣∣
ϕn+1,1=0 = 0.

Thus the solution is continuous and well defined for ϕn+1,1 ∈ (−1, 1). With the

similar method, the same solution can be extended for ϕn+1,1 ∈ [1,+∞) and ϕn+1,1 ∈

(−∞,−1]. We will briefly describe them here. Finally, we summarize our proposed

scheme as follows:

ϵ2(ϕn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(ϕn)ϵ(ϕn)xϕ

n
x + 2ϵ(ϕn)yϵ(ϕ

n)ϕny (4.13)

+

(
16ϵ(ϕn)ϵ4ϕx(ϕ

2
xϕ

2
y − ϕ4

y)

|∇dϕ|4

)n
x

+

(
16ϵ(ϕn)ϵ4ϕy(ϕ

2
xϕ

2
y − ϕ4

x)

|∇dϕ|4

)n
y

,

ϕn+1,2 =
ϕn+1,1√

e
− 2∆t

ϵ2(ϕn) + (ϕn+1,1)2
(
1− e−

2∆t
ϵ2(ϕn)

) , (4.14)

ϵ2(ϕn)
ϕn+1 − ϕn+1,2

∆t
= ϵ2(ϕn)∆dϕ

n+1 − 4λUnF (ϕn+1,2), (4.15)

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
. (4.16)

Equations (4.15) and (4.16) can be solved by a multigrid method [6, 53] which is a fast

solver.

4.1. TIME DISCRETISATION 41

4.1.1. Discreteization for k-ford model. We discretize Eqs. (3.22) and (3.23):

ϵ2(θn)
ϕn+1 − ϕn

∆t
= ϵ2(θn)∆dϕ

n+1,2 + 2ϵ(θn)∇dϵ(θ
n) · ∇dϕ

n

−F ′(ϕn+1)− 4λUnF (ϕn+1,1)

− (ϵ′(θ) · ϵ(θ)ϕy)nx + (ϵ′(θ) · ϵ(θ)ϕx)ny ,

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
.

Here ϵ(θ) = ϵ0(1 + ϵk cos(kϕ)) and tan θ = ϕy/ϕx. For m = 1, 2, ϕn+1,m are defined

in the operator splitting scheme. We propose the following operator splitting scheme:

ϵ2(θn)
ϕn+1,1 − ϕn

∆t
= 2ϵ(θn)∇dϵ(θ

n) · ∇dϕ
n

− (ϵ′(θ) · ϵ(θ)ϕy)nx + (ϵ′(θ) · ϵ(θ)ϕx)ny ,

ϕn+1,2 =
ϕn+1,1√

e
− 2∆t

ϵ2(θn) + (ϕn+1,1)2
(
1− e−

2∆t
ϵ2(θn)

) ,
ϵ2(θn)

ϕn+1 − ϕn+1,2

∆t
= ϵ2(θn)∆dϕ

n+1 − 4λUnF (ϕn+1,2),

Un+1 − Un

∆t
= D∆dU

n+1 +
ϕn+1 − ϕn

2∆t
.

It should be pointed that θ equals atan2(ϕy, ϕx) and the two-argument function,

atan2 is a variation of the arctangent function whose range is [−π, π]. It can be ex-

pressed as follows:

4.1. TIME DISCRETISATION 42

atan2(ϕy, ϕx) =



tan−1
(
ϕy
ϕx

)
, if ϕx > 0,

tan−1
(
ϕy
ϕx

)
+ π, if ϕy ≥ 0, ϕx < 0,

tan−1
(
ϕy
ϕx

)
− π, if ϕy < 0, ϕx < 0,

π/2, if ϕy > 0, ϕx = 0,
−π/2, if ϕy < 0, ϕx = 0,

undefined, if ϕy = 0, ϕx = 0.

To avoid singularities, we added a small value δ = 1e−10 in the denominator

θ = atan2 (ϕy, sign(ϕx)(|ϕx|+ δ)) .

The sign(a) function is defined as

sign(a) =

{
1 if a ≥ 0

−1 otherwise

We describe the following term with nine local points

(ϵ′(θ) · ϵ(θ)ϕy)nx,ij =
(ϵ′(θ) · ϵ(θ)ϕy)ni+ 1

2
,j − (ϵ′(θ) · ϵ(θ)ϕy)ni− 1

2
,j

h
,

where

(ϵ′(θ) · ϵ(θ)ϕy)ni+ 1
2
,j

=
(ϵ′(θni+1,j) + ϵ′(θnij))(ϵ(θ

n
i+1,j) + ϵ(θnij))(ϕ

n
i+1,j+1 − ϕni+1,j−1 + ϕni,j+1 − ϕni,j−1)

8h
,

(ϵ′(θ) · ϵ(θ)ϕy)ni− 1
2
,j

=
(ϵ′(θnij) + ϵ′(θni−1,j))(ϵ(θ

n
ij) + ϵ(θni−1,j))(ϕ

n
i,j+1 − ϕni,j−1 + ϕni−1,j+1 − ϕni−1,j−1)

8h
.

The other solvers are similarly defined.

4.2. CALCULATION OF THE CRYSTAL TIP POSITION AND VELOCITY 43

4.2. Calculation of the crystal tip position and velocity

The crystal tip position and velocity are the important parameters in the phase–

field simulation. To calculate these parameters with a high degree of accuracy we

use a method based on the quadratic polynomial approximation. For simplicity, we

only describe the procedure along the y-axis since the crystal is symmetric. Let yk be

the maximum y position on the interface at each time, and the quadratic polynomial

approximation be:

y = αx2 + βx+ γ.

Given three points: (xk−1, yk−1), (xk, yk), and (xk+1, yk+1) on the interface, where one

of the three y points is a maximum value along the interface points, we calculate the

parameters α, β, and γ from: α
β
γ

 =

 x2k−1 xk−1 1
x2k xk 1
x2k+1 xk+1 1

−1 yk−1

yk
yk+1

 .

Then using α, β, and γ, we find the tip position y∗ which satisfies the following condi-

tions:

dy

dx

∣∣∣∣
x∗

= 0 and y∗ = αx2∗ + βx∗ + γ.

Furthermore, the crystal tip velocity can be obtained from the difference of tip

positions at each time.

44

Chapter 5

Adaptive mesh refinement

5.1. Hierarchical structured Cartesian grids

The Cartesian grid is composed of the union of retangular grids. We consider a

hierarchy of increasingly finer grids, Ωl+1, . . . ,Ωl+l∗ , restricted to smaller and smaller

subdomains, while the last hierarchy of global grids are Ω0,Ω1, . . . ,Ωl. That is, we

consider a hierarchy of grids, Ω0,Ω1, . . . ,Ωl+0,Ωl+1, . . . ,Ωl+l∗ . Here we denote Ωl+0

as level zero, Ωl+1 as level one, and so on. Construction of the multilevel mesh begins

at the zero-level grid. Finer resolution grids are added at level one to cover those grid

points on the zero grid where refinement is flagged. This process continues in the same

fashion until the level l∗ is reached. Moreover, the grid spacing hk on level k is related

to that of the level after (k + 1) as hk = τhk+1. τ is called as refinement ratio. The

typical choices for this refinement radio are τ = 2 or τ = 4. Figure 5.1 shows a

schematic illustration of the set of finer grids with four levels (l∗ = 3) and refinement

radio, τ = 2.

It should be noted that in general only level zero completely covers the physical

domain. That is the union of the grid patches at refined level l + l∗ (l∗ > 0) are strictly

5.1. HIERARCHICAL STRUCTURED CARTESIAN GRIDS 45

level 0

level 1

level 2

level 3

FIGURE 5.1. Hierarchical structured locally refinement with four levels.

contained in the uniform of the patches at coarse level l + l∗ − 1. In this condition,

we call the patch levels be properly nested. The nesting requirement is relaxed at the

boundary condition for physical boundary condition and refined boundary condition.

It is convenient to set the physical boundary condition at level zero Ωl+0 and apply a

interpolation operation to the other levels in the proper nesting condition. The interpo-

lation operation is applied with the information of its local domain. This algorithm will

be described in Section 5.3. Figure 5.2(a) and (b) show the properly and improperly

nested hierarchical structured locally refinement, respectively. As can be seen, in the

proper nesting condition, the interpolations at level l+ l∗ can be obtained by using the

points at level l + l∗ − 1. While improper refinement of cells will fail to satisfy that

(see the second level in Fig. 5.2(b)).

5.2. CREATION OF THE GRID HIERARCHY 46

level 0

level 1

level 2

(a)

level 0

level 1

level 2

(b)

FIGURE 5.2. (a) A properly nested hierarchical structured locally re-
finement. (b) A improperly nested hierarchical structured locally re-
finement.

5.2. Creation of the grid hierarchy

To construct new refined grids, we may decide that previously refined cells were

unnecessary and deallocate portions of refined domains. There are many possible cri-

teria for deciding where refinement is necessary. In many physical problems, physical

quantities like sharp density gradients or large charge distributions may provide indi-

cators for refinement. In the current implementation, the grid is adapted dynamically

based on the undivided gradient |∇uϕ|k which is defined as following

|∇uϕ|kij =
√
(ϕki+1,j − ϕki−1,j)

2 + (ϕki,j+1 − ϕki,j−1)
2,

where ϕkij are cell center coordinates defined with respect to the level-k grids on the

domain Ωl+k. Then we can tag cells that contain the front, i.e., those in which the

5.2. CREATION OF THE GRID HIERARCHY 47

(a)

∑
10 12 13 12 3 3 7 10 12 12 12 11 10 8

∆ −1−2−8 9 4 −1−1−2 0 −1 0 −1

(b)

∑

0

4

6

7

8

8

8

8

7

6

10

9

7

∆

−2

−1

0

−1

0

0

−1

0

5

−5

−1

(c) (d)

FIGURE 5.3. The three steps in regridding algorithm. (a) tag error cells
and enclosed in a box, (b) split the box into two based on a histogram of
the column or row sums of tagged cells, (c) fit new boxes to each split
box and repeat if the ratio of tagged to untagged cells is too small, and
(d) the most efficient rectangles.

undivided gradient of the film height is greater than a critical value tol, i.e., |∇uϕ|k ≥

tol. All through our paper, we simplify set tol = 0.01. In this way, level-k grid

cells are marked when their divided gradient |∇ϕ|k ≥ hktol = 2hk+1tol. That is,

Ωl+k+1 ⊆ Ωl+k. Thus this method is well defined. Once we have decided which cells

are to be refined, we need to use this information to create a hierarchy of levels. We

5.2. CREATION OF THE GRID HIERARCHY 48

use the algorithm of Berger and Rigoutsos [41], in which tagged points are clustered

into efficient boxes. The efficiency of a grid is defined as the number of cells in the

grid which were tagged for refinement divided by the total number of cells in the grid.

The grid generator takes a list of tagged points and draws the smallest possible box

around them. For efficiency, the boxes are not allowed to become too small, nor must

they be too empty. Here we simplify drawn with the following steps:

1: Fit a box to enclose the tagged cells.

2: Recursively sub-divide the box. Split the box in the longest direction at a posi-

tion based on the histogram formed from the sum of the number of tagged cells

per row or column.

3: After splitting the box, fit new bounding boxes to each half and repeat the pro-

cess. Continue until the size of every box is not smaller than given parameter

and every box consists at least number of non-tagged cells.

4: Compute fill ratio, which is defined as equalling the number of tagged cells

divides size of box. For example, fill ratio is 19/28 in Fig. 5.3(c). If this grid

does not meet an efficiency criterion (in the current implementation, fill ratio

≥ 0.75), the grid generator will look for the best way to subdivide the tagged

points in order to create more efficient boxes.

5.3. BOUNDARY INTERPOLATION 49

5.3. Boundary interpolation

In order to employ the discretisation of Lapacian on a generic level grid, we should

use the usual nearest neighbor stencils in the definitions of the discrete derivatives to

fill the ghost-layer values by interpolation. It should be noted that in this section we

consider τ = 2 and the operation for τ = 4 can be similar defined. There are two

operations for boundary interpolation such as fine-coarse and coarse-fine boundary

interpolations.

All possible fine-coarse boundary interpolations for two-dimensional locally re-

fined grid are shown in Fig. 5.4. Ghost cells at the fine-coarse interface are indicated

by square, whereas valid cell in coarse and fine interfaces are indicated by open circle

and x-marks.

For the fine-coarse case, we use the average of near four fined cells as

ϕcij =
ϕf2i−1,2j−1 + ϕf2i−1,2j + ϕf2i,2j−1 + ϕf2i,2j

4
.

The grid-to-ghost-layer exchange process is illustrated in Fig. 5.5 (a). The main idea is

that using quadratic interpolation through coarse cells (open circles) to get intermediate

values (solid circles), then use intermediate value with fine cells (×’s) to get ghost cell

values (open triangles) for computing coarse-fine fluxes (arrows) (see Fig. 5.5 (b)).

5.3. BOUNDARY INTERPOLATION 50

(a) (b)

(c) (d)

FIGURE 5.4. All possible fine-coarse and coarse-fine boundary inter-
polations for two-dimensional locally refined grid. Ghost cells at the
fine-coarse and coarse-fine interface are indicated by square and trian-
gle, respectively, whereas valid cell in coarse and fine interfaces are
indicated by open circle and x-marks.

To obtain the value ϕc
i,j+ 1

4

(solid circle), we can calculate it by using three points

ϕci,j−1, ϕci,j , and ϕci,j+1 with the quadratic polynomial approximation. Let the quadratic

polynomial approximation be ϕc(t) = αt2 + βt + γ. And assume ϕc(−hc) = ϕci,j−1,

ϕc(0) = ϕcij , and ϕc(hc) = ϕci,j+1, then the parameters α, β, and γ can be calculated by

the following equations. α
β
γ

 =

 (hc)2 −hc 1
0 0 1

(hc)2 hc 1

−1 ϕci,j−1

ϕcij
ϕci,j+1

 .

5.3. BOUNDARY INTERPOLATION 51

(a)

φc
i,j+1

φc
ij

φc
i,j−1

φc
i,j+ 1

4

φ
f
2i,2j

φ
f
2i+1,2j

φ
f
2i+2,2j

(b)

FIGURE 5.5. (a) The grid-to-ghost-layer exchange process. (b) Inter-
polation on the coarse fine boundary in detail: Use quadratic interpola-
tion through coarse cells (open circles) to get intermediate values (solid
circles), then use intermediate value with fine cells (×’s) to get ghost
cell values (open triangles) for computing coarse-fine fluxes (arrows).

Now using α, β, and γ, we get ϕc
i,j+ 1

4

= ϕc(−hc/4). Secondly, to get the value

ϕf2i,2j , we implement another quadratic interpolation with the values ϕc
i,j+ 1

4

, ϕf2i+2,2j ,

and ϕf2i+2,2j .

Let the quadratic polynomial approximation be ϕf (t) = αt2+βt+γ. And assume

ϕf (−hf) = ϕc
i,j+ 1

4

, ϕf (h
f

2
) = ϕf2i+1,2j , and ϕf (3h

f

2
) = ϕf2i+2,2j , then the parameters α,

β, and γ can be calculated by the following equations. α
β
γ

 =

 (hf)2 −hf 1

(h
f

2
)2 hf

2
1

(3h
f

2
)2 (3h

f

2
)2 1

−1
 ϕc

i,j+ 1
4

ϕf2i+1,2j

ϕf2i+2,2j

 .

Then using α, β, and γ, we get ϕf2i,2j = ϕf (−hf/2).

For the three dimensional case, the operations are defined in the same fashion.

5.4. ALGORITHM FOR MESH PLOTS 52

5.4. Algorithm for mesh plots

In the adaptive system, the cells locate at the center in its level as shown in Fig.

5.6. To see the numerical results obtained by adaptive method, triangular mesh plot

FIGURE 5.6. The cells locate at the center in its level.

or mesh plot is a general choice. Here we use mesh plot and drawn the algorithm as

following.

1: Define the total level, l∗ and set k = 0. For example, l∗ = 2 in Fig. 5.6.

2: For every point (ϕcij) which locates in the coarse k-level, i.e., k < l∗, we use the

same value by the near four fined cells as

ϕf2i−1,2j−1 = ϕf2i−1,2j = ϕf2i,2j−1 = ϕf2i,2j = ϕcij.

Please refer to Fig. 5.7.

5.4. ALGORITHM FOR MESH PLOTS 53

3: Set k = k + 1. Do Step 2, until k = l∗.

With these three steps, we can get the mesh plots of results as shown in Fig. 5.8. The

codes of mesh plots in two- and three- dimensional spaces are given in the Appendix.

FIGURE 5.7. Set the coarse value, ϕf2i−1,2j−1 to the near four fined cells
as ϕf2i−1,2j−1 = ϕf2i−1,2j = ϕf2i,2j−1 = ϕf2i,2j = ϕcij . Here × respects the
fine cells near to its coarse level.

5.4. ALGORITHM FOR MESH PLOTS 54

FIGURE 5.8. Final results (×) for mesh plot. Circle respects the initial location.

55

Chapter 6

Adaptive mesh refinement multigrid algorithm

To solve the resulting system of discrete Eqs. (4.13)–(4.16) at the implicit time

level, we use an adaptive mesh refinement [2, 50], whose schematic diagram is shown

in Fig. 5.1. In the adaptive approach, the grid is adapted dynamically based on the

undivided gradient. First, we tag cells that contain the front, i.e., those in which the

undivided gradient of the phase-field is greater than a critical value. Then, the tagged

cells are grouped into rectangular patches by using a clustering algorithm. These rect-

angular patches are refined to form the grids at the next level. The process is repeated

until a specified maximum level is reached. In the rectangular patches at every level,

we use the multigrid method to solve governing equation. This method is also called as

adaptive mesh refinement multigrid algorithm. We describe the adaptive full approxi-

mation storage cycle to solve the discrete system on the hierarchy of increasingly finer

grids. First, let us rewrite Eqs. (4.15) and (4.16) as

N(ϕn+1, Un+1) = (φn, ψn),

56

whereN(ϕn+1, Un+1) =
(
ϕn+1

∆t
−∆dϕ

n+1, U
n+1

∆t
−D∆dU

n+1 − ϕn+1

2∆t

)
and the source

term is (φn, ψn) =
(
ϕn+1,2

∆t
− 4λUnF (ϕn+1,2)

ϵ2(ϕn)
, 2Un−ϕn

2∆t

)
.

Using the above notations on all levels k = 0, 1, . . . , l, l+1, . . . , l+ l∗, an adaptive

multigrid cycle is formally written as follows [53]:

Adaptive cycle

We calculate φnk , ψ
n
k on all levels and set the previous time solution as the initial

guess, i.e., (ϕ0
k, U

0
k) = (ϕnk , U

n
k).

(ϕm+1
k , Um+1

k) = ADAPTIV Ecycle(k, ϕmk , ϕ
m
k−1, U

m
k , U

m
k−1, Nk, φ

n
k , ψ

n
k , ν).

1) Presmoothing

- Compute (ϕ̄mk , Ū
m
k) by applying ν smoothing steps to (ϕmk , U

m
k) on Ωk.

(ϕ̄mk , Ū
m
k) = SMOOTHν(ϕmk , U

m
k , Nk, φ

n
k , ψ

n
k),

where one SMOOTH relaxation operator step consists of solving Eqs. (6.1) and (6.2)

given below by a 2 × 2 matrix inversion for each i and j. Rewriting Eqs. (4.15) and

(4.16), we get

(
1

∆t
+

4

h2

)
ϕn+1
ij = φnij −

ϕn+1
i+1,j + ϕn+1

i−1,j + ϕn+1
i,j+1 + ϕn+1

i,j−1

h2
, (6.1)(

1

∆t
+

4D

h2

)
Un+1
ij −

ϕn+1
ij

2∆t
= ψnij −

D(Un+1
i+1,j + Un+1

i−1,j + Un+1
i,j+1 + Un+1

i,j−1)

h2
.(6.2)

57

Next, we replace ϕn+1
kl and Un+1

kl in Eqs. (6.1) and (6.2) with ϕ̄mkl and Ūm
kl if k ≤

i and l ≤ j; otherwise we replace them with ϕmkl and Um
kl , i.e.,(

1

∆t
+

4

h2

)
ϕ̄mij = φnij −

ϕmi+1,j + ϕ̄mi−1,j + ϕmi,j+1 + ϕ̄mi,j−1

h2
, (6.3)(

1

∆t
+

4D

h2

)
Ūm
ij −

ϕ̄mij
2∆t

= ψnij −
D(Um

i+1,j + Ūm
i−1,j + Um

i,j+1 + Ūm
i,j−1)

h2
.(6.4)

2) Coarse-grid correction

- Compute (ϕ̄mk−1, Ū
m
k−1) =

{
Ik−1
k (ϕ̄mk , Ū

m
k) on Ωk−1 ∩ Ωk

(ϕmk−1, U
m
k−1) on Ωk−1 − Ωk.

- Compute the coarse grid source term

(φnk−1, ψ
n
k−1) =

 Ik−1
k {(φnk , ψnk)−Nk(ϕ̄

m
k , Ū

m
k)}

+Nk−1I
k−1
k (ϕ̄mk , Ū

m
k) on Ωk−1 ∩ Ωk

(φnk−1, ψ
n
k−1) on Ωk−1 − Ωk.

- Compute an approximate solution (ϕ̂mk−1, Û
m
k−1) of the coarse grid equation on

Ωk−1, i.e.,

Nk−1(ϕ
m
k−1, U

m
k−1) = (φnk−1, ψ

n
k−1). (6.5)

If k = 1, we explicitly invert a 2× 2 matrix to obtain the solution. If k > 1, we solve

Eq. (6.5) by using (ϕ̄mk−1, Ū
m
k−1) as an initial approximation to perform an adaptive

multigrid k-grid cycle:

(ϕ̂mk−1, Û
m
k−1) = ADAPTIVEcycle(k−1, ϕ̄mk−1, ϕ

m
k−2, Ū

m
k−1, U

m
k−2, Nk−1, φ

n
k−1, ψ

n
k−1, ν).

- Compute the correction at Ωk−1 ∩ Ωk. (ûmk−1, v̂
m
k−1) = (ϕ̂mk−1, Û

m
k−1)− (ϕ̄mk−1, Ū

m
k−1).

- Set the solution at the other points of Ωk−1 − Ωk. (ϕm+1
k−1 , U

m+1
k−1) = (ϕ̂mk−1, Û

m
k−1).

58

- Interpolate the correction to Ωk. (ûmk , v̂
m
k) = Ikk−1(û

m
k−1, v̂

m
k−1).

- Compute the corrected approximation on Ωk.

(ϕm, after CGC
k , Um, after CGC

k) = (ϕ̄mk + ûmk , Ū
m
k + v̂mk).

3) Postsmoothing

(ϕm+1
k , Um+1

k) = SMOOTHν(ϕm, after CGC
k , Um, after CGC

k , Nk, φ
n
k , ψ

n
k).

This completes the description of an adaptive multigrid cycle. For additional de-

tails about the adaptive multigrid cycle, please refer to [53]. The following code

(FORTRAN-style) retrieve this information, presmoothing and postsmoothing, coarse-

grid correction.

ccccccccc presmoothing and postsmoothing cccccccccccc
c a_dt: \Dleta t
c dd: D
c phi(i,j,0): \phi
c phi(i,j,1): U
dxinv = 1.0/(dx*dx)
do j = CHF_LBOUND[region; 1], CHF_UBOUND[region; 1]
do i = CHF_LBOUND[region; 0], CHF_UBOUND[region; 0]

a = 1.0/a_dt + 4.0*dxinv
b = 0.0
c = -0.5/a_dt
d = 1.0/a_dt + 4.0*dd*dxinv

s1 = rhs(i,j,0) + (phi(i+1,j,0) + phi(i-1,j,0)
& + phi(i,j+1,0) + phi(i,j-1,0))*dxinv

s2 = rhs(i,j,1) + dd*(phi(i+1,j,1) + phi(i-1,j,1)
& + phi(i,j+1,1) + phi(i,j-1,1))*dxinv

phi(i,j,0) = (d*s1-b*s2)/(a*d-b*c)

59

phi(i,j,1) = (-c*s1+a*s2)/(a*d-b*c)

enddo
enddo

cccccccccccccc coarse-frid correction cccccccccccccccccc
c a_dt: \Dleta t
c dd: D
c phi(i,j,0): \phi
c phi(i,j,1): U

dxinv = 1.0/(dx*dx)
do j = CHF_LBOUND[region; 1], CHF_UBOUND[region; 1]
do i = CHF_LBOUND[region; 0], CHF_UBOUND[region; 0]

lmu = (phi(i+1,j,1) - 4.0*phi(i,j,1)
& + phi(i-1,j,1)+ phi(i,j+1,1) + phi(i,j-1,1))*dxinv

lphi = (phi(i+1,j,0) - 4.0*phi(i,j,0)
& + phi(i-1,j,0)+ phi(i,j+1,0) + phi(i,j-1,0))*dxinv

lofphi(i,j,0) = phi(i,j,0)/a_dt- lphi

lofphi(i,j,1) = phi(i,j,1)/a_dt
& -dd*lmu - 0.5*phi(i,j,0)/a_dt

enddo
enddo

60

Chapter 7

Numerical results

In this section we perform numerical experiments for two- and three-dimensional

solidification to validate that our proposed scheme is accurate, efficient, and robust.

For two-dimensional tests, we take the initial state as:

ϕ(x, y, 0) = tanh

(
R0 −

√
x2 + y2√
2

)
and U(x, y, 0) =

{
0 if ϕ > 0
∆ else.

For three-dimensional tests, these are similarly defined:

ϕ(x, y, z, 0) = tanh

(
R0 −

√
x2 + y2 + z2√

2

)
and U(x, y, z, 0) =

{
0 if ϕ > 0
∆ else.

The zero level set (ϕ = 0) represents a circle of radius R0. From the dimensionless

variable definition the value U = 0 corresponds to the melting temperature of the pure

material, while U = ∆ is the initial undercooling. The extension to three dimensions

is straightforward. The capillary length, d0, is defined as d0 = a1/λ [8, 30, 46] with

a1 = 0.8839 [23, 24, 46] and λ = 3.1913 [46]. And other parameter is chosen as

follows: ϵ0 = 1 and ϵ4 = 0.05.

7.1. EVOLUTION FOR CRYSTAL GROWTH IN TWO- AND
THREE-DIMENSIONAL SPACES 61

7.1. Evolution for crystal growth in two- and three-dimensional spaces

In this experiment, we will show the evolution of crystal growth in two and three

dimensions with adaptive mesh method. The computational domains are set as Ω =

(−800, 800)2 with l∗ = 4 levels in two-dimensional case and Ω = (−200, 200)3 with

l∗ = 4 levels in three-dimensional case. And other parameters are chosen as ∆t = 0.4,

R0 = 14d0, and ∆ = −0.55. The calculations are run up to time T = 8000 in two

dimensional space. Figure 7.1(a) shows the temporal evolution of crystal interface with

time step ∆t = 0.15 at times t = 800i, for i = 0, 1, · · · , 10 (from inside to outside).

And the mesh plots of the corresponding order parameter at times t = 400, 2000, 3600,

5200, 6800, and 8000 are shown in Fig. 7.1(b-g). A sample two dimensional adaptive

meshes with different views are shown in Fig. 7.2(a)-(c).

To show the evolution of the k-fold crystal growth in general, we simulate se-

quences of computational experiments of k-fold symmetric crystal growth for k =

4, . . . , 9. A 1024 × 1024 mesh is used on the domain Ω = (−200, 200)2 and we take

R0 = 15d0, ∆ = −0.55, and ∆t = 0.3. Note that we use ϵk = 1/(k2 − 1) to respond

to the Wulff’s algorithm. The evolutions for each k are shown in Fig. 7.3.

7.1. EVOLUTION FOR CRYSTAL GROWTH IN TWO- AND
THREE-DIMENSIONAL SPACES 62

−800 −400 0 400 800
−800

−400

0

400

800

(a)

−800
−400

0
400

800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(b)
−800

−400
0

400
800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(c)

−800
−400

0
400

800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(d)
−800

−400
0

400
800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(e)

−800
−400

0
400

800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(f)
−800

−400
0

400
800

−800

−400

0

400

800
−1

−0.5

0

0.5

1

(g)

FIGURE 7.1. The evolution for crystal growth in two dimensions. (a)
The temporal evolution by using the zero contour of the order parameter
at times t = 800i, for i = 0, 1, · · · , 10 (from inside to outside). (b-g)
Mesh plots for order parameter at times t =
400, 2000, 3600, 5200, 6800, and 8000.

7.1. EVOLUTION FOR CRYSTAL GROWTH IN TWO- AND
THREE-DIMENSIONAL SPACES 63

(a)

(b) (c)

FIGURE 7.2. A sample adaptive mesh in different views in two dimen-
sions. (a) whole view. (b) and (c) closeup views.

Figure 7.4(a) shows three-dimensional structures at times t = 0, 20, 40, 160, 240, and, 480

(from left to right). And in Fig 7.4(b), we show the bounding boxes at times t =

0, 240, and 480 to show the structured local refinement.

7.1. EVOLUTION FOR CRYSTAL GROWTH IN TWO- AND
THREE-DIMENSIONAL SPACES 64

−200 −100 0 100 200
−200

−100

0

100

200

(a) k = 3
−200 −100 0 100 200

−200

−100

0

100

200

(b) k = 4

−200 −100 0 100 200
−200

−100

0

100

200

(c) k = 5
−200 −100 0 100 200

−200

−100

0

100

200

(d) k = 6

−200 −100 0 100 200
−200

−100

0

100

200

(e) k = 7
−200 −100 0 100 200

−200

−100

0

100

200

(f) k = 8

FIGURE 7.3. The evolutions of k-fold crystal growth after time: (a)
T = 720, (b) T = 1200, (c) T = 1680, (d) T = 2160, (e) T = 2520,
and (f) T = 2880.

7.2. STABILITY OF THE OPERATOR SPLITTING ALGORITHM 65

(a)

(b)

FIGURE 7.4. Snapshots of three-dimensional evolution of crystal
growth. (a) crystal shape at times t = 0, 20, 40, 80, 240, and, 480
(from left to right). (b) the bounding boxes at times t = 0, 240, and
480.

7.2. Stability of the operator splitting algorithm

As mentioned in Chapter 6, explicit schemes [19, 43, 44, 45] suffer from time step

restrictions ∆t ≤ O(h2) for the stability. In order to show the stability of our proposed

method we consider the evolution of an interface with arbitrarily large time steps. In

these simulations a 2048 × 2048 mesh is used on the computational domain Ω =

7.2. STABILITY OF THE OPERATOR SPLITTING ALGORITHM 66

(−200, 200)2. We choose R0 = 14d0, ∆ = −0.55, and h = 0.1953. The calculations

are run up to time T = 900 with different time steps ∆t = 0.3 and ∆t = 0.6. Note

that both time steps are larger than h. Figures 7.5 (a) and (b) show evolutions of the

interface with different time steps ∆t = 0.3 and ∆t = 0.6, respectively. In general,

large time steps may cause large truncation errors, however, as can be seen in Fig. 7.5

our proposed scheme works well with large time steps.

−150 −50 50 150
−150

−50

50

150

(a) ∆t = 0.3
−150 −50 50 150

−150

−50

50

150

(b) ∆t = 0.6

FIGURE 7.5. (a) and (b) show the sequence of interfaces with different
time steps ∆t = 0.3 and ∆t = 0.6, respectively. The times are t = 0,
180, 360, 540, 720, and 900 (from inside to outside).

Next, we perform a number of simulations on a set of increasingly finer grids to

show that our proposed method is restricted by the stability constraint ∆t ≤ O(h).

The computational domain is Ω = (−100, 100)2 and we take R0 = 14d0 and ∆ =

−0.55. The numerical solutions are computed on the uniform grids h = 400/2n with

corresponding time steps ∆t = 5.5h for n = 8, 9, and 10. Figure 7.6 shows the

7.2. STABILITY OF THE OPERATOR SPLITTING ALGORITHM 67

crystal growth after time T = 12.89 with time step ∆t = 3h. From the top to bottom,

the results are obtained with uniform four-fold, uniform k-fold, and adaptive mesh

refinement schemes. From these results it is clear that our scheme is stable for time

steps ∆t ≤ O(h). And we try to find the maximum ∆t corresponding to different

spatial grid sizes h so that stable solutions can be computed after 20 time step iterations.

The results are shown in Table 7.1 and we obtain stable solutions for all three mesh

sizes. Note that there is a linear relation between the time step and mesh sizes. Thus,

for finer mesh sizes we may use larger time steps than previous conventional methods.

TABLE 7.1. Stability constraint of ∆t for the proposed scheme. There
are obtained by 4-fold and k-fold crystal growth in uniform domain.

Mesh size h = 400/256 h = 400/512 h = 400/1024

Four fold crystal ∆t ≤ 20h ∆t ≤ 15h ∆t ≤ 12h
k-fold crystal ∆t ≤ 12h ∆t ≤ 15h ∆t ≤ 12h

7.3. CONVERGENCE TEST 68

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

−0.5

0

0.5

1

−100

0

100

−100

0

100

−1

0

1

(a)

−100

0

100

−100

0

100

−1

0

1

(b)

−100

0

100

−100

0

100

−1

0

1

(c)

FIGURE 7.6. The stability of crystal growth with different time steps:
(a) ∆t = 2.24 (256× 256 mesh), (b) ∆t = 1.17 (512× 512 mesh), and
(c) ∆t = 0.59 (1024× 1024 mesh). From the top to bottom, the results
are obtained with uniform four-fold, uniform k-fold, and adaptive mesh
refinement schemes.

7.3. Convergence test

To obtain an estimate of the convergence rate, we perform a number of simulations

for crystal growth problem on a set of increasingly finer grids. The computational

domain is Ω = (−100, 100)2 and we take R0 = 15d0, and ∆ = −0.55. We take

ϵ4 = 0.05 and ϵ6 = 0.02 for four-fold and six-fold crystal growth, respectively. The

corresponding time step is set as ∆t = 0.0625. The numerical solutions are computed

on the uniform grids h = 200/2n for n = 8, 9, 10, and 11. For the adaptive case, we

7.3. CONVERGENCE TEST 69

set the base mesh grids, 64× 64 making the minimum grid spacing hmax = 3.125 and

use l∗ = 2, 3, 4, and, 5 to match the uniform case. The calculations are run up to time

T = 30. Since no analytical solutions are available, we use the Richardson method.

We define the error to be the discrete of l2-norm of the difference between that grid

and the average of the next finer grid cells covering it:

eh/h
2 ij

= chij − (ch
2 2i−1,2j−1

+ ch
2 2i−1,2j

+ ch
2 2i,2j−1

+ ch
2 2i,2j

)/4.

The rate of convergence is defined as:

log2(∥ eh/h
2
∥2 / ∥ eh

2
/h
4
∥2).

The obtained errors and rates of convergence using these definitions are given in

Table 7.2. The second-order accuracy with respect to the space is observed as expected

from the discretization.

TABLE 7.2. Error and convergence results with various mesh grids.
Here, ∆t = 0.0625. Nx − 2Nx means ∥e

200
Nx ∥2.

Grid 256− 512 Rate 512− 1024 Rate 1024− 2048
Four-fold : l2-error 4.505e-3 1.264e-3 3.110e-4
Four-fold: Rate 1.83 2.02
Six-fold : l2-error 6.778e-3 1.822e-3 4.550e-4
Six-fold : Rate 1.82 2.07
AMR: l2-error 6.123e-3 1.883e-3 5.044e-4
AMR: Rate 1.70 1.90

To obtain the convergence rate for the temporal discretization, we fix the spatial

grid as 512 and choose a set of decreasingly smaller time steps ∆t = 0.5, 0.25, 0.125,

7.3. CONVERGENCE TEST 70

and 0.0625. We also run the computation up to time T = 30. Note that we similarly

define the temporal discrete l2-norm error as e∆tij := u∆tij − u
∆t
2
ij . The obtained errors

and rates of convergence are given in Table 7.3. The first-order accuracy with respect

to the time is observed, as expected from the discretization.

TABLE 7.3. Error and convergence results with various time steps.
0.5 − 0.25 means ∥e∆t∥2 with ∆t = 0.5. Here, a 512 × 512 mesh
grid is used.

∆t 0.5− 0.25 Rate 0.25− 0.125 Rate 0.125− 0.0625
Four-fold: l2-error 4.389e-2 2.241e-2 1.117e-2
Four-fold: Rate 0.969 1.004
Six-fold: l2-error 4.532e-2 2.245e-32 1.127e-2
Six-fold: Rate 1.013 0.994
AMR: l2-error 4.823e-2 2.464e-2 1.251e-2
AMR: Rate 0.968 0.978

7.4. EFFECT OF TIME STEP AND MESH 71

7.4. Effect of time step and mesh

In this experiment we consider the evolution of the interface with different time

steps in order to investigate the effect of time step. A 1024× 1024 mesh is used on the

domain Ω = (−400, 400)2 and we take h = 0.7813, R0 = 14d0, and ∆ = −0.55. The

simulations are run up to time T = 1800. Figures. 7.7 (a) and (b) show the position

and velocity of the tip versus time respectively, both for different time steps ∆t = 0.6,

0.3, 0.15, and 0.075. Figure 7.7 (c) shows evolutions of the interface with time step

∆t = 0.15 at times t = 0, 225, 450, 675, 900, 1125, 1350, 1575, and 1800 (from inside

to outside). For different time steps, the interfaces at time T = 1800 are shown in

Figure 7.7 (d).

Next, we consider the evolution of the interface with different time steps in order

to investigate the effect of time step. A 1024 × 1024 mesh is used on the domain

Ω = (−200, 200)2 with R0 = 50d0, ϵ6 = 0.02, and ∆ = −0.55. Figure 7.8 shows

the velocity of the tip versus at time T = 1200 with different time steps ∆t = 0.6,

0.3, and 0.15. The four-fold and six-fold cases are presented in Figure 7.8(a) and

(b), respectively. Here, we define the error between the fitting velocity Ṽ and V as

Ei = |Ṽi − Vi|/Vi. The linear fit Ṽ is done using the MATLAB function “polyfit”

and the errors on the index i are calculated by the MATLAB function “polyval” on the

7.4. EFFECT OF TIME STEP AND MESH 72

0 300 600 900 1200 1500 1800
0

50

100

150

200

250

Time

P
os

iti
on

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(a)

0 300 600 900 1200 1500 1800
0

0.1

0.2

0.3

Time

V
el

oc
ity

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(b)

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(c)
−250 −150 −50 50 150 250

−250

−150

−50

50

150

250

∆t = 0.60
∆t = 0.30
∆t = 0.15
∆t = 0.075

(d)

FIGURE 7.7. (a) and (b) show the position and velocity of the tip versus
time respectively, for different time steps. (c) Evolutions of the interface
with time step ∆t = 0.15. (d) The interfaces at time T = 1800 for
different time steps.

results of the linear fit. In this test, the l2 error is 0.54%. Therefore the results suggest

that the convergence rate of the tip velocity is linear with respect to the time step.

Total CPU times and average CPU times (CPU) of the simulations for different

time steps are listed in Table 7.4. The average CPU time is defined as the real compu-

tational time (excluding data printing times) divided by the total number of iterations,

7.4. EFFECT OF TIME STEP AND MESH 73

0.075 0.15 0.30 0.60
0.07

0.08

0.09

0.10

0.11

Time step

V
el

oc
ity

(a)

0.1 0.2 0.3 0.4 0.5 0.6
0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

Linear fitting
Experimental data

(b)

FIGURE 7.8. The numerical experimental and linear fitting velocities
versus time step for (a) four-fold and (b) k-fold crystal.

the results are shown in Table 7.4, corresponding to data in Fig. 7.7. Table 7.4 suggests

that our proposed scheme is robust for different time steps.

TABLE 7.4. Total CPU times and average CPU times (CPU) for dif-
ferent time steps.

Case ∆t = 0.6 ∆t = 0.3 ∆t = 0.15 ∆t = 0.075

CPU time (h) 5.07 9.06 16.77 32.59
CPU time (s) 5.87 5.19 4.80 4.84

In the next experiment we consider the evolution of the interface with different

mesh sizes in order to find an effective mesh size for our proposed method. 256 ×

256, 512 × 512, 1024 × 1024, and 2048 × 2048 meshes are used on the domain Ω =

(−200, 200)2, i.e., we use four different h = 1.5626, 0.7813, 0.3906, and 0.1953. The

parameters used are R0 = 14d0, ∆ = −0.55, ∆t = 0.15, and T = 900. Figure 7.9 (a),

(b), (c), and (d) show sequences of interface for different mesh sizes. The position and

7.4. EFFECT OF TIME STEP AND MESH 74

velocity of the tip versus time are shown in Fig. 7.10 (a) and (b), respectively. From

the results shown in Fig. 7.10 we can observe that the spatial step size h = 0.3906

is enough to simulate accurately and robustly the evolution of crystal growth in our

proposed method.

−150 −50 50 150
−150

−50

50

150

(a) h = 1.5626
−150 −50 50 150

−150

−50

50

150

(b) h = 0.7813

−150 −50 50 150
−150

−50

50

150

(c) h = 0.3906
−150 −50 50 150

−150

−50

50

150

(d) h = 0.1953

FIGURE 7.9. Sequences of interfaces with different spatial step sizes:
(a) h = 1.5626, (b) h = 0.7813, (c) h = 0.3906, and (d) h = 0.1953.

7.5. EFFECT OF RADIUS 75

0 150 300 450 600 750 900
0

50

100

150

Time

P
os

iti
on

h=1.5626
h=0.7813
h=0.3906
h=0.1953

(a) Position

0 150 300 450 600 750 900
0

0.1

0.2

0.3

0.4

Time

V
el

oc
ity

h=1.5626
h=0.7813
h=0.3906
h=0.1953

(b) Velocity

FIGURE 7.10. (a) and (b) show the position and velocity of the tip
versus time, respectively.

7.5. Effect of radius

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(a) R0 = 15d0

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(b) R0 = 50d0

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

(c) R0 = 100d0

FIGURE 7.11. Sequences of interfaces with different initial radius of
dendrite (a)R0 = 15d0, (b) R0 = 50d0, and (c) R0 = 100d0.

In this experiment we investigate the effects of radius of the initial solid seed. For

each test a 1024× 1024 mesh is used on the domain Ω = (−400, 400)2 and we choose

∆t = 0.15 and T = 1500. Figure 7.11 shows sequences of interfaces with different

7.6. EFFECT OF UNDERCOOLING 76

radii R0 = 15d0, 50d0, and 100d0 (from left to right). we can see that for an increase

in the initial radius the dendrite growth faster. In this test we take ∆ = −0.55.

7.6. Effect of undercooling

−200 −100 0 100 200
−200

−100

0

100

200

−200 −100 0 100 200
−200

−100

0

100

200

−200 −100 0 100 200
−200

−100

0

100

200

−400 −200 0 200 400
−400

−200

0

200

400

(a) ∆ = −0.45
−400 −200 0 200 400

−400

−200

0

200

400

(b) ∆ = −0.55
−400 −200 0 200 400

−400

−200

0

200

400

(c) ∆ = −0.65

FIGURE 7.12. Sequences of interfaces with different undercooling. (a)
∆ = −0.45, (b) ∆ = −0.55, and (c) ∆ = −0.65. From top and bottom,
these are the results for four-fold and six-fold cases.

Now we investigate the effects of undercooling of the initial solid seed. Sequences

of interfaces with different undercooling ∆ = −0.45, ∆ = −0.55, and ∆ = −0.65

are presented in the Fig. 7.12. In two dimensional, a 1024× 1024 mesh is used on the

domain Ω = (−200, 200)2 and we chooseR0 = 15d0, ∆t = 0.3, and T = 1500. In this

test we take ϵ4 = 0.05 and ϵ6 = 0.02 for four-fold and six-fold crystal, respectively.

7.6. EFFECT OF UNDERCOOLING 77

From Fig. 7.12 we observe that the large initial undercooling causes the dendrite to

grow faster.

7.7. COMPARISON BETWEEN OUR PROPOSED ADAPTIVE METHOD,
EXPLICIT ADAPTIVE METHOD, AND UNIFORM MESH SIMULATION 78

7.7. Comparison between our proposed adaptive method, explicit adaptive

method, and uniform mesh simulation

7.7.1. Comparison between our proposed adaptive method and explicit adap-

tive method. In general, an explicit scheme is fast, however, the overall CPU time for

long time integration larger than an implicit scheme, which can use larger time steps.

This is true for the adaptive method used here. In order to show our proposed method

is more efficient than explicit adaptive methods, we consider CPU time comparison

test in two dimensions. The computational domain is set as Ω = (−200, 200)2 with

l∗ = 3 levels. The minimum element size hmin = 0.39, R0 = 15d0, and ∆ = −0.55

are used. Since the explicit adaptive method surfers the time step size limitation, here

we use a time step ∆t = 0.01. For our proposed method, we use time step ∆t = 0.01

and ∆t = 0.2. The calculations are run up to time T = 200. We list the tip posi-

tion of crystal and CPU time in Table 7.5. Form these results, we can observe that

our proposed method with ∆t = 0.01 needs more CPU time than the explicit method.

However, with ∆t = 0.2 our proposed method is about 5 times faster than the explicit

method. Tip positions with different methods are similar.

7.7.2. Comparison with uniform mesh simulation. In this experiment, we will

compare the results obtained on uniform meshes and on adaptively refined meshes for

7.7. COMPARISON BETWEEN OUR PROPOSED ADAPTIVE METHOD,
EXPLICIT ADAPTIVE METHOD, AND UNIFORM MESH SIMULATION 79

TABLE 7.5. Comparison of CPU time and tip positions calculated by
the explicit scheme and our proposed scheme.

Method Time step Tip position CPU time (h)
Explicit method 0.01 45.94 0.10

Proposed method 0.01 45.91 0.60
Proposed method 0.20 44.48 0.02

two and three dimensions to show the efficiency and accuracy of our proposed method.

For two dimensions, the computational domain is set as Ω = (−400, 400)2 with 1024×

1024 mesh grids for uniform mesh calculation and l∗ = 3 levels for the adaptive mesh

method. And in three dimensions, we use Ω = (−100, 100)3, 256 × 256 × 256, and

l∗ = 3. With time step ∆t = 0.3, the calculations are run up to time T = 1800 and T =

240 in two and three dimensions, respectively. The comparisons with uniform meshes

and adaptively refined meshes in two and three dimensions are drawn in the first row

and in the second row of Fig. 7.13, respectively. As can be observed, the agreement

between the results computed by uniform meshes and adaptive meshes is good. In the

two-dimensional calculation, the taken CPU times are 16.15h and 0.82h for uniform

and adaptive meshes, respectively. In the three-dimensional calculation, the taken CPU

times are 29.15h and 2.71h for uniform and adaptive meshes, respectively.

7.8. DENDRITIC GROWTH AT LOW UNDERCOOLING 80

−250 −150 −50 50 150 250
−250

−150

−50

50

150

250

adaptive
uniform

(a)
25 75 125 175

25

75

125

175

adaptive
uniform

(b)

−100 −50 0 50 100
−100

−50

0

50

100

adaptive
uniform

(c)
15 30 45 60

15

30

45

60

adaptive
uniform

(d)

FIGURE 7.13. The comparison between uniform meshes and adaptive
meshes in two and three dimensions. First and second rows are two and
three dimensional cases, respectively. (a) crystal shape at t = 1800. (c)
y-z plane of crystal shape at t = 240. (b) and (d) are closeup views of
(a) and (b), respectively.

7.8. Dendritic growth at low undercooling

For low undercoolings, it requires much longer time to reach a steady-state tip

velocity due to the lower growth rate. Furthermore an extremely large domain should

be used to avoid the far field boundary effect. In this case, the adaptive mesh refinement

7.8. DENDRITIC GROWTH AT LOW UNDERCOOLING 81

method is a better choice to overcome it. Here, we consider low undercoolings such as

∆ = −0.25 and ∆ = −0.1. The computational domain is Ω = (−6400, 6400)2 with

the base mesh grids, 32 × 32. l∗ = 9 is used and the minimum grid spacing hmin is

0.78. With time step ∆t = 0.4, the numerical solutions for ∆ = −0.25 and ∆ = −0.1

are computed up to T = 4000 and T = 40000, respectively. Other parameters are

d0 = 0.403, R0 = 100d0, D = 13, and λ = 20.744. Figure 7.14 shows the evolution of

tip velocity (Vtip) for ∆ = −0.25 and ∆ = −0.1 with our proposed method, the results

in [29], and solvability theory [25, 31]. The numerical results show good agreement

with previous results. Next, we consider steady-state tip velocities in three dimensions.

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

Time t

V
tip

∆ =−0.25[29]
∆ =−0.1[29]
Present study
Solvability theory

FIGURE 7.14. Evolution of tip velocity at ∆ = −0.25 and ∆ = −0.1.
In order to compare the results in [29] and the results computed by
solvability theory, we put them together.

7.8. DENDRITIC GROWTH AT LOW UNDERCOOLING 82

There is the simple relationship which was obtained by Ivantsov [30]:

∆ = −Pe exp(Pe)
∫ ∞

Pe

exp(−s)
s

ds,

where Pe = RtipVtip/(2D) is the Peclet number andRtip is the tip radius. The stability

constant σ = 2Dd0/(R
2
tipVtip) was used in [25, 31]. Here we choose σ = 0.02.

Thus for given ∆, D, and d0, we can compute Vtip. In numerical experiment, we

perform the simulation on the domain Ω = (−100, 100) × (−100, 100) × (0, 800)

with the base mesh grids, 8 × 8 × 32. Here l∗ = 5 and the minimum grid spacing

hmin = 0.78 are used. The other parameters are same as those used in two-dimensional

space except forR0 = 50d0. Comparisons with theoretical solutions are drawn in Table

7.6. From these results, we can observe that dimensionless steady-state tip velocities

obtained by our proposed scheme are in good agreement with the analytic solutions at

low undercoolings.

TABLE 7.6. Comparison of dimensionless steady-state tip velocities
calculated by our proposed method and the analytic solution.

Case ∆ = −0.25 ∆ = −0.1
Analytic solution 0.00251 0.000139

Numerical solution 0.00252 0.000148

7.9. ACCURACY OF OUR PROPOSED METHOD 83

7.9. Accuracy of our proposed method

7.9.1. Comparison of the dimensionless steady-state tip velocities. To verify

the accuracy of our proposed scheme we compare the dimensionless steady-state tip

velocities obtained by our proposed scheme with phase-field simulations [23] and

Green’s function calculations. A 1024 × 1024 mesh is used on the domain Ω =

(−200, 200)2. For the adaptive mesh refinement method, we take with l∗ = 3, the

minimum element size hmin = 0.39, We choose R0 = 6.924, W0 = 1, and λ = D/a2.

In Table 7.7, as can be seen the values obtained by our proposed scheme are in good a-

greement with results of previous phase-field and Green’s theory over the whole range

of d0, ∆, and ϵ4 investigated here. Note that despite the relatively large time step

(∆t = 5∆tKR = 0.08) used in our scheme, the results are almost identical.

TABLE 7.7. Comparison of dimensionless steady-state tip velocities
calculated by our proposed scheme (Vtip = V d0/D), calculated by
phase-field simulations (V KR

tip), and calculated by the Green function
method (V GF

tip).

∆ ϵ4 D d0/W0 V LLK
tip V KR

tip V GF
tip Vtip

-0.55 0.05 2 0.277 0.01710 0.01680 0.01700 0.01700
-0.55 0.05 3 0.185 0.01740 0.01750 0.01700 0.01720
-0.55 0.05 4 0.139 0.01720 0.01740 0.01700 0.01710
-0.50 0.05 3 0.185 0.01030 0.01005 0.00985 0.00997
-0.45 0.05 3 0.185 0.00599 0.00557 0.00545 0.00537

7.9. ACCURACY OF OUR PROPOSED METHOD 84

7.9.2. Tail morphology. Brener [5] derived a theory of the tail shape of a 3D

needle crystal with the assumption that the cross section of a 3D needle crystal should

grow as the time dependent 2D growth shapes away from the tip. In [23], Karma

and Rappel compared the steady-state growth velocities from simulation and theory

derived by Brener.

In this section we compare the velocities calculated by our scheme and those given

in [23]. In 2D and 3D simulations, we choose h = 0.3906, R0 = 14d0, ∆t = 0.15, and

two different undercoolings ∆ = −0.65 and ∆ = −0.70. In the 2D test a 1024× 1024

mesh is used on the domain Ω = (−200, 200)2 and the simulation time is T = 750.

In the 3D test a 256 × 256 × 256 mesh is used on the domain Ω = (−50, 50)3 and

the simulation time is T = 90. Results of steady-state growth velocities obtained from

2D and 3D simulations are given in Table 7.8. Our results show good agreement with

those of Karma and Rappel.

TABLE 7.8. Results of steady-state growth velocities.

∆ ϵ4 V2D V3D V2D/V3D V KR
2D /V KR

3D Slope

−0.70 0.0294 0.0353 0.0813 0.434 0.44 0.43

−0.65 0.0294 0.0243 0.0620 0.392 0.39 0.40

7.9. ACCURACY OF OUR PROPOSED METHOD 85

7.9.3. Comparison with the previous study. An isotropic finite-difference scheme

for simulating 6-fold symmetric dendritic solidification is presented in [28]. The au-

thor showed that the stability criterion becomes ∆t ≤ (3/8)h2. But, as we can see in

Chapter 6, the time restriction of our proposed method is ∆t ∼ O(h). In order to show

the improvement of our proposed method, we use the same numerical parameters as in

[28], e.g., λ = 1.7680, ϵ0 = 1.1312, ϵ6 = 0.05, D = 2, and R0 = 5. Note that in [28],

the author took the step size as h = 0.4 in the progressively increased mesh sizes as

500 × 500 for 0 ≤ t ≤ 150, to 800 × 800 for 150 ≤ t ≤ 250, and to 1200 × 1200 for

250 ≤ t ≤ 400. Here we take a 1280 × 1280 mesh size. This simulation is run up to

T = 400 with ∆t = 0.2. Our proposed method took about only 5 hours of CPU time,

which is drastically reduced faster than the CPU time (1000 hours) in [28].

86

Chapter 8

Conclusions

In this dissertation, we reviewed our research on overcoming the stability restric-

tion by introducing a fast, robust, and accurate operator splitting method. Then we

extended this work by incorporating adaptive mesh refinement.

After giving a brief introduction to the sharp-interface model and phase-field mod-

el, we described the crystal growth modeling. Later, we introduced the fast, robust,

and accurate operator splitting method for phase-field simulations of crystal growth.

And then the description of adaptive mesh refinement method was drawn. Finally we

demonstrated stability, robustness, and accuracy of the proposed method by a set of

representative numerical experiments.

87

Appendix

In this Appendix, we present a source code to make mesh plots for adaptive mesh
refinement in two- and three- dimensions.

%%%%%%%%%%%% Mesh plots for Two Dimensional%%%%%%%%%%%%%
close all;clear;clc
basel=64;%%%% number of points in level 0
level=5+1;%%%%%%%%% lˆ*=5
mes=basel*2ˆ(level-1);%%%%% refinement radio = 2
baselx=basel;
basely=baselx;
mesx=2ˆ(level-1)*baselx;
mesy=2ˆ(level-1)*basely;
xright=800.0;
yright=xright*basely/baselx;%whole domain(-400,400)*(-400,400)
h=yright/mes;
ns=11;
for ik=1:ns

clear S
figure(ik)
hold on
ijj=1;
for ip=1:level

hold
clear op

str = sprintf(’data/out%dplot%d.m’,ip-1,ik);% data
op=load(str);
m_level=ip-1;
endd2=0;
ihj=0;
while endd2<size(op,1)

AA=op(endd2+1:endd2+4);
nx=AA(3)-AA(1)+1 ;
ny=AA(4)-AA(2)+1;
A=op(endd2+5:endd2+4+nx*ny);

88

[xx,yy]=meshgrid(linspace(AA(1)-1.0,AA(3),nx+1),...
linspace(AA(2)-1.0,AA(4),ny+1));

m_level=3;
gx = xright*xx(1,:)/(baselx*2ˆ(ip-1));
gy = yright*yy(:,1)/(basely*2ˆ(ip-1));

for i=1:nx+1
a = line([gx(i),gx(i)],[gy(1),gy(ny+1)],’linewidth’,0.15);

set(a,’Color’,[0 0 1]*ip/level);
end
for j=1:ny+1
a = line([gx(1),gx(nx+1)],[gy(j),gy(j)],’linewidth’,0.15);

set(a,’Color’,[0 0 1]*ip/level);
end

for j=1:ny
for i=1:nx

for ii=1:mesx/(baselx*2ˆ(ip-1))
for jj=1:mesy/(basely*2ˆ(ip-1))

S((mesx/(baselx*2ˆ(ip-1)))*(AA(1)+i-2)+ii,...
(mesy/(basely*2ˆ(ip-1)))*(AA(2)+j-2)+jj)=A((j-1)*nx+i);

end
end

end
end
endd2=endd2+4+nx*ny;
ihj=ihj+1;
end
end
n=mesx;
x=linspace(0.5/n, xright*(n-0.5)/n,n);
n=mesy;
y=linspace(0.5/n, yright*(n-0.5)/n,n);
[xx,yy]=meshgrid(x,y);
hold on
[cc,hh]=contour(xx’,yy’,S,[0.5 0.5],’k’,’linewidth’,1.5);
axis image
hold off
box on
set(gca, ’fontsize’,20)
set(gca,’XTick’, (0:200:xright)) ;
set(gca,’YTick’,(0:200:xright));

end

89

%%%%%%%%%%%% Mesh plots for three Dimensional%%%%%%%%%%%%%
close all;clear;clc
basel=32;%%%% number of points in level 0
level=4+1;%%%%%%%%% lˆ*=4
mes=basel*2ˆ(level-1);%%%%%%%%%%%% refinement radio = 2
length=400;% whole domain (-200,200)*(-200,200)*(-200,200)
leftlength=-0.5*length;
rightlength=0.5*length;
h=length/mes;
ns=7;%%%%%%%%%%%%Number of print data
nnx=256;
for ik=1:ns
figure(ik)
hold on
for ip=1:level

hold
str = sprintf(’data/out%dplot%d.txt’,ip-1,ik);%%data
op=load(str);
m_level=ip-1;
endd2=0;
ihj=0;
h=length/(basel*2ˆ(ip-1));
xxx2=linspace(0.5*h-length*0.5,...
length*0.5-0.5*h,basel*2ˆ(ip-1));
while endd2<size(op,1)
AA=op(endd2+1:endd2+6)
nx=AA(4)-AA(1)+1;
ny=AA(5)-AA(2)+1;
nz=AA(6)-AA(3)+1;
A=op(endd2+7:endd2+6+nx*ny*nz);
kkk=16;
if (ip>1)

if (xxx2(AA(1))>leftlength&&xxx2(AA(2))>leftlength...
&&xxx2(AA(3))>leftlength...
&&xxx2(AA(4))<rightlength&&xxx2(AA(5))...
<rightlength&&xxx2(AA(6))<rightlength)

aaaa=[AA(1) AA(4)];
bbbb=[AA(2) AA(5)];
cccc=[AA(3) AA(6)];
for ii=1:size(aaaa,2)-1

for jj=1:size(bbbb,2)-1

90

for kk=1:size(cccc,2)-1
xl=xxx2(aaaa(ii));
yl=xxx2(bbbb(jj));
zl=xxx2(cccc(kk));
xr=xxx2(aaaa(ii+1));
yr=xxx2(bbbb(jj+1));
zr=xxx2(cccc(kk+1));
hold on
line([xl xr],[yl yl],[zl zl],’LineWidth’,1)
line([xl xr],[yr yr],[zl zl],’LineWidth’,1)
line([xl xr],[yl yl],[zr zr],’LineWidth’,1)
line([xl xr],[yr yr],[zr zr],’LineWidth’,1)

line([xl xl],[yl yr],[zl zl],’LineWidth’,1)
line([xr xr],[yl yr],[zl zl],’LineWidth’,1)
line([xl xl],[yl yr],[zr zr],’LineWidth’,1)
line([xr xr],[yl yr],[zr zr],’LineWidth’,1)

line([xl xl],[yl yl],[zl zr],’LineWidth’,1)
line([xl xl],[yr yr],[zl zr],’LineWidth’,1)
line([xr xr],[yl yl],[zl zr],’LineWidth’,1)
line([xr xr],[yr yr],[zl zr],’LineWidth’,1)

end
end

end
end
end

for k=1:nz
for j=1:ny

for i=1:nx
for ii=1:mes/(basel*2ˆm_level)
for jj=1:mes/(basel*2ˆm_level)
for kk=1:mes/(basel*2ˆm_level)

if((mes/(basel*2ˆm_level))...

*(AA(1)+i-2)+ii<=nnx&&(mes/(basel*2ˆm_level))...

*(AA(2)+j-2)+jj<=nnx&&(mes/(basel*2ˆm_level))...

*(AA(3)+k-2)+kk<=nnx)
S((mes/(basel*2ˆm_level))*(AA(1)+i-2)+ii,...
(mes/(basel*2ˆm_level))*(AA(2)+j-2)+jj,...
(mes/(basel*2ˆm_level))*(AA(3)+k-2)+kk)...

91

=A(ny*nx*(k-1)+nx*(j-1)+i);
end

end
end

end
end

end
end
endd2=endd2+6+nx*ny*nz;
ihj=ihj+1
end

end
clear A
clear AA

%%Since initial mesh grid is 512*512*512,
%%%it’s difficlut to make mesh plots.
%%% We use 128*128*128 mesh grid to show fiugres

for i=1:nnx/2
for j=1:nnx/2

for k=1:nnx/2
S2(i,j,k)=(S(2*i,2*j,2*k)+S(2*i-1,2*j,2*k)...
+S(2*i,2*j-1,2*k)+S(2*i,2*j,2*k-1)+S(2*i-1,2*j-1,2*k)...
+S(2*i,2*j-1,2*k-1)+S(2*i-1,2*j,2*k-1)+S(2*i-1,2*j,2*k-1))/8;

end
end

end
clear S

for i=1:nnx/2
for j=1:nnx/2

for k=1:nnx/2
S2(i+nnx/2,j,k)=S2(nnx/2+1-i,j,k);

end
end

end
for i=1:nnx

for j=1:nnx/2
for k=1:nnx/2

S2(i,nnx/2+j,k)=S2(i,nnx/2+1-j,k);
end

end

92

end
for i=1:nnx

for j=1:nnx
for k=1:nnx/2

S2(i,j,nnx/2+k)=S2(i,j,nnx/2+1-k);
end

end
end

for i=1:nnx/2
for j=1:nnx/2

for k=1:nnx/2
S(i,j,k)=0.125*(S2(2*i,2*j,2*k)+S2(2*i-1,2*j,2*k)...
+S2(2*i,2*j-1,2*k)+S2(2*i,2*j,2*k-1)+S2(2*i-1,2*j-1,2*k)...
+S2(2*i,2*j-1,2*k-1)+S2(2*i-1,2*j,2*k-1)+S2(2*i-1,2*j,2*k-1));

end
end

end
%%
n=mes;
S(1,1,1)=-0.01;
S(end,end,end)=-0.01;
x=linspace(0.5*h-0.5*length, 0.5*length-0.5*h,nnx/2);
[xx,yy,zz]=meshgrid(x,x,x);
p=patch(isosurface(xx,yy,zz,S,0.0));
clear xx;
clear yy;
clear zz;

set(p,’FaceColor’,’yellow’,’EdgeColor’,’none’);
daspect([1 1 1]); axis tight;
view(-31,18);
camlight;
lighting phong;
axis image
axis([-0.5*length 0.5*length -0.5*length ...

0.5*length -0.5*length 0.5*length])
set(gca,’XTick’, (-0.5*length:500:0.5*length)) ;
set(gca,’YTick’,(-0.5*length:500:0.5*length)) ;
set(gca,’ZTick’, (-0.5*length:500:0.5*length)) ;
set(gca, ’fontsize’,18)
hold off
end

93

Bibliography

[1] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening, Acta Metall., 27 (1979) 1085–1095.

[2] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, A conservative adaptive pro-
jection method for the variable density incompressible Navier–Stokes equations, J. Comput. Phys.
142 (1998) 1–46.

[3] N. Al-Rawahi, G. Tryggvason, Numerical simulation of dendritic solidification with convection:
two-dimensional geometry, J. Comput. Phys. 180 (2002) 471–496.

[4] M. Beneš, V. Chalupecký, K. Mikula, Geometrical image segmentation by the Allen-Cahn equa-
tion, Appl. Numer. Math. 51 (2004) 187–205.

[5] E. Brener, Needle-crystal solution in three-dimensional dendritic growth, Phys. Rev. Lett. 71
(1993) 3653–3656.

[6] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
[7] W.K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of

their surfaces, Philosophical Transactions of the Royal Society A, 243 (1951), 299–358.
[8] G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations,

Phys. Rev. A 39 (1989) 5887–5896.
[9] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for solving Stefan problem,

J. Comput. Phys. 135 (1997) 8–29.
[10] C.C. Chen, C.W. Lan, Efficient adaptive three-dimensional phase-field simulation of dendritic

crystal growth from various supercoolings using rescaling, J. Cryst. Growth 311 (2009) 702–706.
[11] C.C. Chen, Y.L. Tsai, C.W. Lan, Adaptive phase field simulation of dendritic crystal growth in a

forced flow: 2D vs. 3D morphologies, Int. J. Heat Mass Transfer 52 (2009) 1158–1166.
[12] C. Cowan, M.S. Thesis, Simon Fraser University, Canada, 2005.
[13] J.-M. Debierre, A. Karma, F. Celestini, R. Guérin, Phase-field approach for faceted solidification,

Phys. Rev. E 68 (2003) 041604.
[14] J.A. Dobrosotskaya, A.L. Bertozzi, A Wavelet-Laplace variational technique for image deconvo-

lution and inpainting, IEEE. Trans. Imag. Proc. 17 (2008) 657–663.
[15] F.C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963.
[16] P.C. Fife, Models for phase separation and their mathematics, E. J. Diff. Eqns., 2000 (48) (2000)

1–26.
[17] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, A level set approach for the numerical simulation of

dendritic growth, J. Sci. Comput. 19 (2002) 183–199.
[18] T. Ihle, Competition between kinetic and surface tension anisotropy in dendritic growth, Eur. Phys.

J. B 16 (2000) 337–344.
[19] J.-H. Jeong, N. Goldenfeld, J.A. Dantzig, Phase field model for three-dimensional dendritic growth

with fluid flow, Phys. Rev. E 64 (2001) 041602.
[20] A. Jacot, M. Rappaz, A pseudo-front tracking technique for the modelling of solidification mi-

crostructures in multi-component alloys, Acta Mater. 50 (2002) 1909–1926.

94

[21] D. Juric, G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys.
123 (1996) 127–148.

[22] A. Karma, Y.H. Lee, M. Plapp, Three-dimensional dendrite-tip morphology at low undercooling,
Phys. Rev. E 61 (2000) 3996–4006.

[23] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three
dimensions, Phys. Rev. E 57 (1998) 4323–4349.

[24] A. Karma, W.-J. Rappel, Phase-field method for computationally efficient modeling of solidifica-
tion with arbitrary interface kinetics, Phys. Rev. E 53 (1996) 3017–3020.

[25] D. Kessler, J. Koplik, H. Levine, Pattern selection in fingered growth phenomena, Adv. Phys. 37
(1988) 255–339.

[26] Y.-T. Kim, N. Goldenfeld, J. Dantzig, Computation of dendritic microstructures using a level set
method, Phys. Rev. E 62 (2000) 2471-2474.

[27] R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Phys. D 63 (1993)
410-423.

[28] A. Kumar, Isotropic finite-differences, J. Comput. Phys. 201 (2004) 109–118.
[29] C.W. Lan, C.M. Hsu, C.C. Liu, Y.C. Chang, Adaptive phase field simulation of dendritic growth

in a forced flow at various supercoolings, Phys. Rev. E 65 (2002) 061601.
[30] J.S. Langer, In: Directions in Condensed Matter, World Scientific, Singapore, 1986, pp. 164–186.
[31] J.S. Langer, Instabilities and pattern formation in crystal growth, Rev. Mod. Phys. 52 (1980) 1–28.
[32] D. Li, R. Li, P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth

with convection, Appl. Math. Modelling 31 (2007) 971–982.
[33] S. Li, J.S. Lowengrub, P.H. Leo, Nonlinear morphological control of growing crystals, Phys. D

208 (2005) 209–219.
[34] Y. Li, J. Kim, An unconditionally stable numerical method for bimodal image segmentation, Ap-

plied Mathematics and Computation, 219 (2012) 3083–3090.
[35] Y. Li, J. Kim, Multiphase image segmentation using a phase-field model, Computers and Mathe-

matics with Applications, 62 (2011) 737–745.
[36] Y. Li, J. Kim, A fast and accurate numerical method for medical image segmentation, J. KSIAM,

14 (2010) 201-2-10.
[37] Y. Li, J. Kim, Phase-field simulations of crystal growth with adaptive mesh refinement, Interna-

tional Journal of Heat and Mass Transfer, 55 (2012) 7926–7932.
[38] Y. Li, H-G. Lee, J. Kim, A fast, robust, and accurate operator splitting method for phase-field

simulations of crystal growth, Journal of Crystal Growth, 321 (2011) 176–182.
[39] Y. Li, D. Lee, H. G. Lee, D. Jeong, C. Lee, D. Yang, J. Kim, A robust and accurate phase-field

simulation of snow crystal growth, J. KSIAM, 16 (2012) 15–29.
[40] D.I. Meiron, Boundary integral formulation of the two-dimensional symmetric model of dendritic

growth, Phys. D 23 (1986) 329–339.
[41] M. J. Berger, I. Rigoutsos. An algorithm for point clustering and grid generation. IEEE Transac-

tions Systems, Man and Cybernetics, 21 (1991) 1278–1286.
[42] M. Plapp, A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo method for simulating

dendritic solidification, J. Comput. Phys. 165 (2000) 592-619.
[43] N. Provatas, N. Goldenfeld, J. Dantzig, Efficient computation of dendritic microstructures using

adaptive mesh refinement, Phys. Rev. Lett. 80 (1998) 3308-3311.
[44] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification

microstructures using dynamic data structures, J. Comput. Phys. 148 (1999) 265-290.
[45] J.C. Ramirez, C. Beckermann, A. Karma, H.-J. Diepers, Phase-field modeling of binary alloy

solidification with coupled heat and solute diffusion, Phys. Rev. E 69 (2004) 051607.

95

[46] J. Rosam, P.K. Jimack, A. Mullis, A fully implicit, fully adaptive time and space discretisation
method for phase-field simulation of binary alloy solidification, J. Comput. Phys. 225 (2007) 1271-
1287.

[47] J.A. Sethian, J. Strain, Crystal growth and dendlritic solidification, J. Comput. Phys. 98 (1992)
231-253.

[48] C.J. Shih, M.H. Lee, C.W. Lan, A simple approach toward quantitative phase field simulation for
dilute-alloy solidification, J. Cryst. Growth 282 (2005) 515-524.

[49] T.P. Schulze, Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo
techniques, Phys. Rev. E 78 (2008) 020601.

[50] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, An adaptive level
set approach for incompressible two-phase flows, J. Comput. Phys. 148 (1999) 81–124.

[51] J. Strain, A boundary integral approach to unstable solidification, J. Comput. Phys. 85 (1989)
342-389.

[52] A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University
Press, New York, 1998.

[53] U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Academic Press, USA, 2001.
[54] X. Tong, C. Beckermann, A. Karma, Q. Li, Phase-field simulations of dendritic crystal growth in

a forced flow, Phys. Rev. E 63 (2001) 061601.
[55] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-

J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169
(2001) 708-759.

[56] K. Wang, A. Chang, L.V. Kale, J.A. Dantzig, Parallelization of a level set method for simulating
dendritic growth, J. Parallel Distrib. Comput. 66 (2006) 1379-1386.

[57] S.-L. Wang, R.F. Sekerka, Algorithms for phase field computation of the dendritic operating state
at large supercoolings, J. Comput. Phys. 127 (1996) 110-117.

[58] J.A. Warren, W.J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a
binary alloy using the phase-field method, Acta Metall. Mater. 43 (1995) 689-703.

[59] G. Wulff, Zur frage der geschwindigkeit des wachsturms under auflosung der kristallflachen, Z
Kristallogr, 34 (1901), 449–530.

[60] Y. Xu, J.M. McDonough, K.A. Tagavi, A numerical procedure for solving 2D phase-field model
problems, J. Comput. Phys. 218 (2006) 770-793.

[61] H. Yin, S.D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91,
Modelling Simul. Mater. Sci. Eng. 17 (2009) 075011.

[62] P. Zhao, J.C. Heinrich, D.R. Poirier, Fixed mesh front-tracking methodology for finite element
simulations, Int. J. Numer. Meth. Engng. 61 (2004) 928-948.

[63] M.F. Zhu, C.P. Hong, A modified cellular automaton model for the simulation of dendritic growth
in solidification of alloys, ISIJ Int. 41 (2001) 436-445.

[64] M.F. Zhu, S.Y. Lee, C.P. Hong, Modified cellular automaton model for the prediction of dendritic
growth with melt convection, Phys. Rev. E 69 (2004) 061610.

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Motivation and objectives
	1.2. Outline of thesis

	Chapter 2. The model of solidification in physical
	2.1. Modeling the solidification of a pure material

	Chapter 3. Crystal growth modeling
	3.1. Phase?field model
	3.2. Phase?field modeling for crystal growth
	3.3. Four-fold crystal growth
	3.4. The Wulff construction

	Chapter 4. Numerical solutions
	4.1. Time discretisation
	4.2. Calculation of the crystal tip position and velocity

	Chapter 5. Adaptive mesh refinement
	5.1. Hierarchical structured Cartesian grids
	5.2. Creation of the grid hierarchy
	5.3. Boundary interpolation
	5.4. Algorithm for mesh plots

	Chapter 6. Adaptive mesh refinement multigrid algorithm
	Chapter 7. Numerical results
	7.1. Evolution for crystal growth in two- and three-dimensional spaces
	7.2. Stability of the operator splitting algorithm
	7.3. Convergence test
	7.4. Effect of time step and mesh
	7.5. Effect of radius
	7.6. Effect of undercooling
	7.7. Comparisons of numerical methods
	7.8. Dendritic growth at low undercooling
	7.9. Accuracy of our proposed method

	Chapter 8. Conclusions
	Appendix
	Bibliography

<startpage>9
Abstract iii
Acknowledgments iv
Chapter 1. Introduction 1
 1.1. Motivation and objectives 1
 1.2. Outline of thesis 4
Chapter 2. The model of solidification in physical 5
 2.1. Modeling the solidification of a pure material 5
Chapter 3. Crystal growth modeling 8
 3.1. Phase?field model 8
 3.2. Phase?field modeling for crystal growth 19
 3.3. Four-fold crystal growth 26
 3.4. The Wulff construction 28
Chapter 4. Numerical solutions 34
 4.1. Time discretisation 36
 4.2. Calculation of the crystal tip position and velocity 43
Chapter 5. Adaptive mesh refinement 44
 5.1. Hierarchical structured Cartesian grids 44
 5.2. Creation of the grid hierarchy 46
 5.3. Boundary interpolation 49
 5.4. Algorithm for mesh plots 52
Chapter 6. Adaptive mesh refinement multigrid algorithm 55
Chapter 7. Numerical results 60
 7.1. Evolution for crystal growth in two- and three-dimensional spaces 61
 7.2. Stability of the operator splitting algorithm 65
 7.3. Convergence test 68
 7.4. Effect of time step and mesh 71
 7.5. Effect of radius 75
 7.6. Effect of undercooling 76
 7.7. Comparisons of numerical methods 78
 7.8. Dendritic growth at low undercooling 80
 7.9. Accuracy of our proposed method 83
Chapter 8. Conclusions 86
Appendix 87
Bibliography 93
</body>

