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1 Introduction

In recent years we have been interested in the stochastic heat diffusion occurring
in wedge shaped subdomains of R2, which are probably simplest non-smooth Lips-
chitz domains. In the literature there exist almost fully developed regularity results
for the stochastic heat diffusion on C1 domains, but when it comes to Lipschitz
domains the results are quite unsatisfactory and very little is known. To fill in the
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gap between the theory for C1 domains and the theory for Lipschitz domains, the
wedge domains are what we decided to pay attention first.

Along the way, we set the theme that the angle around the vertex affects
regularity of the temperature when the boundary temperature is controlled. We
believe that our previous work [4] captured such relation in a certain way. Based
on this work, in [3] we proceeded to construct a theory on the stochastic diffusion
in polygonal domains. The main tool of our results was an estimate on Green’s
function for the heat operator with the wedge domains obtained in [5]. Looking
back, what we feel sorry about is that the estimate only involves the weight of
powers of the distance to the vertex. “only” means that it could be better or much
better if the estimate also involves weight of the distance to the boundary. Having
weight depending only on the distance to the vertex in the estimate did not yield
satisfactory boundary regularity of the solution and caused quite a bit of trouble
when we constructed a global regularity theory for polygonal domains.

Aiming more natural and hopefully complete theory for polygonal domains, we
imagined a refined Green’s function estimate that involves both the distance to the
vertex and the distance to the boundary. This paper is about this improvement
task.

The main contents of this paper are as follows. In Section 2, we introduce a
Green’s function estimate of the time measurable parabolic operator L = ∂

∂t −∑d
i,j=1 aij(t)Dij defined on a conic domain D ⊂ Rd with a vertex at the origin.

We prove an estimate of the type

G(t, s, x, y) ≤ N(β1, β2)
e−σ

|x−y|2
t−s

(t− s)d/2

(
|x|√
t− s

∧ 1

)β1
(
|y|√
t− s

∧ 1

)β2

×
(

ρ(x)√
t− s

∧ 1

)(
ρ(y)√
t− s

∧ 1

)
, β1, β2 ≥ 0, (1.1)

where ρ(x) := dist(x, ∂D). The ranges of β1 and β2 are determined by D and L
and described in Remark 2.2. Note that estimate (1.1) involves both the distance
to the vertex and the distance to the boundary, and gives a subtle decay rate as
x, y approach the boundary or the origin. In Sections 3 and 4, we obtain some
critical upper bounds of β1, β2 for the operator L.

In this paper we use the following notations:

- α ∧ β = min{α, β}, α ∨ β = max{α, β}
- N(· · · ) means a constant depending only on what are indicated

- Diju = ∂2u
∂xj∂xi

and

- BR(x) = {y ∈ Rd | |y − x| < R}
- BDR (x) = BR(x) ∩ D
- QR(t, x) = (t−R2, t]×BR(x)
- QDR(t, x) = (t−R2, t]× (BR(x) ∩ D).

Also, we will frequently use the following sets of functions (see [6]).

- V(QR(t0, x0)) : the set of functions u defined at least on QR(t0, x0) and satis-
fying

sup
t∈(t0−R2,t0]

‖u(t, ·)‖L2(BR(x0)) + ‖∇u‖L2(QR(t0,x0)) <∞.
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- Vloc(QR(t0, x0)) : the set of functions u defined at least on QR(t0, x0) and
satisfying

u ∈ V(Qr(t0, x0)), ∀r ∈ (0, R).

- V(QDR(t0, x0)) : the set of functions u defined at least on QDR(t0, x0) and satis-
fying

sup
t∈(t0−R2,t0]

‖u(t, ·)‖L2(BDR (x0)) + ‖∇u‖L2(QDR(t0,x0)) <∞.

- Vloc(QDR(t0, x0)) : the set of functions u defined at least on QDR(t0, x0) and
satisfying

u ∈ V(QDr (t0, x0)), ∀r ∈ (0, R).

2 Main result

We define our conic domain in Rd by

D =
{
x ∈ Rd \ {0}

∣∣∣ x

|x| ∈ M
}
,

whereM is a connected open subset in the sphere Sd−1 = {ξ ∈ Rd | |ξ| = 1} which
has C2 boundary. Here, C2 boundary means that for any fixed point p ∈ Sd−1 \D
and the stereographic projection of Sd−1 \{p} onto the tangent hyperplane at −p,
the antipode of p, the image of D has C2 boundary in the hyperplane.

κ
2

−
κ
2

d = 2 d = 3

Fig. 2.1 Cases of d = 2 and d = 3

For example, when d = 2, for each fixed angle κ ∈ (0, 2π) we can consider

D = Dκ =
{

(r cos θ, r sin θ) ∈ R2 | r ∈ (0, ∞), −κ
2
< θ <

κ

2

}
. (2.1)

In this paper we consider the Green’s function of the operator

L =
∂

∂t
−
∑
i,j

aij(t)Dij (2.2)
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with the domain D. We assume that the diffusion coefficients aij , i, j = 1, . . . , d,
are real valued measurable functions of t, aij = aji, i, j = 1, . . . , d, and satisfy the
uniform parabolicity condition, i.e. there exists a constant ν ∈ (0, 1] such that for
any t ∈ R and ξ = (ξ1, . . . , ξd) ∈ Rd,

ν|ξ|2 ≤
∑
i,j

aij(t)ξiξj ≤ ν−1|ξ|2. (2.3)

We denote the Green’s function by G(t, s, x, y). By the definition of Green’s
function G is nonnegative and, for any fixed s ∈ R and y ∈ D, the function
v = G( ·, s, ·, y) satisfies

Lv = 0 in (s,∞)×D ; v = 0 on (s,∞)× ∂D ; v(t, ·) = 0 for t < s.

Also, in this paper we use the notations ρ0(x) = |x|, ρ(x) = dist(x, ∂D) and

Rt,x :=
|x|√
t
∧ 1 =

ρ0(x)√
t
∧ 1, Jt,x :=

ρ(x)√
t
∧ 1.

Remark 2.1 Since a
a+1 ≤ a ∧ 1 ≤ 2 · a

a+1 for any a ≥ 0, we can also define Rt,x
and Jt,x by

Rt,x :=
ρ0(x)

ρ0(x) +
√
t
, Jt,x :=

ρ(x)

ρ(x) +
√
t
.

From the probabilitstic point of view related to a Brownian motion killed at
the boundary of ∂D, G is essentially a transition probability and bounded by a
constant multiple of Gaussian density function:

0 ≤ G(t, s, x, y) ≤ N 1

(t− s)d/2
e−σ

|x−y|2
t−s , t > s, x, y ∈ D, (2.4)

where the constants N , σ > 0 depend only on space dimension d and ν in the
assumption (2.3).

Having further information of the domain, the right hand side of (2.4) can be
refined. Especially, for our conic domains D, one can pursue the following type of
estimate

G(t, s, x, y) ≤ N 1

(t− s)d/2
Rλ

+

t−s,x R
λ−

t−s,y e
−σ |x−y|

2

t−s , t > s, x, y ∈ D

for some positive constants λ+, λ−. Since Rt,x is less than equal to 1, this estimate
is sharper as we find bigger λ+, λ− satisfying the estimate.

Remark 2.2 As in [6], the critical upper bound λ+
c > 0 of λ+ can be characterized

by the supremum of all λ such that for some constant ε = ε(λ) ∈ (1/2, 1) it holds
that

|u(t, x)| ≤ N(λ, ε)

(
|x|
R

)λ
sup

QDεR(t0,0)

|u|, ∀ (t, x) ∈ QDR/2(t0, 0)

for any t0 > 0, R > 0, and u belonging to Vloc(QDR(t0, 0)) and satisfying

Lu = 0 in QDR(t0, 0) ; u(t, x) = 0 for x ∈ ∂D.
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Moreover, the critical upper bound λ−c > 0 of λ− is characterized by the supremum
of λ with above property for the operator

L̂ =
∂

∂t
−
∑
i,j

aij(−t)Dij . (2.5)

Both λ+
c and λ−c will definitely depend on M = D ∩ Sd−1. Especially when

D = Dκ in (2.1), λ+
c and λ−c will depend on the opening angle κ. If in addition L

is the heat opeartor, L = ∂
∂t −∆x, then

λ+
c = λ−c =

π

κ
.

See Section 2 of [6] and Section 3 of this paper for details.

The following lemma is, we think, the most updated estimate of G among the ones
involving Rt,x only.

Lemma 2.1 ([6]) Fix λ+ ∈ (0, λ+
c ), λ− ∈ (0, λ−c ). Then there exist constants

N, σ > 0 depending only on M, ν, λ+, λ− such that

G(t, s, x, y) ≤ N 1

(t− s)d/2
Rλ

+

t−s,x R
λ−

t−s,y e
−σ |x−y|

2

t−s (2.6)

and

|∇xG(t, s, x, y)| ≤ N 1

(t− s)(d+1)/2
Rλ

+−1
t−s,x R

λ−

t−s,y e
−σ |x−y|

2

t−s

for any t > s, x, y ∈ D.

Remark 2.3 In fact, [6] has the estimates of the derivatives of G up to the second
order that contain Lemma 2.1 as a part. We refer to Theorem 3.10 of [6]. Yet, the
estimates involve Rt,x only.

Remark 2.4 Despite the beauty in estimate (2.6), we note that the right hand side
of (2.6) does not go to zero as x or y approaches boundary of D, meaning that
the estimate is not sharp enough in terms of the boundary behavior of the Green’s
function.

On the other hand, for any domain satisfying, for instance, the uniform exterior
ball condition, the corresponding Green’s function of L is bounded by the constant
multiple of

1

(t− s)d/2
Jt−s,x Jt−s,y e

−σ |x−y|
2

t−s ,

which is now forcing the degeneracy of the Green’s function at the boundary (see
e.g. [2]).

Of course, our domains, for instance, like Dκ in (2.1) does not satisfy the
uniform exterior ball condition if κ > π. However, for any κ, Dκ is mostly flat
except a samll neighborhood of the vertex and we hoped a refined estimate that
involves both Rt,x and Jt,x together. After all, we settled down with the following
theorem, which is the refined estimate we mentioned in the introduction and is
the main result of this paper.
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Theorem 2.1 Take λ+
c , λ−c from Remark 2.2. Then for any λ+ ∈ (0, λ+

c ), λ− ∈
(0, λ−c ), there exist constants N, σ > 0 depending only on M, ν, λ+, λ− such
that

G(t, s, x, y) ≤ N

(t− s)d/2
Rλ

+−1
t−s,x R

λ−−1
t−s,y Jt−s,x Jt−s,y e

−σ |x−y|
2

t−s (2.7)

for any t > s, x, y ∈ D.

Remark 2.5 Obviously estimate (2.7) is sharper than estimate (2.6) since Jt,x ≤
Rt,x. Moreover, estimate (2.7) gives delicate boundary behavior of Green’s funci-
ton.

Remark 2.6 The strategy of our proof of Theorem 2.7 is inspired by [2] and [7]
although the details are quite different.

In the proof of Theorem 2.1, we will use the following two lemmas from [6].

Lemma 2.2 (Proposition 3.2 of [6]) Let u belong to V(QR(t0, x0)) and satisfy
Lu = 0 in QR(t0, x0), then

|∇u(t, x)| ≤ N

R
sup

QR(t0,x0)

|u|, ∀(t, x) ∈ QR/2(t0, x0),

where the constant N depends only on ν and d.

Lemma 2.3 (Proposition 3.4 of [6]) There exists a sufficently samll δ0 such
that the following holds for any δ ∈ (0, δ0) : Let x0 ∈ D, ρ(x0) < δ|x0|, and

R ≤ |x0|
2 . Then if u belongs to V(QDR(t0, x0)) and satisfies Lu = 0 in QDR(t0, x0)

and u(t, x) = 0 for x ∈ ∂D, then

|∇u(t, x)| ≤ N

R
sup

QDR(t0,x0)

|u|, ∀(t, x) ∈ QDR/8(t0, x0),

where the constant N depends only on M, ν, δ.

Proof (Proof of Theorem 2.1)

1. First, we fix s ∈ R, y ∈ D. We show that there exist constantsN,σ depending
only on M, ν, λ+, λ− such that for any t ∈ (s,∞) and x ∈ D,

G(t, s, x, y) ≤ N

(t− s)d/2
Jt−s,x R

λ+−1
t−s,x R

λ−

t−s,y e
−σ |x−y|

2

t−s . (2.8)

For given t ∈ (s,∞), we consider the following two cases of x ∈ D.
- Case ρ(x) ≥ 1

2

(
|x| ∧

√
t− s

)
.

In this case, by assumption we have

2
ρ(x)√
t− s

≥
(
|x|√
t− s

∧ 1

)
.

Therefore,

Rt−s,x =
|x|√
t− s

∧ 1 ≤ 2
ρ(x)√
t− s

∧ 2 = 2

(
ρ(x)√
t− s

∧ 1

)
. (2.9)
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√
t− s

√
t−s
2

Fig. 2.2 Two cases of x

Then, using Lemma 2.1, we immediately get (2.8).
- Case ρ(x) < 1

2

(
|x| ∧

√
t− s

)
; the point close to the boundary.

For such point x ∈ D, there exists x0 ∈ ∂D such that |x− x0| = ρ(x). For this
x0 ∈ ∂D, G(t, s, x0, y) = 0 and there exists θ ∈ (0, 1) such that

G(t, s, x, y) = G(t, s, x, y)−G(t, s, x0, y)

≤ |x− x0||∇xG(t, s, x̄, y)|
= ρ(x)|∇xG(t, s, x̄, y)|, (2.10)

where x̄ = (1− θ)x+ θx0 ∈ D.
To estimate the gradient part, we make use of Lemma 2.1. Now, since

|x̄| ≥ |x|−θ|x−x0| ≥ |x|−ρ(x) >
1

2
|x|, |x̄| ≤ |x|+θ|x−x0| ≤ |x|+ρ(x) < 2|x|,

we note that
1

2
Rt−s,x ≤ Rt−s,x̄ ≤ 2Rt−s,x.

In addition, the inequalities

|x− y| ≤ |x̄− y|+ |x̄− x| ≤ |x̄− y|+ |x− x0| ≤ |x̄− y|+
√
t− s

give

−|x̄− y|2 ≤ −1

2
|x− y|2 + t− s.

Hence, |∇xG(t, s, x̄, y)| is bounded by

N ′
1

(t− s)(d+1)/2
Rλ

+−1
t−s,xR

λ−

t−s,ye
−σ′ |x−y|

2

t−s ,

where the constants N ′, σ′ > 0 still depend only on M, ν, λ+, and λ−. This,
(2.10), and ρ(x) ≤

√
t− s lead us to (2.8) again.

2. Now, we consider the operator L̂ defined in (2.5). Let Ĝ denote the Green’s
function for L̂ with the same domain D. Note that the diffusion coefficients aij(−t),
i, j = 1, . . . , d, also satisfy the uniform parabolicity condition (2.3) with the same
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ν. Since for any s ∈ R and y ∈ D, L̂Ĝ(·, s, ·, y) = 0 on (s,∞)×D and Ĝ(·, s, ·, y) = 0
on (s,∞)×∂D, we can repeat the argument in Step 1 literally line by line. Hence,
denoting the critical upper bounds of λ for the operator L̂ by λ̂+

c , λ̂−c and noting
that λ̂+

c = λ−c , λ̂−c = λ+
c by Remark 2.2, with the same constants N,σ in (2.8)

which depending only on M, ν, λ+, λ−, we obtain that

Ĝ(t, s, x, y) ≤ N

(t− s)d/2
Jt−s,x R

λ−−1
t−s,x R

λ+

t−s,y e
−σ |x−y|

2

t−s (2.11)

for any t > s and x, y ∈ D. Note that the locations of λ+, λ− in (2.11) in compar-
ison with the locations of them in (2.8). This is simply because λ− ∈ (0, λ̂+

c ) and
λ+ ∈ (0, λ̂−c ).

3. Next, using the result of Step 2 and the following identity

G(−s,−t, y, x) = Ĝ(t, s, x, y) or G(t, s, x, y) = Ĝ(−s,−t, y, x), t > s

which is due to a duality argument (see (3.12) of [6] for the detail), we observe
that with the same constants N,σ in (2.8) we have

G(t, s, x, y) ≤ N

(t− s)d/2
Jt−s,y R

λ−−1
t−s,y R

λ+

t−s,x e
−σ |x−y|

2

t−s

=
N

(t− s)d/2
Rλ

+

t−s,x Jt−s,y R
λ−−1
t−s,y e

−σ |x−y|
2

t−s (2.12)

for any t > s and x, y ∈ D.

4. Finally to finish the proof of (2.7) we repeat the argument in Step 1.
For the points x away from the boundary the argument is the same. Indeed, if

ρ(x) ≥ 1
2

(
|x| ∧

√
t− s

)
, then (2.9) and (2.12) certainly give (2.7).

Therefore, for the rest of the proof, we may assume

ρ(x) <
1

2

(
|x| ∧

√
t− s

)
.

In this case we first show

|∇xG(t, s, x, y)| ≤ N 1

(t− s)(d+1)/2
Jt−s,yR

λ+−1
t−s,xR

λ−−1
t−s,y e

−σ |x−y|
2

t−s . (2.13)

For this, we fix (s, y) and set

u(t, x) = G(t, s, x, y).

Take δ ∈ (0, δ0∧1/2), where δ0 is from Lemma 2.3 which depends only onM. We
consider the following two cases.

- Case ρ(x) ≥ δ|x|. Put R = δ
2 (|x| ∧

√
t− s) which is less than 1

2ρ(x) so that
B̄R(x) ⊂ D. Since u belongs to V(QR(t, x)) and satisfies Lu = 0 in QR(t, x), by
Lemma 2.2, we get

|∇xu(t, x)| ≤ N

R
sup

QR(t,x)

|u|.

We note that for (r, z) ∈ QR(t, x),

0 ≤ t− r ≤ t− s
4

,
3

4
(t− s) ≤ r − s ≤ t− s,
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|z| ≤ |x|+R ≤ 2|x|, |z| ≥ |x| −R ≥ 1

2
|x|

and

|z − y| ≥ |x− y| −R ≥ |x− y| −
√
t− s,

− |z − y|2 ≤ −1

2
|x− y|2 + (t− s),

− |z − y|
2

r − s ≤ −1

2

|x− y|2

t− s +
4

3
.

Hence, using (2.12) we get

|u(r, z)| ≤ N

(r − s)d/2
Rλ

+

r−s,z Jr−s,y R
λ−−1
r−s,y e

−σ |z−y|
2

r−s

≤ N

(t− s)d/2
Rλ

+

t−s,xJt−s,yR
λ−−1
t−s,y e

−σ′ |x−y|
2

t−s .

Consequently, we have

|∇xu(t, x)| ≤ N

R
sup

QR(t,x)

|u|

≤ N

|x| ∧
√
t− s

1

(t− s)d/2
Rt−s,xR

λ+−1
t−s,xJt−s,yR

λ−−1
t−s,y e

−σ′ |x−y|
2

t−s

=
N

(t− s)(d+1)/2
Jt−s,yR

λ+−1
t−s,xR

λ−−1
t−s,y e

−σ′ |x−y|
2

t−s ,

and thus (2.13) is proved.

- Case ρ(x) ≤ δ|x|. In this case, we put R = 1
2 (|x| ∧

√
t− s). Since u belongs

to V(QDR(t, x)) and satisfies Lu = 0 in QDR(t, x), and u(t, x) = 0 for x ∈ ∂D, we
can apply Lemma 2.3, and have

|∇xu(t, x)| ≤ N

R
sup

QDR(t,x)

|u|.

Similarly as before, we again obtain (2.13).

Finally, by (2.10), the computations below (2.10), and (2.13), we obtain (2.7).
This ends the proof.

3 On the critical upper bounds λ±
c

In this section we discuss some detailed informations of the critical upper bounds
λ+
c and λ−c , whose characterizations are given in Remark 2.2.

We first introduce some known results on λ±c . The following statements are
the 3rd, the 8th, and the 7th in Theorem 2.4 of [6]:
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– If L = L0 := ∂
∂t −∆x, then

λ±c (L0,D) = −d− 2

2
+

√
Λ+

(d− 2)2

4
, (3.1)

where Λ is the first eigenvalue of Laplace-Beltrami operator with the Dirichlet
condition on domain M = D ∩ Sd−1, where Sd−1 is the sphere with radius 1
in Rd.

– Suppose that (aij)d×d is a constant matrix. Then

λ±c (L,D) = λ±c (L0, D̃) = −d− 2

2
+

√
Λ̃+

(d− 2)2

4
, (3.2)

where Λ̃ is the first eigenvalue of the Dirichlet boundary value problem to
Beltrami-Laplacian in the domain M̃ = D̃ ∩Sd−1 while cone D̃ is the image of
D under the change of variables x→ y that reduces (aij)d×d to the canonical
form (δij)d×d with the Kronecker delta δij , i, j = 1, . . . , d.

– For the general operator L = ∂
∂t −

∑d
i,j=1 aij(t)Dij in (2.2), we have

λ±c ≥ −
d

2
+ ν

√
Λ+

(d− 2)2

4
, (3.3)

where ν is the uniform parabolicity constant in (2.3).

Remark 3.1 One big difference between (3.2) and (3.3) is that “d” appears in (3.3)
in place of “d − 2”. This actually causes a big gap between (3.2) and (3.3). To
demonstrate this, let d = 2, D = Dκ in (2.1), and L = L0 = ∂

∂t − (Dx1x1 +Dx2x2).

Then we can easily find Λ in (3.1), which is the same as Λ̃ in (3.2). To find Λ,
we just need to find the smallest eigenvalue λ > 0 and its eigenfunction φ = φ(θ)
satisfying

−φ′′ = λφ, −κ
2
< θ <

κ

2
, ; φ

(κ
2

)
= φ

(
−κ

2

)
= 0,

which yields φ(θ) = cos(
√
λθ) and cos

(√
λ κ/2

)
= 0. Hence, the eigenvalues

satisfy
√
λ κ/2 = π/2 + kπ, k = 0, 1, 2, . . ., and thus Λ = π2/κ2.

In this example, if for instance κ = π, then (3.3) yields, as we can take ν = 1,
a trivial information λ±c ≥ 0, whereas (3.2) gives λ±c = 1.

In this section we improve (3.3). In particular, we will replace d in (3.3) by
d−2. We assume that the coefficients aij(t), i, j = 1, · · · , d, satisfy aij(t) = aji(t),
and there exist constants ν1, ν2 > 0 such that for any t ∈ R and ξ ∈ Rd,

ν1|ξ|2 ≤
∑
i,j

aij(t)ξiξj ≤ ν2|ξ|2. (3.4)

The condition (2.3) is a special case of this condition: ν1 = ν, ν2 = ν−1.

Theorem 3.1 For the operator L in (2.2), we have

λ±c ≥ −
d− 2

2
+

√
ν1

ν2

√
Λ+

(d− 2)2

4
, (3.5)

where ν1, ν2 are the uniform parabolicity constants in (3.4).
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Note that if ν ≤ ν1 ≤ ν2 ≤ ν−1, the right hand side of (3.5) is quite bigger that
that of (3.5). Indeed,(

−d− 2

2
+

√
ν1

ν2

√
Λ+

(d− 2)2

4

)
−

(
−d

2
+ ν

√
Λ+

(d− 2)2

4

)

= 1 + (

√
ν1

ν2
− ν)

√
Λ+

(d− 2)2

4
≥ 1.

To prove the above theorem, we start with the following lemma which is a
slight modificaiton of Lemma A.1 of [6].

Lemma 3.1 Let µ2 < ν1
ν2

(
Λ+ (d−2)2

4

)
and 0 < ε1 < ε2 ≤ 1. Then there exists a

constant N depending only on µ, ε1, ε2 such that∫
QDε1R

(t0,0)

|x|2µ|∇u|2dxdt+
∫
QDε1R

(t0,0)

|x|2µ−2|u|2dxdt ≤ NR2µ−2

∫
QDε2R

(t0,0)

|u|2dxdt

for any R > 0 and any function u belonging to Vloc(QDR(t0, 0)) and satisfying
Lu = 0 in QDR(t0, 0), u = 0 on R× ∂D.

Proof The proof of this lemma is almost the same as that of Lemma A.1 of [6].
The only difference is that we use conditon (3.4) instead of condition (2.3).

Proof (Proof of Theorem 3.1)

1. Refering to Remark 2.2, we note that it is enough to show that for any

µ ∈ R satisfying µ2 < ν1
ν2

(
Λ+ (d−2)2

4

)
, there exists a constant N depending only

on M, µ, d such that

|u(t, x)| ≤ N
(
|x|
R

)− d−2
2
−µ

sup
QD7

8
R

(t0,0)

|u|, ∀ (t, x) ∈ QDR/2(t0, 0)

for any t0 > 0, R > 0, and u belonging to Vloc(QDR(t0, 0)) and satisfying

Lu = 0 in QDR(t0, 0) ; u(t, x) = 0 for x ∈ ∂D.

Also, we note that we may assume t0 = 0, R = 1.
2. Take any function u satisfying the conditions in Step 1 with t0 = 0, R = 1

and take any (t, x) ∈ QD1/2(0, 0). Let us denote

r = |x| (< 1

2
), Dr = (t− r2/4, t]× (B 3

2
r(0) \B 1

2
r(0)).

Then as in the proof of statement 7 of Theorem 2.4 in [6], we have

|u(t, x)|2 ≤ Nr−d−2

∫
Dr

|u(τ, y)|2dydτ

≤ Nr−d−2µ

∫
Dr

|y|2µ−2|u(τ, y)|2dydτ. (3.6)
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The last inequality in (3.6) holds since for the points y in Dr, |y| are comparable
with r.

Now, we define a time-changed function of u:

v(s, y) := u(t+ r2s, y).

This function is well defined at least on QD1 (0, 0) due to t + r2s ∈ (−1, 0] for
s ∈ (−1, 0]. Moreover, v belongs to Vloc(QD1 (0, 0)) and satisfies

L̃v = 0 in QD1 (0, 0) ; v = 0 on R× ∂D,
where L̃ = ∂

∂s −
∑
i,j r

2aij(s)Dij . We note that

r2ν1|ξ|2 ≤
∑
i,j

r2aij(s)ξiξj ≤ r2ν2|ξ|2

is the uniform parabolicity condition for L̃ and the ratio r2ν1
r2ν2

is the same as ν1
ν2

and hence we can apply Lemma 3.1 for L̃ and v. Having this in mind, we continue
with (3.6) as below.

Since
(t+ r2s, y) ∈ Dr ⇒ (s, y) ∈ (−1/4, 0]×B 3

2
r(0)

and (−1/4, 0]×B 3
2
r(0) ⊂ QD3

4

(0, 0), the last quantity in (3.6) is bounded by

Nr−d+2−2µ

∫
QD3

4

(0,0)

|y|2µ−2|v(s, y)|2dyds. (3.7)

Then we apply Lemma 3.1 with ε1 = 3
4 , ε2 = 7

8 and see∫
QD3

4

(0,0)

|y|2µ−2|v(s, y)|2dyds ≤ N

∫
QD7

8

(0,0)

|v(s, y)|2dyds

≤ N sup
QD7

8

(0,0)

|v|2

≤ N sup
QD7

8

(0,0)

|u|2, (3.8)

where the last quantity in (3.8) follows the observation t + r2s ∈ (−
(

7
8

)2
, 0] for

any s ∈ (−
(

7
8

)2
, 0].

All the constants N in this Step 2 depend only on M, µ, and d. Hence, (3.6),
(3.7), and (3.8) give the claim in Step 1.

Remark 3.2 For instance, let d = 3 and for any fixed κ ∈ (0, 2π) take

D = Dκ =
{

(r sin θ cosφ, r sin θ sinφ, r cos θ) ∈ R3 |

r ∈ (0, ∞), 0 ≤ θ < κ

2
, 0 < φ ≤ 2π

}
.

Then the first eigenvalue Λ of Laplace-Beltrami operator with the Dirichlet con-
dition on domain Dκ ∩ S2 satisfies

1

2| log(cos(κ/4))| ≤ Λ ≤
4j2

0

κ2
(3.9)

where j0 ≈ 2.4048 is the first zero of the Bessel function J0 (see [1]). Hence, using
(3.9) and Theorem 3.1 we can obtain rough lower bounds of λ±c .
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4 Evaluation of λ±
c when d = 2

Finding the exact values of λ±c are very difficult in general. In Section 3 we pre-
sented a decent estimation of them from below. In this section we attempt to
evaluate λ±c when d = 2 and the diffusion coefficients aij , i, j = 1, 2, in our oper-
ator L are constants.

As a12 = a21, we can set

A := (aij)2×2 :=

(
a b
b c

)
.

By (2.3) matrix A is positive-definite and the eigenvalues are greater than equal
to ν and in particular there is a symmetric matrix B such that A = B2.

For any fixed κ ∈ (0, 2π) and α ∈ [0, 2π) we denote

Dκ,α :=
{
x = (r cos θ, r sin θ) ∈ R2 | r ∈ (0, ∞), −κ

2
+ α < θ <

κ

2
+ α

}
,

calling κ the central angle of the domain Dκ,α.

We consider the operator

L =
∂

∂t
−
(
aDx1x1 + b(Dx1x2 +Dx2x1) + cDx2x2

)
with the conic (angular) domain Dκ,α.

Below arctan is a map from R→ (−π/2, π/2).

Proposition 4.1 For L and Dκ,α defined above, we have

λ±c (L,Dκ,α) =
π

κ̃
,

where

κ̃ = π − arctan
( c̄ cot(κ/2) + b̄√

det(A)

)
− arctan

( c̄ cot(κ/2)− b̄√
det(A)

)
(4.1)

with constants ā, b̄ from the relation(
ā b̄
b̄ c̄

)
=

(
cosα sinα
− sinα cosα

)(
a b
b c

)(
cosα − sinα
sinα cosα

)
. (4.2)

In particular,

(i) if κ = π, then κ̃ = π;

(ii) if α = 0 and b = 0, then κ̃ is determined by the relation

tan
( κ̃

2

)
=

√
a

c
tan

( κ
2

)
(4.3)

for κ ∈ (0, 2π) \ {π}.
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Proof 1. We first consider the operator

L0 :=
∂

∂t
−∆x

with domain Dκ,α. In this case we note κ̃ = κ and, as in Remark 3.1, we again
have

λ+
c = λ−c =

√
Λ =

π

κ
.

Indeed, the eigenvalue/eigenfunction problem

−φ′′(θ) = λφ(θ), θ ∈
(
− κ

2
+ α, −κ

2
+ α

)
; φ

(
−κ

2
+ α

)
= φ

(κ
2

+ α
)

= 0

leads us to have φ(θ) = cos
(√
λ(θ − α)

)
and cos

(√
λ κ/2

)
= 0. Hence, the first

eigenvlaue Λ again satisfies
√
Λ κ/2 = π/2. Thus we have

λ±c (L0,Dκ,α) =
√
Λ =

π

κ̃
.

2. General case. Having (3.2) and the accompanied explanation in mind, we
take a symmetric matrix B satisfying A = B2. The change of variables x = By
transforms the operator aDx1x1+bDx1x2+bDx2x1+cDx2x2 into∆y = Dy1y1+Dy2y2
in y-coordinates, that is, putting v(t, y) = u(t, By), we obtain(

aD11u+ bD12u+ bD21u+ cD22u)(t, By) = ∆yv(t, y), (t, y) ∈ R× D̃ ,

where D̃ is the image of Dκ,α under a linear transformation defined by

D̃ := B−1Dκ,α :=
{
B−1x : x ∈ Dκ,α

}
.

We note that D̃ is also a conic (angular) domain with a certain central angle
κ̃. In fact, we can use (3.2) and Step 1 to have

λ±c (L,Dκ,α) = λ±c (L0, D̃) =
π

κ̃
.

Let us verify the formula for κ̃. We first note

κ̃

2π
=
|D̃ ∩B1(0)|`
|B1(0)|`

and hence κ̃ = 2 · |D̃ ∩B1(0)|`,

where |E|` denotes the Lebesgue measure of E ⊂ R2. By the relation y = B−1x,
we then have

|D̃ ∩B1(0)|` =

∫
{y∈D̃ : |y|≤1}

dy

=
1

|det(B)|

∫
{x∈D : |B−1x|≤1}

dx

=
1√

det(A)

∫ κ/2+α

−κ/2+α

∫ |B−1vθ|−1

0

r dr dθ

=
1

2
√

det(A)

∫ κ/2+α

−κ/2+α

1

|B−1vθ|2
dθ

=
1

2
√

det(A)

∫ κ/2+α

−κ/2+α

1

vTθ A
−1vθ

dθ,
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where vθ :=

(
cos θ
sin θ

)
. Now, a direct calculation based on translation, symmetry,

and change of variable gives

|D̃ ∩B1(0)|`

=
1

2
√

det(A)

(∫ κ/2

0

1

vTθ A
−1
vθ

dθ +

∫ 0

−κ/2

1

vTθ A
−1
vθ

dθ

)

=

√
det(A)

2

∫ κ/2

0

(
1

c̄ cot2 θ − 2b̄ cot θ + ā
+

1

c̄ cot2 θ + 2b̄ cot θ + ā

)
· 1

sin2 θ
dθ

=

√
det(A)

2

∫ ∞
cot(κ/2)

1

c̄ t2 − 2b̄ t+ ā
+

1

c̄ t2 + 2b̄ t+ ā
dt

=
1

2

(
π − arctan

( c̄ cot(κ/2)− b̄√
det(A)

)
− arctan

( c̄ cot(κ/2) + b̄√
det(A)

))
,

where

A =

(
ā b̄
b̄ c̄

)
with ā, b̄, and c̄ defined in (4.2). Hence, we obtain (4.1) for κ̃ and the proof is
done.

Remark 4.1 Let us consider the simple but essential case of b = 0 and α = 0, i.e.,

L with A =

(
a 0
0 c

)
and domain Dκ. Then, from (4.3), we observe that the ratio

r := a
c of the diffusion constants, rather than the exact values of a and c, along

with κ decides κ̃ and hence the values λ±c . We also note that for κ ∈ (0, π)

κ̃→ π− as r →∞ ; κ̃→ 0+ as r → 0+

and for κ ∈ (π, 2π)

κ̃→ π+ as r →∞ ; κ̃→ 2π− as r → 0+.

In particular, if κ ∈ (0, π), or domain Dκ is convex, and the diffusion constant to
x2 direction is relatively much lager than the the diffusion constant to x1 direction,
then λ±c are much bigger than 1 and hence Green’s function estimate (2.7) gives
better decay near the vertex since Rt,x ≤ 1.
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