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Abstract. We present a weighted Lp-theory of parabolic systems on a half

space Rd
+. The leading coefficients are assumed to be only measurable in time

t and have small bounded mean oscillations (BMO) with respect to the spatial
variables x, and the lower order coefficients are allowed to blow up near the

boundary.

1. Introduction

In this paper we propose a weighted Lp-theory for parabolic systems in the
following non-divergence form:

−ut(t, x)+

d∑
i,j=1

Aij(t, x)Diju(t, x)+

d∑
i=1

Bi(t, x)Diu+C(t, x)u−λu(t, x) = f(t, x)

(1.1)
defined on (−∞, T ) × Rd

+, where Rd
+ := {x = (x1, x

′) ∈ Rd : x1 > 0} and λ is

a non-negative constant. The coefficient matrices Aij = [aijkr] for i, j = 1, . . . , d,
Bi = [bikr] for i = 1, . . . , d, and C = [ckr] have dimension d1 × d1 and depend on
(t, x). The free term f and the solution u are d1 × 1 matrix valued functions, that
is

u =

 u1

...
ud1

 , f =

 f1

...
fd1

 ,

where the entries can take values in C.
We may interpret u(t, ·) as a family of densities of diffusing chemical materials in

a medium at time t. The system (1.1) combined with the zero boundary condition,
the typical control of the densities on the boundary, yields a very subtle question
on the behavior of solutions near the boundary, for instance, when the free term f
blows up near the boundary, since the densities are forced to decrease or increase
near the boundary in a very steep way. Thus, the behavior of solutions near the
boundary is quite different from that in the interior of the domain and can be
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measured via weights that involve the distance to the boundary, which is x1 in this
paper. We aim to understand the regularity relation between the solution u and
the free term f , mainly focusing on the boundary behaviors of the solution. The
leading coefficients are assumed to be only measurable in time t and have small
bounded mean oscillations (BMO) with respect to the spatial variables x.

We consider the system (1.1) in the framework of weighted Sobolev spaces

Lp((−∞, T );Hγ
p,θ(R

d
+)),

which were introduced by N. V. Krylov [17] with γ ∈ R. If γ is a non-negative
integer, we have the characterization

Hγ
p,θ := Hγ

p,θ(R
d
+) = {u : x

|α|
1 Dαu ∈ Lp,θ(Rd

+) ∀α : 0 ≤ |α| ≤ γ},

where Lp,θ(Rd
+) is the Lp-space with the weighted Lebesgue measure µd(dx) =

xθ−d
1 dx. Since the work of [17], there has been steady attention to the solvability

theory for equations in the weighted Sobolev spaces Hγ
p,θ setting; see [12, 15, 13, 11].

The necessity of such weighted Sobolev spaces comes from, for instance, the the-
ory of stochastic partial differential equations (SPDEs); see e.g. [16, 21] for de-
tailed motivations. In short, we point out that, in general, the derivatives of so-
lutions to SPDEs behave badly near the boundary of domains and the Lp-norm
of the derivatives of solutions cannot be measured without the help of appropri-
ate weights. Interestingly, it turns out that the weighted spaces Hγ

p,θ(Rd
+) and

Lp((−∞, T );Hγ
p,θ(Rd

+)) are also quite useful in studying deterministic elliptic and
parabolic equations and systems if, for instance, the free term f behaves wildly near
the boundary as mentioned above, if systems have lower order derivatives whose
coefficients are unbounded near the boundary, or if systems are defined on non-
smooth domains. As an example, if the free term f blows up near the boundary,
then the derivatives of solutions to systems do not belong to Lp-spaces without
weights and one needs appropriate weights to measure the Lp-norm of the deriva-
tives of solutions.

We remark that, if one has a certain unique solvability theory in weighted Sobolev
space Lp((−∞, T );Hγ

p,θ(Rd
+)) for systems defined on the half space Rd

+, then almost

for free one gets the corresponding theory in Lp((−∞, T );Hγ
p,θ(O)) for systems

defined on C1 domain O ⊂ Rd and for any γ ∈ R. For details, we refer to [12],
where single equations are studied on C1 domains with the crucial help of the results
on a half space. In fact, the result on a half space is not just a starting point, but
rather fundamental for the rest of the development of theory. One noteworthy
fact is that, regardless of the regularity parameter γ ∈ R especially for large γ in
dealing with high regularity case, the boundary of the domain is required to be only
C1 and no more, which means that the (weighted) regularity of solutions can be
improved along the improvement of the forcing term without imposing any further
smoothness assumptions on the boundary even if γ is large.

Now, let us place a short description on related work. The Laplace equation and
heat equations in the weighted Sobolev spaces Hγ

p,θ setting were first considered

in [17], where θ lies in the optimal range (d − 1, d − 1 + p). These results were
extended to non-divergence type elliptic and parabolic equations with continuous
coefficients in [12]. Kozlov and Nazarov in [15] treated parabolic equations with
coefficients depending only on t in mixed space-time norm spaces with the same type
of weights. Recently, in [6, 11, 13] non-divergence and divergence type equations
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were treated with coefficients having small mean oscillations in both the spatial and
time variables. In particular, the coefficients in [6] are further allowed to have no
regularity assumptions in the time variable or in one spatial variable. We kindly call
the reader’s attention to the fact that all the results in [6, 11, 15, 12, 13, 17] treated
only single equations. Quite recently, [14] handled elliptic and parabolic systems
in natural modifications of the spaces Hγ

p,θ(Rd
+) and Lp((−∞, T );Hγ

p,θ(Rd
+)) for

matrix-valued u and f .
The behind spirit of this paper is the same as that of [17]. The work of [17] for

deterministic equations is the important preparation for the next step of building
a decent theory of stochastic equations on C1-domains. We do this preparation for
stochastic systems in this paper. In fact, there is a preceding work, [14] with the
same purpose. Although it is quite elaborated, we have felt it unsatisfactory.

In this paper we extend the results in [14] to a considerably more general setting.
Compared to the results in [14], the main features of our results can be summarized
as follows:

• Extension on the range of admissible weights: the condition θ ∈ (d−1, d+1)
if p ≥ 2 and θ ∈ (d+1− p, d+ p− 1) if 1 < p ≤ 2 in [14] is extended to the
full range θ ∈ (d− 1, d− 1 + p).

• The additional artificial assumption A1j ≡ 0 for j = 2, · · · , d1 in [14] is
dropped in this paper.

• While Aij = Aij(t)s are assumed to depend only on t in [14], in this paper
Aijs depend on (t, x) and they are merely measurable in t and have small
BMO in x.

The main reason why, in this paper, we can drop such extra conditions assumed in
[14] is that we use somewhat different approaches that we now explain. The overall
procedure, a standard one in Lp-theory, to obtain the main results is obtaining a pri-
ori estimates and then using the method of continuity. While in [14] the above extra
conditions were needed for attempting the estimation of the sharp functions of the
second derivatives of solutions, in this article we only estimate the sharp functions
of the first derivatives, and then we estimate the weighted Lp-norms of solutions
and their second derivatives from the obtained estimates of the first derivatives and
the help of Lp-estimates without weights for systems like (1.1) through a partition
of unity argument. Another important remark is that unlike in [14] we now use
the Fefferman-Stein (WFS) theorem and the Hardy-Littlewood (WHL) maximal
function theorem with appropriate Muckenhoupt weights (Ap weights below) for
the first derivatives of solutions. Doing so, we can drop those restrictive condi-
tions imposed on the leading coefficient matrices in [14] and keep the full range
(d−1, d−1+p) for θ. For the record, in our setting the aforementioned WFS theo-
rem and WHL maximal function theorem with appropriately designed Ap weights,
which make us keep the full range of θ, are only efficient for the first derivatives of
solution. The same strategy does not work with the second derivatives of solutions.
In this sense, paying attention to the first derivatives is the optimal strategy for
our problem of systems, meaning that we take off most of artificial conditions.

The strategy of estimating the first derivatives is also used in [6] for single equa-
tions. The key step in [6] and this paper is the estimates of mean oscillations of
solutions (see Lemmas 4.3 and 5.2) in common. While [6] used a weighted version of
mean oscillation estimates, in this paper, thanks to WFS theorem and WHL max-
imal function theorem for appropriate Ap weights, we only use unweighted mean
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oscillation estimates of first derivatives, which make us fully use the results for the
usual Sobolev spaces without weights.

In addition to the fact that parabolic systems are considered in weighted Sobolev
spaces in this paper, one of main features of our assumptions on the coefficient
matrices is that, as we mentioned, the leading coefficients Aij(t, x) are allowed to
have no regularity assumptions other than measurability as functions of t for each
fixed x and have small and bounded, not necessarily vanishing on the boundary,
mean oscillations in x. The class of vanishing mean oscillation coefficients (VMOx

coefficients) was first considered in [20] for both divergence and non-divergence type
equations (not systems) in the usual Sobolev spaces without weights. Then, there
has been considerable progress in efforts to reduce the regularity assumptions on the
leading coefficients so that they are allowed to be merely measurable in one spatial
direction (in the elliptic case) and in one spatial direction and the time variable
(in the parabolic case). A few of good references about this direction of study are
[9, 10, 3, 1, 4]; also, see a survey paper [2] and references therein. However, when
systems (not equations) in non-divergence form are considered, it is not clear if one
can get less regular leading coefficient matrices than those considered in this paper
(i.e coefficient matrices which are measurable in t, small BMO in x) even in the
usual weighted Sobolev spaces (see [9]).

Closing the introduction of this paper, we pose a (very) brief history of weighted
Sobolev spaces in connection with equations/systems as a landscape in which our
paper can be settled. Weighted Sobolev spaces are extensively considered to study
elliptic and parabolic equations/systems in a variety of references, where weights
are introduced by various reasons. For example, weights are used to deal with de-
generate equations, the singularity of the boundary, and blow-up or very oscillatory
coefficients. See [22], where motivations of having weights are explained along with
various types of weighted Sobolev spaces and their properties, as well as elliptic
equations are solved in weighted Sobolev spaces. In [8] weighted Sobolev spaces are
used for domains with wedges. Parabolic equations are solved in parabolic weighted
Sobolev spaces in [23]. It is also observed that estimates of solutions in Sobolev
spaces with Ap weights result in the unique solvability of equations in a wider class
of function spaces (e.g. estimates in un-mixed normed spaces with weights give
the unique solvability in Lp,q spaces) due to the extrapolation theorem of Rubio de
Francia [24]. Also see [7] for Lp-estimates with Ap weights.

Throughout the paper, we impose the Legendre-Hadamard ellipticity condition
on the leading coefficients, i.e., there exists a constant δ > 0 such that

ℜ

 d∑
i,j=1

ηtrξiξjA
ij(t, x)η̄

 ≥ δ|ξ|2|η|2 (1.2)

holds for all (t, x) ∈ R × Rd
+, ξ = (ξ1, . . . , ξd) ∈ Rd, and η =

 η1

...
ηd1

 with ηk ∈ C,

k = 1, . . . , d1, where η
tr denotes the transpose of η and ℜ(f) indicates the real part

of f .
Also, all through the paper, we assume that Aij(t, x) are merely measurable in

t and have small BMO semi-norm with respect to x (see Section 2, Assumption
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A(ρ, ε)). We also impose the boundedness condition

|aijkr(t, x)| ≤ δ−1, (t, x) ∈ R× Rd
+ (1.3)

for all i, j = 1, . . . , d, k, r = 1, . . . , d1, where δ > 0 is taken from (1.2).
The paper is organized as follows. In Section 2 we introduce weighted Sobolev

spaces and our main result, Theorem 2.1. In Section 3 we study systems with
coefficients depending only on t. In Section 4 we obtain sharp function estimates
(mean oscillation estimates) of solutions. Finally we prove our main result in Section
5.

We use the following notations.

• Di =
∂

∂xi
,Dij =

∂2

∂xi∂xj
. For a d1×1 matrix-valued function u = [u1 · · ·ud1 ]tr

Diu(x) := [Diu
1(x) · · ·Diu

d1(x)]tr. For u = u(t, x) the partial derivative of
u with respect to t, ut, is understood similarly.

• Throughout the proofs in this paper, the constant N = N(· · · ) depends
only on the parameters inside of the parentheses and can be generic along
the arguments.

• We will meet d1 × 1 matrix valued, d1 × d matrix valued, or d1 × d × d
tensor valued functions f depending on situations.

• The norm notation |A|2 of a matrix or tensor denotes the sum of all squares
of the components of A. For instance, given u = [u1 · · ·ud1 ]tr

|u| =

√√√√ d1∑
k=1

|uk|2, |Du| =

√√√√ d1∑
k

d∑
i=1

|Diuk|2, |D2u| =
√∑

k,i,j

|Di,juk|2.

2. The description of main result

In what follows we write the system (1.1) as

−ut +Aij(t, x)Diju+Bi(t, x)Diu+ C(t, x)u− λu = f,

assuming the summations upon the repeated indices. In Section 3 Aijs depend only
on t and we write

−ut +Aij(t)Diju+BiDiu+ Cu− λu = f.

Before we state our result Theorem 2.1, let us first introduce the function spaces
that we use in the theorem and play with through out this paper.

The basic function spaces are Hγ
p,θ = Hγ

p,θ(Rd
+), where γ ∈ R, which were in-

troduced in [17] for scalar valued functions defined on Rd
+. The main ingredients

of these spaces are the spaces of Bessel potentials defined on Rd. In this paper we
need a d1 × 1 matrix valued function version of this.

Given p ∈ (1,∞) let Lp = {f = [f1 · · · fd1 ]tr : ∥f∥Lp
=
(∫

Rd |f |pdx
)1/p

< ∞}.
Then for γ ∈ R we define the space of Bessel potentials Hγ

p by Hγ
p = (1−∆)−γ/2Lp

as the set of all matrix valued distributions u = [u1 · · ·ud1 ]tr defined on Rd such
that (1−∆)γ/2u := [(1−∆)γ/2u1 · · · (1−∆)γ/2ud1 ]tr ∈ Lp, i.e.,

∥u∥Hγ
p
= ∥(1−∆)γ/2u∥Lp

< ∞,

where ∥(1−∆)γ/2u∥Lp := ∥F−1[ (1+|·|2)γ/2F(u) ] ∥Lp . Here, the Fourier transform
F(u) is defined by

F(u)(ξ) = [F(u1)(ξ) · · · F(ud1)(ξ)]tr,
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where

F(uk)(ξ) = ũk(ξ) =
1

(2π)d/2

∫
Rd

e−iξ·xuk(x) dx, k = 1, . . . , d1.

Now, for p ∈ (1,∞) we take and fix a non-negative scalar valued function ζ ∈
C∞

0 (R+) satisfying
∞∑

n=−∞
ζp
(
es−n

)
≥ 1 (2.1)

for all s ∈ R. Then for γ, θ ∈ R we define our basic spaces Hγ
p,θ = Hγ

p,θ(Rd
+) as

the set of all matrix valued functions (or distributions) u = [u1 · · · ud1 ]tr on Rd
+

satisfying

∥u∥p
Hγ

p,θ
:=

∞∑
n=−∞

enθ∥ζ(π(·))u(en·)∥p
Hγ

p
< ∞,

where π(x) = π(x1, x
′) = x1; we view ζ(x1)u(e

nx) as a matrix valued function
defined on the whole space Rd thank to the fact that ζ has compact support in R+.

If γ is a non-negative integer, due to the choice of ζ satisfying (2.1) the following
characterization is available ([17]):

Hγ
p,θ = Hγ

p,θ(R
d
+) = {u : x

|α|
1 Dαu ∈ Lp,θ ∀α : 0 ≤ |α| ≤ γ},

where Lp,θ = Lp,θ(Rd
+) is the weighted Lp-space of matrix valued functions f =

[f1 · · · fd1 ]tr on Rd
+ satisfying ∥f∥Lp,θ

:=
(∫

Rd
+
|f(x)|pxθ−d

1 dx
)1/p

< ∞. We will

denote Mkf ∈ Lp,θ, k ∈ Z if xk
1f ∈ Lp,θ. We record that the operators MDis

and DiMs, i = 1, . . . , d, are bounded operators from Hγ
p,θ to Hγ−1

p,θ after using the

corresponding lemma in [17], which deals with the spaces of scalar valued functions.
For the forcing term, the solution, and their derivatives in our parabolic system,

we first define the function spaces

Lp,θ((S, T )× Rd
+) = Lp

(
(S, T )× Rd

+;x
θ−d
1 dx dt

)
for −∞ ≤ S < T ≤ ∞. The functions f = [f1 · · · fd1 ]tr in this space satisfy

∥f∥Lp,θ((S,T )×Rd
+) =

(∫ T

S

∫
Rd

+

|f(x)|pxθ−d
1 dx dt

)1/p

< ∞.

In particular, if θ = d, the weight disappears and Lp,θ((S, T )×Rd
+) = Lp((S, T )×

Rd
+). Similarly as before, we denote Mkf ∈ Lp,θ((S, T ) × Rd

+), k ∈ Z if xk
1f ∈

Lp,θ((S, T )× Rd
+).

Then we design our solution space as follows. We write u ∈ H2
p,θ((S, T )×Rd

+) if

M−1u, Diu, MDiju, Mut ∈ Lp,θ((S, T )× Rd
+), i, j = 1, . . . , d

and define the norm of u by

∥u∥H2
p,θ((S,T )×Rd

+) = ∥M−1u∥p,θ + ∥Du∥p,θ + ∥MD2u∥p,θ + ∥Mut∥p,θ, (2.2)

where ∥ · ∥p,θ abbreviates ∥ · ∥Lp,θ((S,T )×Rd
+); recall our notations |Du| and |D2u|.
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Next, for the convenience of our arguments in this paper, given any time-space
domain D ⊂ R × Rd

+ we define W1,2
p (D) as the space of matrix valued functions

u = [u1 · · ·ud1 ]tr defined on D satisfying

u, Diu, Diju, ut ∈ Lp(D), i, j = 1, . . . , d

and C∞
0 (D) as the space of infinitely differentiable d1 × 1 matrix valued functions

with compact support in D; D is not necessarily open.
We also define the parabolic Hölder spaces Cα/2,α(D), α ∈ (0, 1), as the set of

matrix valued functions f defined on D satisfying

∥f∥Cα/2,α(D) := sup
(t,x)∈D

|f(t, x)|+ sup
(t,x)̸=(s,y)∈D

|f(t, x)− f(s, y)|
|t− s|α/2 + |x− y|α

< ∞,

where each magnitude | · | is well understood.
Now, let us explain our condition for the leading coefficients Aijs. We frequently

use the following balls, cylinders, and parabolic cylinders. Recall the notation
x = (x1, x

′) ∈ Rd
+ = R+ × Rd−1, where x′ = (x2, . . . , xd). We define

B′
r(x

′) = {y′ ∈ Rd−1 | |y′ − x′| < r}, Q′
r(t, x

′) = (t− r2, t)×B′
r(x

′),

Br(x) = (x1 − r, x1 + r)×B′
r(x

′), Qr(t, x) = (t− r2, t)×Br(x),

B+
r (x) = Br(x) ∩ Rd

+, Q+
r (t, x) = (t− r2, t)×B+

r (x).

We note that the volume of the cylinder Br(x) in Rd and the volume of the ball
{x ∈ Rd : |x| < r} are comparable and we use Br(x) for the convenience of working
with x1 coordinate.

For matrix valued functions g defined on R× Rd
+ and any fixed t ∈ R we define

the average of g(t, ·) over Br(x) by

−
∫
Br(x)

g(t, z) dz :=
1

|Br(x)|

∫
Br(x)

g(t, z) dz,

where |Br(x)| is the Lebesgue measure of the cylinder Br(x). Then we define

[g(t, ·)]Br(x) = −
∫
Br(x)

∣∣∣∣g(t, y)−−
∫
Br(x)

g(t, z) dz

∣∣∣∣ dy,
which measures the deviation of g(t, ·) from the average on Br(x). These averaging
jobs are considered for each fixed t.

Using them, for any (s, y) ∈ R×Rd
+ and r < y1, we define the mean oscillation

of g over Qr(s, y) = (s − r2, s) × (y1 − r, y1 + r) × B′
r(y

′) = Q+
r (s, y) with respect

to the spatial variables as

oscx (g,Qr(s, y)) :=
1

r2

∫ s

s−r2
[g(τ, ·)]Br(y)

dτ.

Finally, for ρ ∈ (1/2, 1), we denote

gx,#ρ := sup
(s,y)∈R×Rd

+

sup
r∈(0,ρy1]

oscx (g,Qr(s, y)) .

Applying these notations to the diffusion coefficient matrices Aij , i, j = 1, . . . , d, in
place of g, let us state the following assumption for coefficient matrices Aijs, Bis,
and C.
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Assumption A(ρ, ε). For ρ ∈ (1/2, 1) and ε ∈ (0, 1), we have the following
bounded mean oscillation (BMO) condition for Aijs and the boundedness condi-
tions for Bis, C:

d∑
i,j=1

(Aij)x,#ρ + sup
t,x

(|MBi|+ |M2C|) ≤ ε.

Obviously Assumption A(ρ, ε) holds for any ρ, ε > 0 if Aij depend only on t and
Bi = C = 0.

Now, we are ready to state the main theorem of the paper.

Theorem 2.1 (Weighted Lp-theory on a half space). Let T ∈ (−∞,∞], λ ≥ 0,
p ∈ (1,∞) and θ ∈ (d−1, d−1+p). Then there exist positive constants ρ ∈ (1/2, 1)
and ε, depending only on d, d1, δ, p, and θ, such that, under Assumption A(ρ, ε),
for any u ∈ H2

p,θ((−∞, T )× Rd
+) satisfying the system

− ut +Aij(t, x)Diju+Bi(t, x)Diu+ C(t, x)u− λu = f (2.3)

in (−∞, T )× Rd
+ with Mf ∈ Lp,θ((−∞, T )× Rd

+), we have the estimate

λ∥Mu∥p,θ +
√
λ∥MDu∥p,θ + ∥u∥H2

p,θ
≤ N∥Mf∥p,θ, (2.4)

where ∥·∥p,θ = ∥·∥Lp,θ((−∞,T )×Rd), ∥·∥H2
p,θ

= ∥·∥H2
p,θ((−∞,T )×Rd), and N depends only

on d, d1, δ, p, θ, and ρ. Moreover, for any f satisfying Mf ∈ Lp,θ((−∞, T ) × Rd
+),

there exists a unique solution u ∈ H2
p,θ((−∞, T )× Rd

+) to the system (2.3).

Remark 2.2. The range of θ in Theorem 2.1 is sharp. If θ ̸∈ (d−1, d−1+p), then
the theorem does not hold even for the heat equation. See [17] for an explanation.
We point out that our result for systems, Theorem 2.1, preserves this sharp range
of θ.

3. Systems with coefficients depending only on t

In this section all Aijs depend only on t and are merely measurable. We consider
the system

−ut +Aij(t)Diju− λu = f.

Let us recall W1,2
p ((−∞, T )× Ω), the Sobolev space of the d1 × 1 matrix valued

functions u on (−∞, T )× Ω satisfying

∥u∥W1,2
p ((−∞,T )×Ω) := ∥D2u∥p + ∥Du∥p + ∥u∥p + ∥ut∥p < ∞,

where ∥ · ∥p = ∥ · ∥Lp((−∞,T )×Ω).

Proposition 3.1 (Unweighted Lp-theory on the whole space or a half space).
Let T ∈ (−∞,∞], λ ≥ 0, p ∈ (1,∞), and Ω = Rd or Ω = Rd

+. Then for any
u ∈ W1,2

p ((−∞, T )× Ω) satisfying the system

− ut +Aij(t)Diju− λu = f, (t, x) ∈ (−∞, T )× Ω (3.1)

and u(t, 0, x′) = 0 in the case of Ω = Rd
+, where f ∈ Lp((−∞, T )×Ω), we have the

estimate
λ∥u∥p +

√
λ∥Du∥p + ∥D2u∥p + ∥ut∥p ≤ N∥f∥p, (3.2)

where N depends only on d, d1, δ, p. Moreover, for any λ > 0 and f ∈ Lp ((−∞, T )× Ω),
there exists a unique u ∈ W1,2

p ((−∞, T )× Ω) satisfying the system (3.1) and the

Dirichlet condition u(t, 0, x′) = 0 in the case of Ω = Rd
+.
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Proof. This proposition can be derived from [5, Theorem 2, Theorem 4], where the
results are proved for higher order systems (including second order systems) with
λ ≥ λ0 for some λ0 ≥ 0 under the conditions that Aij are measurable in t and have
small mean oscillations in x.

If Aij depend only on t, the mean oscillations in x vanish and one can be free
from the restriction λ ≥ λ0 relying on the usual scaling argument. Indeed, if λ0 > 0
and λ ∈ (0, λ0), then we set R = λ0/λ and consider the vector-valued function

ũ(t, x) = R−1u(Rt,
√
Rx).

This function satisfies the system

−ũt +Aij(Rt)Dij ũ− λ0ũ = f̃

on (−∞, T/R)×Ω, where f̃(t, x) = f(Rt,
√
Rx). Then, since the coefficientsAij(Rt)

satisfy the same conditions as Aij(t), [5, Theorem 2, Theorem 4] can be applied
and we obtain the estimate

λ0∥ũ∥p +
√
λ0∥Dũ∥p + ∥D2ũ∥p + ∥ũt∥p ≤ N∥f̃∥p,

where ∥ · ∥p = ∥ · ∥Lp((−∞,R−1T )×Ω). We note that the constant N is independent of
the upper limit of the time interval. Then we scale back to u and have (3.2). Now,
for small constant ε > 0 we write

−ut +Aij(t)Diju− εu = f − εu

on (−∞, T )× Ω. Applying the estimate just proved for small λ > 0, we have

ε∥u∥p +
√
ε∥Du∥p + ∥D2u∥p + ∥ut∥p ≤ N∥f∥p +Nε∥u∥p.

Hence, letting ε ↘ 0, we obtain (3.2) for the case λ = 0.
Then for the second statement of our proposition we follow the routine based on

the a priori estimate (3.2), the method of continuity, and the unique solvability of
the system consisting of d1 independent (not mixed) heat equations. □

Proposition 3.1 leads us to the following lemma that involves weights near the
boundary of the half space. We recall the definition of the space H2

p,θ((−∞, T )×Rd
+)

from Section 2.

Lemma 3.2. Let T ∈ (−∞,∞], λ ≥ 0, p > 1, and θ ∈ (d − p,∞). Then for any
u ∈ H2

p,θ((−∞, T )× Rd
+) satisfying the system

−ut +Aij(t)Diju− λu = f

on (−∞, T )× Rd
+, where Mf ∈ Lp,θ((−∞, T )× Rd

+), we have the estimate

λ∥Mu∥p,θ +
√
λ∥MDu∥p,θ + ∥u∥H2

p,θ
≤ N(∥M−1u∥p,θ + ∥Mf∥p,θ), (3.3)

where ∥·∥p,θ = ∥·∥Lp,θ((−∞,T )×Rd
+) and N depends only on d, d1, δ, p and θ. The same

conclusion holds if θ ∈ (d− 1, d− 1+ p), u ∈ W1,2
p

(
(−∞, T )× Rd

+

)
, u(t, 0, x′) = 0,

and Mf ∈ Lp,θ((−∞, T )× Rd
+). In this case, u ∈ H2

p,θ

(
(−∞, T )× Rd

+

)
.

Proof. We can prove this lemma by following the proof of Lemma 2.2 in [18]. Also
see for instance Theorem 3.5 in [6]. These deal with single equations of course
and we need a version for systems. The idea of the proof is delightful and for the
reader’s convenience we provide a proof below.



10 DOYOON KIM, KYEONG-HUN KIM, AND KIJUNG LEE

1. We intend to use Proposition 3.1 to pursuit the weighted norms. For this we
start with the following. Take and fix a function ζ = ζ(s) ∈ C∞

0 (R+) satisfying∫ ∞

0

|ζ(s)|ps−p−θ+d−1ds = 1,

and for any index r > 0 we define the function ζr(x1) := ζ(rx1) for x1 > 0. Then
for any matrix-valued functions g defined on Rd

+, by Fubini’s theorem and change
of variables, the following three hold:∫ ∞

0

∫
Rd

+

|ζr(x1)g(x)|pdx r−p−θ+d−1dr =

∫
Rd

+

|x1g(x)|pxθ−d
1 dx,

∫ ∞

0

∫
Rd

+

|ζ ′r(x1)g(x)|
p
dx r−p−θ+d−1 dr

=

∫ ∞

0

∫
Rd

+

|rζ ′(rx1)g(x)|p dx r−p−θ+d−1 dr = N

∫
Rd

+

|g(x)|pxθ−d
1 dx,

where

N = N(d, p, θ) =

∫ ∞

0

|ζ ′(s)|ps−θ+d−1 ds,

and ∫ ∞

0

∫
Rd

+

|ζ ′′r (x1)g(x)|pdx r−p−θ+d−1dr = N

∫
Rd

+

|x−1
1 g(x)|pxθ−d

1 dx,

where in this case

N = N(d, p, θ) =

∫ ∞

0

|ζ ′′(s)|ps−p−θ+d−1 ds.

Utilizing the idea of the computation, we also have∫ ∞

0

∫
Rd

+

|rζ(n)r (x1)g(x)|pdx r−p−θ+d−1dr = N

∫
Rd

+

|x−n
1 g(x)|pxθ−d

1 dx, n = 0, 1

and∫ ∞

0

∫
Rd

+

|r−1ζ(n)r (x1)g(x)|pdx r−p−θ+d−1dr = N

∫
Rd

+

|x2−n
1 g(x)|pxθ−d

1 dx, n = 1, 2, 3.

We note that the integrals on Rd
+ are the same as the integrals on Rd once

we extend the matrix-valued functions inside of | · |ps to the whole space by zero
matrices.

2. As we have just mentioned, using ζr defined in step 1, we regard ζr(x1)u(t, x)
as a matrix valued function defined on (−∞, T )×Rd by extending ζru to be d1× 1
zero matrix on (−∞, T ) × {x = (x1, x

′) ∈ Rd : x1 ≤ 0}. Recalling the summation
rule upon the repeated indices, we observe that the matrix-valued function ζru
satisfies

−(ζru)t +Aij(t)Dij(ζru)− λζru

= ζrf +Ai1(t)ζ ′rDiu+A1j(t)ζ ′rDju+A11(t)ζ ′′r u (3.4)

as

Dj(ζru) = ζrDju+ 1j=1ζ
′
ru,

Dij(ζru) = ζrDiju+ 1i=1ζ
′
rDju+ 1j=1ζ

′
rDiu+ 1i=11j=1ζ

′′
r u (3.5)
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for each i, j = 1, . . . , d, and ζr is a function of x1, where 1j=1 = 1 if j = 1
and 0 otherwise. Since the compact support of ζr is located away from x1 = 0,
u ∈ H2

p,θ((−∞, T ) × Rd
+) implies ζru ∈ W1,2

p ((−∞, T ) × Rd). Then (3.4) with the

observation that the right hand side of (3.4) is in Lp((−∞, T )×Rd), the condition
(1.3) and Proposition 3.1 lead us to

λp∥ζru∥pp + λp/2∥D(ζru)∥pp + ∥D2(ζru)∥pp + ∥(ζru)t∥pp
≤ N

(
∥ζf∥pp + ∥ζ ′rDu∥pp + ∥ζ ′′r u∥pp

)
, (3.6)

where ∥·∥p = ∥·∥Lp((−∞,T )×Rd) and N = N(d, d1, δ, p). From (3.6) and the relation

(3.5), we obtain that

λp∥ζru∥pp + ∥ζrD2u∥pp + ∥ζrut∥pp ≤ N
(
∥ζf∥pp + ∥ζ ′rDu∥pp + ∥ζ ′′r u∥pp

)
.

Then using this estimate along with (3.6) and the relations derived from (3.5)

ζ ′rD1u =
1

2
(D11(ζru)− ζrD11u− ζ ′′r u) ,

ζ ′rDju = D1j(ζru)− ζrD1ju, j ̸= 1,

we have

λp∥ζru∥pp + ∥ζ ′rDu∥pp + ∥ζrD2u∥pp + ∥ζrut∥pp ≤ N
(
∥ζrf∥pp + ∥ζ ′rDu∥pp + ∥ζ ′′r u∥pp

)
.

Now, multiplying both sides of this inequality by r−p−θ+d−1, integrating with re-
spect to r over (0,∞), and using step 1, we get

λp∥Mu∥pp,θ + ∥Du∥pp,θ + ∥MD2u∥pp,θ + ∥Mut∥pp,θ
≤ N

(
∥Mf∥pp,θ + ∥Du∥pp,θ + |M−1u∥pp,θ

)
, (3.7)

where N = N(d, d1, δ, p, θ). To arrive at (3.3) from here, on the one hand we bring
in the interpolation inequality (see [6, Lemma 3.3]),

√
λ∥MDu∥p,θ ≤ Nλ∥Mu∥p,θ +N∥MD2u∥p,θ (3.8)

which holds for θ − d + p > 0 i.e. θ > d − p, where N is a universal constant
(independent of d, u, p, and θ). On the other hand we dominate the term ∥Du∥pp,θ
on the right hand side of (3.7) by another interpolation

∥Du∥pp,θ ≤ ε(N∥MD2u∥pp,θ +N∥Du∥pp,θ) +N∥M−1u∥pp,θ (3.9)

for any ε > 0, where the first two Ns do not depend on ε. Indeed, by identity
ζ ′rDju = Dj(ζ

′
ru)− 1j=1ζ

′′
r u, the usual interpolation of Sobolev norms, and step 1,

we have

∥Du∥pp,θ =

∫ ∞

0

∥ζ ′rDu∥pp r−p−θ+d−1dr

≤
∫ ∞

0

(
εr−p∥D2(ζ ′ru)∥pp +Nε−1rp∥ζ ′ru∥pp

)
r−p−θ+d−1dr

+N∥M−1u∥pp,θ
and, expressing D2(ζ ′ru) in terms of ζ ′′′r u, ζ ′′r Dju, ζ

′
rDiju and using all the charac-

terizations prepared in step 1, we obtain (3.9). In this inequality all the terms are
finite and we can move ε∥Du∥pp,θ to the left side of (3.7) with sufficiently small ε.

Doing so, we have (3.3).
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The assertions when u ∈ W1,2
p

(
(−∞, T )× Rd

+

)
and u(t, 0, x′) = 0 follow from

the same lines of the proof once we confirm ∥M−1u∥p,θ < ∞. To check this, we
first note that

∥M−1u∥p,θ ≤ ∥M−1uIx1∈(0,1)∥p,θ + ∥uIx1≥1∥p.

Since we have zero Dirichlet condition and the condition d − 1 < θ < d − 1 + p,
Hardy’s inequality can be applied twice with the two sides of the restriction of θ
and we have

∥M−1uIx1∈(0,1)∥p,θ ≤ N∥DuIx1∈(0,1)∥p,θ ≤ N∥MD2uIx1∈(0,1)∥p,θ, N = N(d, d1, p, θ)

if ∥MD2uIx1∈(0,1)∥p,θ < ∞ and this gives ∥M−1u∥p,θ < ∞. The finiteness of

∥MD2uIx1∈(0,1)∥p,θ follows from the inequality

∥MD2uIx1∈(0,1)∥p,θ ≤ N∥D2u∥p,θ

and the condition u ∈ W1,2
p

(
(−∞, T )× Rd

+

)
. The lemma is proved. □

Comparing the a priori estimate (3.3) with our aim, Theorem 2.1, we are about
to remove the term ∥M−1u∥p,θ from the estimate (3.3). This job is quite involved
and in fact the rest of our paper works on this. Recall that in this section we assume
that the matrices Aijs depend only on t and have zero oscillation with respect to
the space variables. Under such conditions, the job can be done relatively easily
when p = 2 (makes everything beautiful), θ = d (gives xθ−d

1 = 1, no weight). The
following proposition and the theorem work on this.

Proposition 3.3. Let T ∈ (−∞,∞], λ ≥ 0. Assume that u ∈ C∞
0 ((−∞, T ]×Rd

+)

if T < ∞ and u ∈ C∞
0 ((−∞,∞)× Rd

+) if T = ∞. Denote

f := −ut +Aij(t)Diju− λu. (3.10)

Then Mf belongs to L2((−∞, T ) × Rd
+) = L2,d((−∞, T ) × Rd

+) and we have the
estimate

∥M−1u∥2 ≤ N∥Mf∥2 (3.11)

where N = N(δ) and ∥ · ∥2 = ∥ · ∥L2((−∞,T )×Rd
+).

Proof. 1. Let T < ∞. Denote ū = [ū1 · · · ūd1 ]tr, where ūk is the complex conjugate
function of uk. Performing a left multiplication of 1 × d1 matrix-valued function
−ūtr on both sides of (3.10) and integrating them over (−∞, T )× Rd

+, we have∫ T

−∞

∫
Rd

+

(
ūtrut − ūtrAij(t)Diju+ λūtru

)
dx dt = −

∫ T

−∞

∫
Rd

+

ūtrf dx dt. (3.12)

We will take the real part of (3.12) and use Legendre-Hadamard ellipticity condition
(1.2) that we imposed. For this we first note that∫ T

−∞

∫
Rd

+

(
ut

tru+ ūtrut

)
dx dt =

∫ T

−∞

∫
Rd

+

(
ūtru

)
t
dx dt =

∫
Rd

+

|u|2(T, x) dx

by the fundamental theorem of calculus and hence we have

ℜ

(∫ T

−∞

∫
Rd

+

ūtrut dx dt

)
=

1

2

∫
Rd

+

|u|2(T, x) dx.
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Next, as u ∈ C∞
0 ((−∞, T ] × Rd

+), by integration by parts and the fact that aijkrs
depend only on t the integral

−
∫ T

−∞

∫
Rd

+

ūtrAij(t)Diju dx dt = −
d∑

i,j=1

d1∑
k,r=1

∫ T

−∞

∫
Rd

+

ukaijkr(t)Diju
r dx dt

becomes

d∑
i,j=1

d1∑
k,r=1

∫ T

−∞

∫
Rd

+

Diukaijkr(t)Dju
r dx dt =

∫ T

−∞

∫
Rd

+

Diu
tr
Aij(t)Dju dx dt.

Again, since u ∈ C∞
0

(
(−∞, T ]× Rd

+

)
, if we extend u to be zero in the domain

(−∞, T ) × {x = (x1, x
′) ∈ Rd : x1 ≤ 0}, then the extension of u, still denoted by

u, belongs to C∞
0

(
(−∞, T ]× Rd

)
. Now, Plancherel’s formula, the condition (1.2),

and Parseval’s identity give

ℜ

(∫ T

−∞

∫
Rd

Diu
tr
Aij(t)Dju dx dt

)
= ℜ

 d∑
i,j=1

∫ T

−∞

∫
Rd

D̃iu
tr

Aij(t)D̃ju dξ dt


= ℜ

 d∑
i,j=1

∫ T

−∞

∫
Rd

¯̃utrξiξjA
ij(t)ũ dξ dt


≥ δ

∫ T

−∞

∫
Rd

|ξ|2|ũ|2 dξ dt

= δ

∫ T

−∞

∫
Rd

|Du|2 dx dt = δ

∫ T

−∞

∫
Rd

+

|Du|2 dx dt.

Considering the real parts of (3.12), we get

δ

∫ T

−∞

∫
Rd

+

|Du|2 dx dt

≤ 1

2

∫
Rd

+

|u|2(T, x) dx+ δ

∫ T

−∞

∫
Rd

+

|Du|2 dx dt+ λ

∫ T

−∞

∫
Rd

+

|u|2 dx dt

≤ ℜ

(
−
∫ T

−∞

∫
Rd

+

ūtrf dx dt

)

≤ ε

2

∫ T

−∞

∫
Rd

+

|x−1
1 u|2 dx dt+ 1

2ε

∫ T

−∞

∫
Rd

+

|x1f |2 dx dt (3.13)

for any ε > 0, where the last inequality follows from

2
∣∣ūtr(t, x)f(t, x)

∣∣ ≤ ε|x−1
1 u(t, x)|2 +

1

ε
|x1f(t, x)|2 .

Furthermore, we note that Hardy’s inequality tells∫ T

−∞

∫
Rd

+

|x−1
1 u|2 dx dt ≤ 22

∫ T

−∞

∫
Rd

+

|D1u|2 dx dt.

Hence, (3.13) and an appropriate choice of ε > 0 depending only on δ lead to (3.11).
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2. When T = ∞, we have ℜ
(∫∞

−∞
∫
Rd

+
ūtrut dx dt

)
= 0. The rest is the same as

step 1 with T replaced by ∞. □

Proposition 3.3 crucially supports the following theorem.

Theorem 3.4 (Weighted L2-theory with θ = d on a half space). Let T ∈ (−∞,∞],
λ ≥ 0. Then for any u ∈ H2

2,d((−∞, T )× Rd
+) satisfying the system

− ut +Aij(t)Diju− λu = f (3.14)

in (−∞, T )× Rd
+, where Mf ∈ L2,d((−∞, T )× Rd

+), we have

λ∥Mu∥2,d +
√
λ∥MDu∥2,d + ∥u∥H2

2,d
≤ N∥Mf∥2,d, (3.15)

where N depends only on d, d1, δ, ∥·∥2,d = ∥·∥L2,d((−∞,T )×Rd
+) = ∥·∥L2((−∞,T )×Rd

+) =

∥ · ∥2, and ∥u∥H2
2,d

= ∥u∥H2
2,d((−∞,T )×Rd

+)). Moreover, for any f satisfying Mf ∈
L2,d((−∞, T )×Rd

+), there exists a unique solution u ∈ H2
2,d((−∞, T )×Rd

+) to the

system (3.14).

Proof. First we prove the a prior estimate (3.15) given that u ∈ H2
2,d((−∞, T )×Rd

+)

satisfies the system (3.14). For the argument below we may assume that λ > 0.
Then, since

λu = −ut +Aij(t)Diju− f,

we have λMu ∈ L2

(
(−∞, T )× Rd

+

)
. Then, by the denseness results (see The-

orem 1.19 and Remark 5.5 in [17]), u can be approximated by functions un in
C∞

0

(
(−∞, T ]× Rd

+

)
which satisfy two limits

∥u− un∥H2
2,d

→ 0 and ∥Mu−Mun∥2,d → 0

as n → ∞. Moreover, by the interpolation inequality [6, Lemma 3.3], we have
√
λ∥MD(u− un)∥2 ≤ Nλ∥M(u− un)∥2 +N∥MD2(u− un)∥2 → 0.

Due to this observation, we may just assume u ∈ C∞
0 ((−∞, T ]×Rd

+) and therefore
we get the estimate (3.15) from Proposition 3.3 and Lemma 3.2.

Thanks to the method of continuity, to prove the second assertion of the theorem
for the unique solvability, we only need the solvability of the system −ut+∆u−λu =
f , where ∆u = [∆u1 · · ·∆ud1 ]tr which in turn follows from the solvability of the
single equation −vt +∆v − λv = g with the scalar valued functions v and g. This
is proved in Theorem 3.5 of [6]. The theorem is proved. □

4. Mean oscillation estimates of the first derivatives

In this section we extend Theorem 3.4 to the case p > 1 and also prepare key
elements for the next section. We note that Proposition 3.3 was crucial for Theorem
3.4 and used the big advantage of p = 2 to estimate Du, which in turn dominates
M−1u via Hardy’s inequality. As we consider all p > 1, we can no longer enjoy
this. Instead, we will estimate the mean oscillation of Du and then estimate Du
in the frame of sharp function and maximal function theory.

To deal with the mean oscillation of the first derivatives away from and near
the boundary, we first pose Lemmas 4.1 and 4.2. These are similar to Lemmas
4.2 and 4.3 in [6], the single equation results, which are based on unweighted Lp-
estimates along with the standard localization and Sobolev embeddings. Since the
corresponding results for systems are available, for instance, in [5], we only give
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brief proofs. The proofs are in the same spirit of those in [6]. For them we use
the abbreviations Qr = Qr(0, (0,0)), Q+

r = Q+
r (0, (0,0)); see Section 2 for the

definitions of cylinders Qr(t, x), Q
+
r (t, x).

Lemma 4.1 (Interior Hölder estimate of Du). Let λ ≥ 0, 1 < p ≤ q < ∞, and
u ∈ W1,2

p (Q2) satisfy the system

−ut +Aij(t)Diju− λu = 0

in Q2. Then u belongs to W1,2
q (Q1) and there exists a constant N = N(d, d1, δ, p, q)

such that

∥u∥W1,2
q (Q1)

≤ N∥u∥Lp(Q2). (4.1)

Moreover, for the case q > d+ 2 we have

∥Du∥Cα/2,α(Q1) ≤ N∥
√
λ |u|+ |Du| ∥Lp(Q2), (4.2)

where α = 1− (d+ 2)/q ∈ (0, 1) and N = N(d, d1, δ, p, q).

Proof. This lemma is a system version of [6, Lemma 4.2] and we do not see any
obstacle when we follow the proof of it, which owes its ideas to [20]. So here we
just sketch the proof.

First, we obtain (4.1) for the case q = p by a well known localization argument
based on a sequence of increasing domains from Q1 to Q2 and the applications of
unweighted Lp-estimate for systems like the first part of Proposition 3.1. Then (4.1)
for any q > p follows from a standard bootstrap argument. The inequality (4.2)
with λ = 0 can be handled by considering u(t, x) −

∫
Q2

u and then applying (4.1)

and the Sobolev embedding theorem. For the case λ > 0 we rely on S. Agmon’s idea
of raising one more space dimension to use (4.1). While doing so, we do not forget
to check that the enahnced system is still under control of our Legendre-Hadamard
ellipticity condition (1.2). □

Note that in the estimate (4.1) the constant N is independent of λ(≥ 0).

Lemma 4.2 (Boundary Hölder estimate of Du). Let λ ≥ 0, 1 < p ≤ q < ∞, and
u ∈ H2

p,d(Q
+
2 ) satisfy the system

−ut +Aij(t)Diju− λu = 0

in Q+
2 . Then u belongs to W1,2

q (Q+
1 ) and in fact there exists a constant N =

N(d, d1, δ, p, q) such that

∥u∥W1,2
q (Q+

1 ) ≤ N∥u∥Lp(Q
+
2 ). (4.3)

In particular, for the case q > d+ 2 we have

∥Du∥Cα/2,α(Q+
1 ) ≤ N∥u∥Lp(Q

+
2 ), (4.4)

where α = 1− (d+ 2)/q ∈ (0, 1) and N = N(d, d1, δ, p, q).

Proof. 1. To proceed as in the (sketch of the) proof Lemma 4.1, we will first show
u ∈ W1,2

p (Q+
3/2).

As argued in the proof of [6, Lemma 4.3], we may assume that λ > 0. Since
u ∈ H2

p,d(Q
+
2 ), we have

M−1u, Du ∈ Lp(Q
+
2 ),
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which in particular implies that u,Du ∈ Lp(Q
+
2 ). Consider an infinitely differen-

tiable function η = η(t, x) defined in R× Rd such that 0 ≤ η ≤ 1, η = 1 on

Q3/2 = (−(3/2)2, 0)× (−3/2, 3/2)×B′
3/2(0),

and supp(η) ⊂ (−4, 4) × (−2, 2) × B′
2(0). Then d1 × 1 matrix-valued function ηu

satisfies the system

−(ηu)t +Aij(t)Dij(ηu)− λ(ηu) = g

in (−∞, 0)×Rd
+, where g := −ηtu+DijηA

ij(t)u+Aij(t)(DiηDju+DjηDiu). We

can extend ηu to (−∞, 0) × Rd
+ with value zero outside Q+

2 and doing so ηu still
vanishes on {x1 = 0} as u does. On the other hand, we notice that

g ∈ Lp

(
(−∞, 0)× Rd

+

)
.

Hence, by Proposition 3.1 there exists a unique w ∈ W1,2
p

(
(−∞, 0)× Rd

+

)
satisfying

w(t, 0, x′) = 0 and

−wt +Aij(t)Dijw − λw = g

in (−∞, 0) × Rd
+. Moreover, since the support of η is bounded, we have Mg ∈

Lp

(
(−∞, 0)× Rd

+

)
. Hence, from Lemma 3.2 with θ = d, it follows that w ∈

H2
p,d

(
(−∞, 0)× Rd

+

)
. Noticing ηu ∈ H2

p,d

(
(−∞, 0)× Rd

+

)
as u ∈ H2

p,d

(
Q+

2

)
and by

the uniqueness result of Theorem 3.4, we have w = ηu. This means u ∈ W1,2
p (Q+

3/2).

2. Now the rest of the proof is a routine. As we explained in the proof of
Lemma 4.1, we first obtain (4.3) for the case q = p with Q+

3/2 in place of Q+
2 by a

localization argument based on a sequence of increasing domains from Q+
1 to Q+

3/2

and the applications of unweighted Lp-estimate for systems like the second part of
Proposition 3.1. Then again (4.3) for any q > p follows from a standard bootstrap
argument. The inequality (4.4) is just a Sobolev embedding. □

For vector-valued functions u, denote

(u)Q =: −
∫
Q

u(t, x) dx dt =
1

|Q|

∫
Q

u(t, x) dx dt,

where Q ⊂ R× Rd and |Q| denotes the volume, Lebesgue measure, of Q.
Below we abbreviate Q+

κr(0, (y1,0)) by Q+
κr(y1).

Lemma 4.3. Let κ ≥ 32, y1 ≥ 0, λ ≥ 0, and r > 0. Assume that Mf belongs to
L2 (Q

+
κr(y1)) and u ∈ H2

2,d (Q
+
κr(y1)) is a solution to the system

−ut +Aij(t)Diju− λu = f

in Q+
κr(y1). Then we have the estimate(∣∣∣Du− (Du)Q+

r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ Nκ−1/2
(√

λ
(
|u|2
)1/2
Q+

κr(y1)
+
(
|Du|2

)1/2
Q+

κr(y1)

)
+Nκ(d+2)/2

(
|Mf |2

)1/2
Q+

κr(y1)
, (4.5)

where
∣∣∣Du− (Du)Q+

r (y1)

∣∣∣2 denotes∑d
i=1

∣∣∣Diu− (Diu)Q+
r (y1)

∣∣∣2 and N = N(d, d1, δ, q) >

0; in particular, N is indendent of f , u, y1, λ, r.
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Proof. 1. By noticing Mu ∈ L2 (Q
+
κr(y1)) and considering −ut+Aij(t)Diju−εu =

f − εu and letting ε ↘ 0, we can only consider the case λ > 0.
Moreover, we only need to prove the result for the special case r = 8

κ (κr = 8).
In fact, let y1 ≥ 0, λ > 0, r > 0 be any numbers. Then for any f , u defined on
Q+

κr(y1) and satisfying the given assumptions, we define

v(t, x) = u(β2t, βx), g(t, x) = β2f(β2t, βx),

where β := κr
8 . Then v, g are functions defined onQ+

8 (y1/β),Mv is in L2

(
Q+

8 (y1/β)
)
,

and u is in H2
2,d

(
Q+

8 (y1/β)
)
. Moreover, v is a solution to the system

−vt +Aij(β2t)Dijv − λβ2v = g

in Q+
8 (y1/β). Hence, if the lemma holds when kr = 8, then we have (4.5) with

v, g, y1/β, λβ
2, r = 8/κ in place of u, f, y1, λ, r, respectively. On the other hand, a

straightforward computation shows that(
|Mg|2

)1/2
Q+

8 (y1/β)
= β

(
|Mf |2

)1/2
Q+

κr(y1)
,
(
|Dv|2

)1/2
Q+

8 (y1/β)
= β

(
|Du|2

)1/2
Q+

κr(y1)
,√

λβ2
(
|v|2
)1/2
Q+

8 (y1/β)
= β

√
λ
(
|u|2
)1/2
Q+

κr(y1)
,(∣∣∣Dv − (Dv)Q+

8/κ
(y1/β)

∣∣∣2)1/2

Q+
8/κ

(y1/β)

= β

(∣∣∣Du− (Du)Q+
r (y1)

∣∣∣2)1/2

Q+
r (y1)

,

and we obtain (4.5) for general r > 0. Thus, the result of this lemma for the special
r = 8

κ implies the result for general r > 0.
2. Let us first consider the case y1 ∈ [0, 1]. Since we assume r = 8/κ ≤ 1/4, we

will keep the following in our mind:

Q+
r (y1) = (−r2, 0)× ((y1 − r) ∨ 0, y1 + r)×B′

r(0)

⊂ Q+
2 ⊂ Q+

4 ⊂ Q+
κr(y1) = Q+

8 (y1)

as (0, y1 + r) ⊂ (0, 2) and (0, 4) ⊂ (0, y1 + 8), where a ∨ b := max{a, b}. We note
MfIQ+

4
∈ L2,d((−∞, 0)×Rd

+) = L2((−∞, 0)×Rd
+). Hence, by Theorem 3.4, there

is a unique w ∈ H2
2,d((−∞, 0)× Rd

+) satisfying the system

−wt +Aij(t)Dijw − λw = f1Q+
4

in (−∞, 0)×Rd
+, where 1Q denotes the indicator function on Q and, in particular,

we have

∥Dw∥L2,d((−∞,0)×Rd
+) ≤ N∥MfIQ+

4
∥L2,d((−∞,0)×Rd

+) = N∥Mf∥L2(Q
+
4 ), (4.6)

where N = N(d, d1, δ). Then v := u− w is in H2
2,d(Q

+
4 ) and satisfies

−vt +Aij(t)Dijv − λv = 0, (t, x) ∈ Q+
4 .

To obtain (4.5) we utilize w and v.
By definitions we note that(∣∣∣Dw − (Dw)Q+

r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ 2
(
|Dw|2

)1/2
Q+

r (y1)

and for any α ∈ (0, 1)(∣∣∣Dv − (Dv)Q+
r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ Nrα[Dv]Cα/2,α(Q+
2 ), (4.7)
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where N = N(α). On the other hand, by Lemma 4.2 with p = 2, q satisfying
1− (d+ 2)/q = 1/2, and a scaling argument as in step 1, we have

[Dv]C1/4,1/2(Q+
2 ) ≤ N∥v∥L2(Q

+
4 ) ≤ N∥M−1v∥L2(Q

+
4 ) ≤ N∥Dv∥L2(Q

+
4 ), (4.8)

where the last inequality is due to Hardy’s inequality and the last N depends only
on d, d1, q. Combining (4.7), (4.8), and (4.6), we have(∣∣∣Du− (Du)Q+

r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ N

(∣∣∣Dv − (Dv)Q+
r (y1)

∣∣∣2)1/2

Q+
r (y1)

+N
(
|Dw|2

)1/2
Q+

r (y1)

≤ Nr1/2
(
|Dv|2

)1/2
Q+

4

+Nr−(d+2)/2
(
|Mf |2

)1/2
Q+

4

≤ Nr1/2
(
|Du|2

)1/2
Q+

4

+Nr−(d+2)/2
(
|Mf |2

)1/2
Q+

4

,

where N = N(d, d1, q). Since κr = 8 and Q+
4 ⊂ Q+

κr(y1) = Q+
8 (y1), we obtain (4.5).

3. Let y1 ∈ (1,∞). We again assume r = 8/κ ≤ 1/4. Due to y1 > 1, this time
we have

Q+
r (y1) = Qr(y1) ⊂ Q1/4(y1) ⊂ Q1/2(y1) ⊂ Q+

κr(y1).

As in step 2, by Theorem 3.4 there is a unique solution w ∈ H2
2,d((−∞, 0)×Rd

+) to
the system

−wt +Aij(t)Dijw − λw = f1Q1/2(y1)

and the estimate (3.15) holds with w and f1Q1/2(y1) in place of u and f , respectively.
In particular, we have

λ∥Mw∥L2,d((−∞,0)×Rd
+) + ∥M−1w∥L2,d((−∞,0)×Rd

+) + ∥Dw∥L2,d((−∞,0)×Rd
+)

≤ N∥Mf∥L2(Q1/2(y1)),

where N = N(d, d1, δ). This estimate along with the inequality
√
λ ≤ λx1 + x−1

1 , x1 > 0

shows that

∥
√
λ|w|+ |Dw|∥L2,d((−∞,0)×Rd

+) ≤ N∥Mf∥L2(Q1/2(y1)), (4.9)

where N = N(d, d1, δ). Then v := u− w ∈ H2
2,d((−∞, 0)× Rd

+) and satisfies

−vt +Aij(t)Dijv − λv = 0, (t, x) ∈ Q1/2(y1).

Applying Lemma 4.1 with p = 2, a large q satisfying 1 − (d + 2)/q = 1/2, and
scaling/translation arguments, we get(∣∣∣Dv − (Dv)Q+

r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ Nr1/2[Dv]C1/4,1/2(Q1/4(y1))

≤ Nr1/2
(
(
√
λ|v|+ |Dv|)2

)1/2
Q1/2(y1)

,
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where N = N(d, d1, q). As in the last part of step 2, we then have(∣∣∣Du− (Du)Q+
r (y1)

∣∣∣2)1/2

Q+
r (y1)

≤ N

(∣∣∣Dv − (Dv)Q+
r (y1)

∣∣∣2)1/2

Q+
r (y1)

+N
(
|Dw|2

)1/2
Q+

r (y1)

≤ Nr1/2
(
(
√
λ|v|+ |Dv|)2

)1/2
Q1/2(y1)

+Nr−(d+2)/2
(
|Mf |2

)1/2
Q1/2(y1)

≤ Nr1/2
(
(
√
λ|u|+ |Du|)2

)1/2
Q1/2(y1)

+Nr−(d+2)/2
(
|Mf |2

)1/2
Q1/2(y1)

,

where we used (4.9) for the last inequality and the last N depends only on d, d1, q.
Since κr = 8 and Q1/2(y1) ⊂ Q+

κr(y1) = Q+
8 (y1), (4.5) follows again. □

Remark 4.4. For T ∈ (−∞,∞], consider the collection of all parabolic cylinders
in (−∞, T )× Rd

+:

Q = {Q+ = Q+
r (t, x) : (t, x) ∈ (−∞, T )× Rd

+, r ∈ (0,∞)}.

For given p > 1 we call a scalar valued function w on (−∞, T )× Rd
+ Muckenhoupt

weight or Ap weight and write w ∈ Ap((−∞, T )×Rd
+) if w is a non-negative function

defined on (−∞, T )× Rd
+ and satisfies

[w]Ap
:= sup{(w)Q+ · (w−1/(p−1))p−1

Q+ : Q+ ∈ Q} < ∞.

As a trivial example, w ≡ 1 is a Ap weight for any p > 1 as [w]Ap = 1. In this paper
the following observation is very important and will be used in the next section: if
p ∈ (1,∞), 1 < q < p, and θ ∈ (d− 1, d− 1 + p/q), then

w = w(t, x) = xθ−d
1 ∈ Ap/q((−∞,∞)× Rd

+).

Indeed, for any t, x = (x1, x
′) ∈ Rd

+, and r > 0, we have

(w)Q+
r (t,x) =

1

2r

∫ x1+r

(x1−r)∨0

yθ−d
1 dy1.

If x1 < 2r, then the length of the interval ((x1 − r) ∨ 0, x1 + r) is either 2r or
x1 + r, and thus it is greater than r. Hence,

(w)Q+
r (t,x) · (w

−1/(p/q−1))
p/q−1

Q+
r (t,x)

=

(
−
∫ x1+r

(x1−r)∨0

yθ−d
1 dy1

)(
−
∫ x1+r

(x1−r)∨0

(
yθ−d
1

)−1/(p/q−1)
dy1

)p/q−1

≤
(
1

r

∫ x1+r

0

yθ−d
1 dy1

)(
1

r

∫ x1+r

0

(
yθ−d
1

)−1/(p/q−1)
dy1

)p/q−1

≤

(
rθ−d

∫ x1
r +1

0

τθ−d dτ

)(
r−

θ−d
p/q−1

∫ x1
r +1

0

τ−
θ−d

p/q−1 dτ

)p/q−1

≤
(∫ 3

0

τθ−d dτ

)(∫ 3

0

τ−
θ−d

p/q−1 dτ

)p/q−1

,
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where the last quantity is finite since θ − d > −1 and − θ−d
p/q−1 > −1. If x1 ≥ 2r,

then (x1 − r) ∨ 0 = x1 − r and we have(
1

2r

∫ x1+r

x1−r

yθ−d
1 dy1

)(
1

2r

∫ x1+r

x1−r

(
yθ−d
1

)−1/(p/q−1)
dy1

)p/q−1

= 2−p/q

(∫ x1
r +1

x1
r −1

τθ−d dτ

)(∫ x1
r +1

x1
r −1

τ−
θ−d

p/q−1 dτ

)p/q−1

≤


2−p/q2

(x1

r
− 1
)θ−d

(
2
(x1

r
+ 1
)− θ−d

p/q−1

)p/q−1

, if θ − d ≤ 0,

2−p/q2
(x1

r
+ 1
)θ−d

(
2
(x1

r
− 1
)− θ−d

p/q−1

)p/q−1

, if θ − d > 0,

where the last quantities are bounded by a constant independent of x1 and r since(x1

r
+ 1
)(x1

r
− 1
)−1

≤ 3

holds as long as x1 ≥ 2r.
Now, let us record two theorems which we will use in connection with Ap weights

we just mentioned. First, we consider the (scalar valued) maximal function of
matrix-valued function g,

Mg(t, x) := sup
{
(|g|)Q+ : Q+ ∈ Q and Q+contains (t, x)

}
, (t, x) ∈ (−∞, T )×Rd

+.

Then we have the following Hardy-Littlewood maximal function theorem with Ap

weights (WHL):

∥Mg∥Lp,w
≤ N∥g∥Lp,w

,

where

∥f∥pLp,w
=

∫ T

−∞

∫
Rd

+

|f(t, x)|pw(t, x) dx dt

and N = N(d, p, [w]Ap
) i.e. independent of g.

We will also use the Fefferman-Stein theorem for sharp functions with Ap weights
(WFS). To state this theorem precisely, we define our sharp functions using a
filtration we now describe. Consider the following series of partitions of (−∞, T )×
Rd

+.

Pℓ := {Qℓ = Qℓ
i0,i1,...,id

: i0, i1, , . . . , id ∈ Z, i0 ≤ 0, i1 ≥ 0},

where ℓ ∈ Z and Qℓ
i0,i1,...,id

is the intersection of (−∞, T )×Rd
+ with parabolic cubes

[(i0 − 1)2−2ℓ + T, i02
−2ℓ + T )× [i12

−ℓ, (i1 + 1)2−ℓ)× · · · × [id2
−ℓ, (id + 1)2−ℓ),

when T < ∞. If T = ∞, we replace i0 ≤ 0 by i0 ∈ Z and the time interval
[(i0 − 1)2−2ℓ + T, i02

−2ℓ + T ) by [(i0 − 1)2−2ℓ, i02
−2ℓ). As ℓ increases, Pℓ becomes

finer. We call P :=
⋃

ℓ∈Z Pℓ a filtration of (−∞, T ) × Rd
+. Then, we define the

(scalar valued) sharp function of matrix-valued function g,

g#dy(t, x) := sup
{
(|g − (g)Qℓ |)Qℓ : Qℓ ∈ P and Qℓcontains (t, x)

}
,

(t, x) ∈ (−∞, T )× Rd
+.
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The Fefferman-Stein theorem for sharp functions with Ap weights (see, for instance,
[7, Theorems 2.3 and 2.4]) states that

∥g∥Lp,w
≤ N∥g#dy∥Lp,w

for w ∈ Ap

(
(−∞, T )× Rd

)
, where N = N(d, p, [w]p).

The following theorem extends Theorem 3.4 and considers all p > 1.

Theorem 4.5 (Weighted Lp-theory with θ = d on a half space). Let T ∈ (−∞,∞],
λ ≥ 0, and p ∈ (1,∞). Then for any u ∈ H2

p,d((−∞, T )×Rd
+) satisfying the system

− ut +Aij(t)Diju− λu = f (4.10)

in (−∞, T )× Rd
+ with Mf ∈ Lp,d((−∞, T )× Rd

+), we have

λ∥Mu∥p,d +
√
λ∥MDu∥p,d + ∥u∥H2

p,d
≤ N∥Mf∥p,d, (4.11)

where N depends only on d, d1, δ, p, ∥ · ∥p,d = ∥ · ∥Lp,d((−∞,T )×Rd
+), and ∥ · ∥H2

p,θ
=

∥ · ∥H2
p,θ((−∞,T )×Rd

+). Moreover, for any f satisfying Mf ∈ Lp,d((−∞, T ) × Rd
+),

there exists a unique solution u ∈ H2
p,d((−∞, T )× Rd

+) to the system (4.10).

Proof. Due to the method of continuity and the corresponding theory of the Lapla-
cian case in e.g. Theorem 3.5 in [6], we only prove the a priori estimate (4.11).

1. Let p > 2. Take any κ ≥ 32. Then using Lemma 4.3 with a simple translation
argument, we have(∣∣∣Du− (Du)Q+

r (s,y)

∣∣∣2)1/2

Q+
r (s,y)

≤ Nκ−1/2

(√
λ
(
|u|2
)1/2
Q+

κr(s,y)

+
(
|Du|2

)1/2
Q+

κr(s,y)

)
+Nκ(d+2)/2

(
|Mf |2

)1/2
Q+

κr(s,y)

(4.12)

for any (s, y) ∈ (−∞, T )× Rd
+ and r > 0, where N = N(d, d1, δ).

Now, fix any (t, x) ∈ (−∞, T ) × Rd for a moment. For each ℓ ∈ Z we consider
the cube Qℓ ∈ Pℓ containing (t, x) and find Q+

r (s, y), (s, y) ∈ (−∞, T ) × Rd
+ with

the smallest r > 0 such that Qℓ ⊂ Q+
r (s, y) and(

|Du− (Du)Qℓ |2
)1/2
Qℓ ≤ N

(
|Du− (Du)Q+

r (s,y)|
2
)1/2
Q+

r (s,y)
,

where N depends only on the ratio of the measures
|Q+

r (s,y)|
|Qℓ| and hence N = N(d).

From this, (4.12), Jensen’s inequality, and the definitions of sharp functions and
maximal functions in Remark 4.4, we obtain

(Du)#dy(t, x) ≤ Nκ−1/2
(√

λM1/2(|u|2)(t, x) +M1/2(|Du|2))(t, x)
)

+Nκ(d+2)/2M1/2(|Mf |2))(t, x). (4.13)

The estimate (4.13) holds for any fixed (t, x) ∈ (−∞, T )× Rd
+. Hence, we have

∥(Du)#dy∥
p
p,d ≤ Nκ−p/2

(
(
√
λ)p∥M(|u|2)∥p/2p,d + ∥M(|Du|2)∥p/2p/2,d

)
+Nκp(d+2)/2∥M(|Mf |2)∥p/2p/2,d,
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where N = N(d, d1, δ, p). Noting p/2 > 1 in this step and applying WFS and WHL
in Remark 4.4 with w ≡ 1, which we usually call FS theorem and HL theorem, we
have

∥Du∥pp,d ≤ Nκ−p/2
(
(
√
λ)p∥|u|2∥p/2p/2,d + ∥|Du|2∥p/2p/2,d

)
+Nκp(d+2)/2∥|Mf |2∥p/2p/2,d

= Nκ−p/2
(
(
√
λ)p∥u∥pp,d + ∥Du∥pp,d

)
+Nκp(d+2)/2∥Mf∥pp,d,

and therefore

∥Du∥p,d ≤ Nκ−1/2
(
∥
√
λu∥p,d + ∥Du∥p,d

)
+Nκ(d+2)/2∥Mf∥p,d

≤ Nκ−1/2
(
λ∥Mu∥p,d + ∥M−1u∥p,d + ∥Du∥p,d

)
+Nκ(d+2)/2∥Mf∥p,d,

where we used
√
λ ≤ λx1 + 1/x1, x1 > 0 for the second inequality. Then Lemma

3.2 with θ = d and Hardy’s inequality give

λ∥Mu∥p,d +
√
λ∥MDu∥p,d + ∥u∥H2

p,d

≤ Nκ−1/2
(
λ∥Mu∥p,d + ∥M−1u∥p,d + ∥Du∥p,d

)
+Nκ(d+2)/2∥Mf∥p,d +N∥Mf∥p,d,

and an appropriate choice of κ ≥ 32 leads us to (4.11).
2. Let 1 < p < 2. We use a duality argument with step 1. Again it suffices

to prove the a priori estimate (4.11). Furthermore, thanks to Lemma 3.2, we only
need to prove that

∥M−1u∥p ≤ N∥Mf∥p, (4.14)

where ∥·∥p = ∥·∥Lp((−∞,T )×Rd
+). To prove this, we use the fact (see e.g. [19, Theorem

2.3]) that Lp,d−p((−∞, T )×Rd
+) is the dual space of Lq,d+p((−∞, T )×Rd

+), where
1/p+ 1/q = 1 with q > 2 now.

Let g ∈ Lq,d+p((−∞, T )×Rd
+), that is, Mg ∈ Lq,d((−∞, T )×Rd

+). Then, using

the above result applied with Aij(−t) and q > 2, we find that there exists unique
v ∈ H2

q,d(R× Rd
+) satisfying

vt +Aij(t)Dijv − λv = gIt∈(−∞,T )

in R×Rd
+. In particular, v(t, x) = 0 for t ≥ T in case T < ∞. This is because both

0 and ū(t, x) := v(−t, x) satisfy the system

wt = Aij(−t)Dijw − λw

on (−∞,−T )× Rd
+. Thus we have∫ T

−∞

∫
Rd

+

utr g dx dt =

∫ T

−∞

∫
Rd

+

utr
(
vt +Aij(t)Dijv − λv

)
dx dt

=

∫ T

−∞

∫
Rd

+

(
−ut +Aij(t)Diju− λu

)tr
v dx dt

=

∫ T

−∞

∫
Rd

+

f tr v dx dt

=

∫ T

−∞

∫
Rd

+

(x1f)
tr (x−1v) dx dt

≤ ∥Mf∥p∥M−1v∥q ≤ N∥Mf∥p∥Mg∥q,
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where the last inequality holds by step 1. This shows that ∥M−1u∥p can not exceed
N∥Mf∥p i.e. (4.14).

3. Finally, Theorem 3.4 takes care of the case p = 2. □

Based on Theorem 4.5, we build the following lemma, which is an Lp- counterpart
of Lemma 4.3.

Lemma 4.6 (Mean oscillation of Du on a half space). Let p > 1, λ ≥ 0, r > 0,
κ ≥ 32, and y1 ≥ 0. Assume that Mf ∈ Lp (Q

+
κr(y1)) and let u ∈ H2

p,d (Q
+
κr(y1)) be

a solution to the system

−ut +Aij(t)Diju− λu = f

in Q+
κr(y1). Then we have(∣∣∣Du− (Du)Q+

r (y1)

∣∣∣p)1/p
Q+

r (y1)
≤ Nκ(d+2)/p (|Mf |p)1/p

Q+
κr(y1)

+Nκ−1/2
(√

λ (|u|p)1/p
Q+

κr(y1)
+ (|Du|p)1/p

Q+
κr(y1)

)
,

where N = N(d, d1, δ, p) > 0.

Proof. The proof repeats the proof of Lemma 4.3 word for word. The only difference
is that we use Theorem 4.5 (Lp-estimate) in place of Theorem 3.4 (L2-estimate). □

5. Proof of Theorem 2.1

We first recall Assumption A(ρ, ε), which is assumed in Theorem 2.1.

Lemma 5.1. Let T ∈ (−∞,∞], λ ≥ 0, p ∈ (1,∞), θ ∈ (d − 1, d − 1 + p),
ρ ∈ (1/2, 1), and Assumption A(ρ, ε) hold. Then there exists a positive constant
ε0 = ε0(d, d1, δ, p, θ) such that if ε ∈ (0, ε0] and u ∈ H2

p,θ((−∞, T )× Rd
+) satisfy

−ut +Aij(t, x)Diju− λu = f

in (−∞, T )× Rd
+, where Mf ∈ Lp,θ((−∞, T )× Rd

+), then

λ∥Mu∥p,θ + ∥u∥H2
p,θ

≤ N∥Mf∥p,θ +N∥Du∥p,θ,

where ∥ · ∥p,θ = ∥ · ∥Lp,θ((−∞,T )×Rd), ∥ · ∥H2
p,θ

= ∥ · ∥H2
p,θ((−∞,T )×Rd), and N =

N(d, d1, δ, p, θ).

Proof. To prove this lemma we follow the proof of [6, Lemma 5.1], the result of
single equations, almost word for word. Doing so, one notices that the regularity
condition on Aijs in this paper is a bit different from that in [6], however, we see that
the mean oscillations with respect to the spatial variables on BR(x), R ∈ (0, 1/2],
of the coefficients

Aij
r (·, ·) := Aij(·/r2, ·/r)

can be made sufficiently small under our Assumption A(ρ, ε) when x1 ∈ (1, 4) and
we are safe to proceed.

Carrying out the proof, we make sure to apply the result of systems from [5] at
the very step which corresponds to the one at which the result of single equations
is applied in the proof of [6, Lemma 5.1]. □
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Comparing Lemma 5.1 and our main result, Theorem 2.1, the domination of
∥Du∥p,θ by ∥Mf∥p,θ is crucial. In fact, we have carefully worked out for this
throughout the paper. Yet, we need one more step, Proposition 5.3, in which we
import the Muckenhoupt weight we mentioned and prepared in Remark 4.4.

To deliver the proof of Proposition 5.3 effectively, we elaborate the following
lemma in advance.

Lemma 5.2. Let q ∈ (1,∞), θ ∈ R, β ∈ (1,∞), and β′ = β
β−1 , the Hölder

conjugate of β. Let h > 0, ρ ∈ (1/2, 1), R ∈ (0, ρh), κ ≥ 32 and let

u ∈ H2
βq,θ(R× Rd

+)

be compactly supported on QR(h) = QR(0, (h,0)) = Q+
R(0, (h,0)). Then under

Assumption A(ρ, ε) with any given ε > 0, for any (s, y) ∈ R × Rd
+ and r > 0 we

have the estimate(∣∣∣Du− (Du)Q+
r (s,y)

∣∣∣q)1/q
Q+

r (s,y)

≤ N0κ
−1/2

(√
λ (|u|q)1/q

Q+
κr(s,y)

+ (|Du|q)1/q
Q+

κr(s,y)

)
+N1κ

(d+2)/qε1/(β
′q)
(
|MD2u|βq

)1/(βq)
Q+

κr(s,y)
+N0κ

(d+2)/q (|Mf |q)1/q
Q+

κr(s,y)
,

(5.1)

where N0 = N0(d, d1, δ, q), N1 = N1(d, d1, δ, q, β, ρ), and

f := −ut +Aij(t, x)Diju− λu

in Q+
κr(s, y).

Proof. 1. Since u is supported on

QR(h) = (−R2, 0)× (h−R, h+R)×B′
R(0)

with h−R > 0, u is supported on a compact set strictly away from the boundary

of Rd
+ and hence, for any (s, y) ∈ R× Rd

+ and r > 0, we have

u ∈ H2
βq,d(Q

+
κr(s, y)) ∩ H2

q,d(Q
+
κr(s, y)). (5.2)

On the other hand, by scaling argument we only need to show (5.1) for the case
h = 1.

2. Obviously, we may assume that Q+
r (s, y) ∩ QR(1) ̸= ∅, which in particular

means that the interval ((y1−r)∨0, y1+r) intersects with the interval (1−R, 1+R)
and hence

(1−R− r) < y1 < 1 +R+ r, y1 ≥ 0. (5.3)

Note that 1−R− r can be negative with large r > 0.
We work with Q+

κr(s, y) and A(ρ, ε). To do so, we first observe the following two
cases, depending on the size of κr.

Case 1: κr ≤ ρ(1−R− r). In this case we are forced to have 0 < 1−R− r and
r can not be arbitrarily large. Along with it, (5.3) gives

y1 > κr/ρ > κr.

Case 2: κr > ρ(1 − R − r). In this case r and hence κr can not be arbitrarily
small. Indeed, this along with ρ < 1 < κ shows that

κr > (ρ+ κ)r/2 > ρr/2 + (1−R− r)ρ/2 = (1−R)ρ/2 > R(1− ρ)/2, (5.4)
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where the last inequality follows R < ρ. If κr is large, Qκr(s, y) may not be
contained in R× Rd

+.

Below in step 3, we will use Assumption A(ρ, ε) for Aijs and in this condition
the mean oscillation of Aij works only with the parabolic cylinders Q contained in
R × Rd

+. Connected to this concern, we set Q := Qκr(s, y) = Q+
κr(s, y) in Case 1

and set Q := QR(1) in Case 2, noting that the support of u is in QR(1) and in Case
2

|QR(1)| = N(d)Rd+2 ≤ N(d, ρ)(κr)d+2 ≤ N |Q+
κr(s, y)| (5.5)

holds by (5.4).
3. Now, we set

Āij(t) = −
∫
B

Aij(t, z) dz, i, j = 1, . . . , d,

whereB is eitherBκr(y) = (y1−r, y1+r)×B′
κr(y

′) orBR(1,0) = (1−r, 1+r)×B′
R(0)

depending on Case 1 or Case 2 in step 2, respectively. We note that Āij(t)s depend
only on t and satisfy the Legendre-Hadamard condition (1.2) and the inequality
(|Āij − Aij |)Q ≤ ε holds for all i, j in both cases of Q in step 2 by Assumption
A(ρ, ε) and the related definitions therein.

We then have the system

−ut + Āij(t)Diju− λu = F

on any chosen Q+
κr(s, y), where the d1 × 1 matrix valued function F is defined by

F (t, x) =
(
Āij(t)−Aij(t, x)

)
Diju(t, x) + f(t, x).

By (5.2), we have u ∈ H2
q,d(Q

+
κr(s, y)) and MF ∈ Lq(Q

+
κr(s, y)). Then by Lemma

4.6 with q in place of p along with a translation argument, we have(∣∣∣Du− (Du)Q+
r (s,y)

∣∣∣q)1/q
Q+

r (s,y)
≤ Nκ−1/2

(√
λ (|u|q)1/q

Q+
κr(s,y)

+ (|Du|q)1/q
Q+

κr(s,y)

)
+Nκ(d+2)/q (|MF |q)1/q

Q+
κr(s,y)

, (5.6)

where N = N(d, d1, δ, q). Meanwhile, by the definition of F , the triangle inequality,
Hölder inequality with (5.2), the boundedness condition (1.3) with the fact β′q > 1,
and the observation (5.5), we have

(|MF |q)1/q
Q+

κr(s,y)

≤
∑
i,j

(
|Āij −Aij |β

′qIQ

)1/(β′q)

Q+
κr(s,y)

(
|MD2u|βq

)1/(βq)
Q+

κr(s,y)
+ (|Mf |q)1/q

Q+
κr(s,y)

≤ N ′
∑
i,j

(
|Āij −Aij |

)1/(β′q)

Q

(
|MD2u|βq

)1/(βq)
Q+

κr(s,y)
+ (|Mf |q)1/q

Q+
κr(s,y)

,

where N ′ depends only on d1, δ, q, β. Then, by Assumption A(ρ, ε) we obtain

(|MF |q)1/q
Q+

κr(s,y)
≤ N

′′
ε1/(β

′q)
(
|MD2u|βq

)1/(βq)
Q+

κr(s,y)
+ (|Mf |q)1/q

Q+
κr(s,y)

,

where N
′′
= N0(d, d1, δ, q, β, ρ). This with (5.6) proves the lemma. □

Proposition 5.3. Let T ∈ (−∞,∞], λ ≥ 0, p ∈ (1,∞), and θ ∈ (d− 1, d− 1+ p).
Also, let h > 0, ρ ∈ (1/2, 1), ε ∈ (0, ε0], where ε0 is taken from Lemma 5.1, and
R ∈ (0, ρh).
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Let u ∈ H2
p,θ((−∞, T ) × Rd

+) be compactly supported on QR(h) and let us set

f := −ut +Aij(t, x)Diju− λu. Then under Assumption A(ρ, ε), we have

λ∥Mu∥p,θ +
√
λ∥MDu∥p,θ + ∥u∥H2

p,θ
≤ N0∥Mf∥p,θ +N1ε

1/(β′q)∥MD2u∥p,θ, (5.7)

where ∥·∥p,θ = ∥·∥Lp,θ((−∞,T )×Rd), ∥·∥H2
p,θ

= ∥·∥H2
p,θ((−∞,T )×Rd), N0 = N0(d, d1, δ, p, θ),

N1 = N1(d, d1, δ, p, θ, ρ), and constants β′, q are positive numbers determined by p
and θ.

Proof. For p ∈ (1,∞), θ ∈ (d − 1, d − 1 + p), we choose and fix q, β ∈ (1,∞)
satisfying

q ∈ (1, p), qβ < p, θ ∈ (d− 1, d− 1 + p/βq).

Then we note u ∈ H2
βq,θ((−∞, T )× Rd

+) since the support of u is bounded. Hence
we can use Lemma 5.2. Following the arguments in the proof of Theorem 4.5 with
the help of Lemma 5.2, for any κ ≥ 32 and (t, x) ∈ (−∞, T ) × Rd

+, we have the
following sharp function and maximal function(s) relation

(Du)#dy(t, x) ≤ N0κ
−1/2

(√
λM1/q (|u|q) (t, x) +M1/q (|Du|q) (t, x)

)
+N1κ

(d+2)/qε1/(qβ
′)M1/(qβ)

(
|MD2u|qβ

)
(t, x)

+N0κ
(d+2)/qM1/q (|Mf |q) (t, x),

where β′ = β
β−1 . Now, Remark 4.4 comes into play. As noted in the remark,

w = xθ−d
1 is a Muckenhoupt weight and belongs to Ap/(βq) ⊂ Ap/q. Hence, by

Fefferman-Stein theorem (WFS) and Hardy-Littlewood theorem (WHL) for this
weight w we have

∥Du∥p,θ ≤ N0κ
−1/2

(√
λ∥u∥p,θ + ∥Du∥p,θ

)
+N1κ

(d+θ+2)/qε1/(qβ
′)∥MD2u∥p,θ +N0κ

(d+θ+2)/q∥Mf∥p,θ.

Further, by the relation
√
λ ≤ λx1+x−1

1 for x1 > 0 mentioned earlier, we also have
√
λ∥u∥p,θ ≤ N(p)

(
λ∥Mu∥p,θ + ∥M−1u∥p,θ

)
.

Then along with these estimates, Lemma 5.1, an appropriate choice of sufficiently
large κ ≥ 32, and the interpolation (3.8) we arrive at the estimate (5.7). □

Remark 5.4. The result of Proposition 5.3 is invariant under the translation of
QR(h) as long as the compact support of u is contained in the translated cylinder.

We are ready to wrap this paper up.

Proof of Theorem 2.1

Proof. 1. Due to the method of continuity and the corresponding theory of the
Laplacian case in [6, Theorem 3.5], it suffices to show the a priori estimate (2.4).

2. In this step, we assume that Bi(t, x)s and C(t, x) are zero matrices for all t, x.
From Lemma 5.6 in [13] (or Lemma 3.3 in [12]) we bring in and prepare the

following: for any constant ε2 > 0 there is a constant ρ = ρ(ε2) ∈ (1/2, 1) and
non-negative (scalar) functions ηk = ηk(t, x) ∈ C∞

0 (R×Rd
+), k = 1, 2, . . . satisfying∑

k

ηpk ≥ 1,
∑
k

ηk ≤ N(d),
∑
k

(
M |Dηk|+M2|D2ηk|+M2|(ηk)t|

)
≤ εp2 (5.8)
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and moreover for each k there exist r > 0 and a point (τ, ξ) ∈ R × Rd
+ such that

0 < r < ρξ1 and supp ηk ⊂ Qr(τ, ξ) = Q+
r (τ, ξ); we will use Proposition 5.3 upon

translations. The constant ε2 will be specified shortly.
Meanwhile, observe that each uk := ηku, a localization of u, satisfies

− (uk)t +Aij(t, x)Dijuk − λuk

= ηkf +Aij(t, x)(DjηkDiu+DiηkDju) +DijηkA
ij(t, x)u− (ηk)tu

in (−∞, T ) × Rd
+. Then using a translation argument and Proposition 5.3 with

ε ∈ (0, ε0] there, we have

λ∥Muk∥p,θ +
√
λ∥MDuk∥p,θ + ∥uk∥H2

p,θ

≤ N0∥Mηk f∥p,θ +N0

∑
i,j

∥MDiηk Dju∥p,θ +N0∥M(D2ηk)u∥p,θ

+N0∥M(ηk)tu∥p,θ +N1ε
1/(β′q)∥MD2(ηku)∥p,θ,

where N0 = N0(d, d1, δ, p, θ), N1 = N1(d, d1, δ, p, θ, ρ), and q, β′ are positive num-
bers determined by p and θ. From this and the properties of ηk in (5.8), we obtain

λ∥Mu∥p,θ +
√
λ∥MDu∥p,θ + ∥u∥H2

p,θ

≤ N0∥Mf∥p,θ +N0ε2
(
∥Du∥p,θ + ∥M−1u∥p,θ

)
+N1ε

1/(β′q)
(
∥MD2u∥p,θ + ε2∥Du∥p,θ + ε2∥M−1u∥p,θ

)
.

Having had this, we now first choose ε2 ∈ (0, 1) sufficiently small depending only
on d, d1, δ, p, and θ such that N0ε2 < 1/3, then choose ρ = ρ(ε2) ∈ (1/2, 1) such
that (5.8) is satisfied, and finally choose ε = ε(d, d1, δ, p, θ, ρ) ∈ (0, ε0] so that

N1ε
1/(β′q) < 1/3. (5.9)

Upon these choices in order we arrive at the estimate (2.4).
3. General case of Bis and C under A(ρ, ε) condition. Our system now is

−ut +Aij(t, x)Diju− λu = f −BiDiu− Cu

in (−∞, T )×Rd
+. Thus, by the result of step 2 and A(ρ, ε) condition, if ε ∈ (0, ε0]

satisfies (5.9), we end up with

λ∥Mu∥p,θ+
√
λ∥MDu∥p,θ+∥u∥H2

p,θ
≤ N2∥Mf∥p,θ+N2ε∥Du∥p,θ+N2ε∥M−1u∥p,θ,

where N2 = N2(d, d1, δ, p, θ). Thus it is enough to take ε > 0 which is further
smaller so that N2ε < 1/2 and the estimate (2.4) holds. The taken ε is still in
(0, ε0].

4. The a priori estimate (2.4) holds now and hence the theorem is proved. □
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