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Abstract

We establish existence, uniqueness, and Sobolev and Hölder regularity results for the stochastic partial 
differential equation

du =
( d∑

i,j=1

aij uxixj + f 0 +
d∑

i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t > 0, x ∈ D

given with non-zero initial data. Here {wk
t : k = 1, 2, · · · } is a family of independent Wiener processes 

defined on a probability space (�, P ), aij = aij (ω, t) are merely measurable functions on � × (0, ∞), and 
D is either a polygonal domain in R2 or an arbitrary dimensional conic domain of the type

D(M) :=
{
x ∈Rd : x

|x| ∈M
}

, M� Sd−1, (d ≥ 2) (0.1)
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where M is an open subset of Sd−1 with C2 boundary. We measure the Sobolev and Hölder regularities of 
arbitrary order derivatives of the solution using a system of mixed weights consisting of appropriate powers 
of the distance to the vertices and of the distance to the boundary. The ranges of admissible powers of the 
distance to the vertices and to the boundary are sharp.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this article is to present a Sobolev space theory and Hölder regularity results for 
the stochastic partial differential equation (SPDE)

du =
⎛⎝ d∑

i,j

aij uxixj + f 0 +
d∑

i=1

f i
xi

⎞⎠dt +
∞∑

k=1

gkdwk
t , t > 0 ; u(0, ·) = u0 (1.1)

defined on either multi-dimensional conic domains D(M) (see (0.1)) or two dimensional polyg-
onal domains. Here, M is an open subset of Sd−1 with C2 boundary, {wk

t : k = 1, 2, · · · } is 
an infinite sequence of independent one dimensional Wiener processes, and the coefficients aij

are merely measurable functions of (ω, t) with the uniform parabolicity condition; see Assump-
tion 2.2 below.

To give the reader a flavor of our results in this article we state a particular one, an estimate, 
below: Let D = D(M) be a conic domain in Rd , ρ(x) := dist (x, ∂D), and ρ◦(x) := |x|. Then 
for the solution u of (1.1) with zero boundary and zero initial conditions, the following holds for 
any p ≥ 2:

E

T∫
0

∫
D

(
|ρ−1u|p + |ux |p

)
ρθ−�◦ ρ�−d dx dt

≤ CE

T∫
0

∫
D

(
|ρf 0|p +

d∑
i=1

|f i |p + |g|pl2
)
ρθ−�◦ ρ�−d dx dt (1.2)

with d − 1 < � < d − 1 + p accompanied with the sharp admissible range of θ ; see (1.8) below. 
Also see (1.7) for higher order derivative estimates. Unlike the range of �, the range of θ is 
affected by the shape of domain D, which is determined by M. Estimate (1.2), if ρ◦ is replaced 
by the distance to the set of vertices, also holds when D is a (bounded) polygonal domain in R2. 
Regarding Hölder regularity, we have for instance, if 1 − d

p
= δ > 0,

|ρ−1+ �
p ρ(θ−�)/p◦ u(ω, t, ·)|C(D) + [ρ−1+δ+ �

p ρ(θ−�)/p◦ u(ω, t, ·)]Cδ(D) < ∞,

for a.e. (ω, t). In particular,
464



K.-H. Kim, K. Lee and J. Seo Journal of Differential Equations 340 (2022) 463–520
|u(ω, t, x)| ≤ C(ω, t)ρ
1− �

p (x)ρ(−θ+�)/p◦ (x) for all x ∈ D. (1.3)

Estimate (1.3) shows how θ and � are involved in measuring the boundary behavior of the solu-
tion with respect to ρ and ρ◦. See Theorem 2.25 and Theorem 5.6 for the full Hölder regularity 
results with respect to both space and time variables.

To position our results in the context of regularity theory of stochastic parabolic equations, let 
us provide a stream of historical remarks.

The Lp-theory (p ≥ 2) of equation (1.1) defined on the entire space Rd was first introduced 
by N.V. Krylov [17,21]. In these articles the author used an analytic approach and proved the 
maximal regularity estimate

‖ux‖Lp(T ) ≤ C
(
‖f 0‖Lp(T ) +

d∑
i=1

‖f i‖Lp(T ) + ‖|g|	2‖Lp(T )

)
, p ≥ 2, (1.4)

provided that u(0, ·) ≡ 0, where Lp(T ) := Lp(� × (0, T ); Lp(Rd)).
As for other approaches on Sobolev regularity theory, the method based on H∞-calculus 

is also available in the literature. This approach was introduced in [5], in which the maximal 
regularity of 

√−Au is obtained for the stochastic convolution

u(t) :=
t∫

0

e(t−s)Ag(s)dWH (s).

Here, WH (t) is a cylindrical Brownian motion on a Hilbert space H , and the operator −A is 
assumed to admit a bounded H∞-calculus of angle less than π/2 on Lq(O), where q ≥ 2 and O
is a domain in Rd . The result of [5] generalizes (1.4) with f i = 0, i = 1, . . . , d as one can take 
A = � and O = Rd .

One advantage of the approach based on H∞-calculus is that it provides a unified way of 
handling a class of differential operators satisfying the above mentioned condition. However 
this approach is not applicable for SPDEs with operators depending on (ω, t), and even the 
simplest case A = �, it is needed that ∂O is regular enough, that is ∂O ∈ C2. Compared to 
the approach based on H∞-calculus, Krylov’s analytic approach works well for SPDEs with 
operators depending also on (ω, t), and it also provides the arbitrary order regularity of solutions 
without much extra efforts even under weaker smoothness condition on domains.

Since the work of [17,21] on Rd , the analytic approach has been further used for the regularity 
theory of SPDEs on half space [18,19,14] and on C1-domains [13,11,10]. The major obstacle of 
studying SPDEs on domains is that, unless certain compatibility conditions (cf. [4]) are fulfilled, 
the second and higher order derivatives of solutions to SPDEs blow up near the boundary, and 
such blow-ups are inevitable even on C∞-domains. Hence, one needs appropriate weight system 
to understand the behavior of solutions near the boundary.

It is shown in [18,13,11] that if domains satisfy C1 boundary condition, then blow-ups of 
derivatives of solutions can be described very accurately by a weight system introduced in [20,
13,23]. This weight system is based solely on the distance to the boundary. Surprisingly enough, 
under this weight system it is irrelevant whether domains have C∞-boundary or C1-boundary, that 
is, the regularity of solutions is not affected by the smoothness of the boundary provided that the 
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boundary is at least of class C1. To be more specific, let O be a C1-domain, ρ(x) = dist (x, ∂O), 
then it holds that (see [11,13]) for any d − 1 < � < d − 1 + p,

E

T∫
0

∫
O

(|ρ−1u| + |ux |)pρ�−ddt

≤CE

T∫
0

∫
O

(|ρf 0|p +
d∑

i=1

|f i |p + |g|p	2

)p
ρ�−ddt. (1.5)

The condition � ∈ (d − 1, d − 1 + p) is sharp and is not affected by further smoothness of ∂O
as long as ∂O ∈ C1. Note that estimate (1.5) with smaller � gives better decay of solutions near 
the boundary than that with larger �. In particular, we have u(ω, t, ·) ∈ W

1,p

0 (O) from (1.5) if 
� ≤ d .

As for results on non-smooth domains, that is ∂O /∈ C1, very few fragmentary results are 
known. It turns out that (1.5) holds true on general Lipschitz domains if � ≈ d − 2 +p (see [9]), 
and hence the case � = d is not included in general if p > 2. An example in [9] also shows that 
if � < p/2, then estimate (1.5) fails to hold even on simple wedge domains of the type

D(κ) = {
(r cosη, r sinη) ∈ R2 : r > 0, η ∈ (−κ/2, κ/2)

}
, κ < 2π. (1.6)

The vertex 0 makes the boundary non-smooth and changes the game.
Our interest on conic and polygonal domains arises from such question which, in particular, 

ask if estimates similar to (1.5) hold on such simple Lipschitz domains. We got the clue of the 
problem from a PDE result on conic domains [15] (also see [24,26]) which is similar to (1.5), 
without the term g = (g1, g2, · · · ) of course. It uses the weight based only on the distance to 
the vertex. A work on SPDE using a weight system based only on the distance to the vertex is 
introduced in [3] (also see [2]), in which we studied the model case of d = 2 and aij = δij for a 
starter of the program.

Even for the model case considered in [2,3] we struggled to have higher order derivative 
estimate and left the problem as the future work. The main issue is to include the distance to the 
boundary in our weight system to have a satisfactory regularity relation between solutions and 
the inputs. In fact, there was an omen of aforementioned difficulty that is implied in the Green’s 
function estimate used in [3] and [2]. The estimate dominating Green’s function does not vanish 
at the boundary although it does at the vertex. We need more refined Green’s function estimate 
for the starter of a satisfactory regularity result.

We then set a program of three steps: (i) preparing a refined d-dimensional Green’s function 
estimate for operators with measurable coefficients (ii) preparing PDE result (iii) establishing 
SPDE result addressing the higher order derivative estimates. First two steps are done in [7] and 
[8], and this article fulfills the last step. In [7] the refined Green’s function estimate involves both 
the distance to the vertex and the distance to the boundary and it now vanishes at all the points 
on the boundary with informative decay rate near the boundary. The work [8] fully makes use of 
what we prepared in [7] and it is designed to serve this article well.

Now let us explain our Lp-regularity result in more detail. Recall ρ◦(x) := |x| and ρ(x) :=
d(x, ∂D), which denote the distance from x to vertex and to the boundary of the conic domain 
D = D(M), respectively. We prove that for any p ≥ 2 and n = 0, 1, 2, · · · , the estimate
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E

T∫
0

∫
D

(
|ρ−1u|p + |ux |p + · · · + |ρnDn+1u|p

)
ρθ−�◦ ρ�−d dx dt

≤CE

T∫
0

∫
D

(
|ρf 0|p + · · · + |ρn+1Dnf 0|p

+
d∑

i=1

|f i |p + · · · +
d∑

i=1

|ρnDnf i |p

+ |g|p	2
+ · · · + |ρnDng|p	2

)
ρθ−�◦ ρ�−d dx dt (1.7)

holds for the solution u = u(ω, t, x) to equation (1.1) with zero initial condition, provided that

d − 1 < � < d − 1 + p, p(1 − λ+
c ) < θ < p(d − 1 + λ−

c ). (1.8)

Here, λ+
c and λ−

c are positive constants which depend on M and are defined in Definition 2.14
below (also see Proposition 2.17 and Remark 2.18). The same estimate holds for polygonal do-
mains in R2. Estimate (1.7) with condition (1.8) is indeed an (seamless) extension of [8] to 
SPDEs, and what is satisfactory is that the ranges of � and θ in (1.8) are not shrunken smaller 
than the ranges for the deterministic parabolic equation. For this however very delicate com-
putation is required and providing the work done successfully is one of main purposes of this 
article.

Finally, we want to summarize the improvement in this article over the results in [3] and [2]. 
Our domains D(M) in Rd , d ≥ 2, generalize two dimensional angular domains (1.6); the choice 
of M is much richer when d > 2. Our operator 

∑
i,j aij (ω, t)Dij far generalizes Laplacian oper-

ator � in [3] and [2]. These generalizations make computation much more involved, especially, 
for the stochastic part of the solution. Also, thanks to the mixed weight system, we can now study 
the higher order derivatives in an appropriate manner and implementing it requires quite a work. 
Moreover, in this article we do not pose zero initial condition and hence we propose right func-
tion spaces for the initial condition in terms of regularity relations between inputs and output, 
where the initial condition is one of inputs. This result is new even for deterministic PDEs on 
conic domains. Hölder regularity results based on aforementioned improvements are also new 
even for PDEs on conic domains.

This article is organized as follows. In Section 2 we introduce some properties of weighted 
Sobolev spaces and present our main results on conic domains, including Hölder regularity re-
sults. In Section 3 we estimate weighed Lp norm of the zero-th order derivative of the solution 
on conic domains based on the solution representation via Green’s function and elementary but 
highly involved computations. The estimates of the derivatives of the solution on conic domains 
are obtained in Section 4 and the proof of the main results on conic domains are posed there, too. 
In section 5 we establish a regularity theory on polygonal domains in R2.

Notations.

• We use := to denote a definition.
467
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• For a measure space (A, A, μ), a Banach space B and p ∈ [1, ∞), we write Lp(A, A, μ; B)

for the collection of all B-valued Ā-measurable functions f such that

‖f ‖p

Lp(A,A,μ;B)
:=

∫
A

‖f ‖p
B dμ < ∞.

Here, Ā is the completion of A with respect to μ. We will drop A or μ or even B in 
Lp(A, A, μ; B) when they are obvious from the context.

• Rd stands for the d-dimensional Euclidean space of points x = (x1, · · · , xd), Br(x) := {y ∈
Rd : |x − y| < r}, Rd+ := {x = (x1, . . . , xd) : x1 > 0}, and Sd−1 := {x ∈ Rd : |x| = 1}.

• For a domain O ⊂ Rd , BO
R (x) := BR(x) ∩O and QO

R (t, x) := (t − R2, t] × BO
R (x).

• N denotes the natural number system, N0 = {0} ∪N , and Z denotes the set of integers.
• For x, y in Rd , x · y :=∑d

i=1 xiyi denotes the standard inner product.
• For a domain O in Rd , ∂O denotes the boundary of O.
• For any multi-index α = (α1, . . . , αd), αi ∈ {0} ∪N ,

ft = ∂f

∂t
, fxi = Dif := ∂f

∂xi
, Dαf (x) := D

αd

d · · ·Dα1
1 f (x).

We denote |α| :=∑d
i=1 αi . For the second order derivatives we denote DjDif by Dijf . We 

often use the notation |gfx |p for |g|p ∑i |Dif |p and |gfxx |p for |g|p ∑i,j |Dijf |p . We also 
use Dmf to denote arbitrary partial derivatives of order m with respect to the space variable.

• �xf :=∑
i Diif , the Laplacian for f .

• For n ∈ {0} ∪N , Wn
p(O) := {f :∑|α|≤n

∫
O |Dαf |pdx < ∞}, the Sobolev space.

• For a domain O ⊆ Rd and a Banach space X with the norm | · |X , C(O; X) denotes the set of 
X-valued continuous functions f in O such that |f |C(O;X) := supx∈O |f (x)|X < ∞. Also, 
for α ∈ (0, 1], we define the Hölder space Cα(O; X) as the set of all X-valued functions f
such that

|f |Cα(O;X) := |f |C(O;X) + [f ]Cα(O;X) < ∞

with the semi-norm [f ]Cα(O;X) defined by

[f ]Cα(O;X) = sup
x �=y∈O

|f (x) − f (y)|X
|x − y|α .

In particular, O can be an interval in R.
• For a domain O ⊆ Rd , C∞

c (O) is the space of infinitely differentiable functions with compact 
support in O. supp(f ) denotes the support of the function f . Also, C∞(O) denotes the space 
of infinitely differentiable functions in O.

• For a distribution f on O and ϕ ∈ C∞
c (O), the expression (f, ϕ) denote the evaluation of f

with the test function ϕ.
• For functions f = f (ω, t, x) depending on ω ∈ �, t ≥ 0 and x ∈ Rd , we usually drop the 

argument ω and just write f (t, x) when there is no confusion.
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• Throughout the article, the letter C denotes a finite positive constant which may have dif-
ferent values along the argument while the dependence will be informed; C = C(a, b, · · · ), 
meaning that C depends only on the parameters inside the parentheses.

• A ∼ B means that there exist constants C1, C2 > 0 independent of A and B such that A ≤
C1B ≤ C2A.

• d(x, O) stands for the distance between a point x and a set O ∈ Rd .
• a ∨ b = max{a, b}, a ∧ b = min{a, b}.
• 1U the indicator function on U .
• We will use the following sets of functions (see [15]).

- V(QO
R (t0, x0)): the set of functions u defined at least on QO

R (t0, x0) and satisfying

sup
t∈(t0−R2,t0]

‖u(t, ·)‖L2(B
O
R (x0))

+ ‖∇u‖L2(Q
O
R (t0,x0))

< ∞.

- Vloc(Q
O
R (t0, x0)): the set of functions u defined at least on QO

R (t0, x0) and satisfying

u ∈ V(QO
r (t0, x0)), ∀r ∈ (0,R).

2. SPDE on d-dimensional conic domains

Throughout this article we assume d ≥ 2. Let M be a nonempty open set in Sd−1 :={
x ∈ Rd : |x| = 1

}
and M denotes the closure of M. We assume M �= Sd−1, and define the 

d-dimensional conic domain D by

D = D(M) :=
{
x ∈ Rd \ {0}

∣∣∣ x

|x| ∈M
}
.

When d = 2, the shapes of conic domains are quite simple (Fig. 1). For instance, with a fixed 
angle κ in the range of (0,2π) we can consider

D = D(κ) :=
{
(r cosη, r sinη) ∈R2 | r ∈ (0, ∞), −κ

2
< η <

κ

2

}
. (2.1)

Let {wk
t }k∈N be a family of independent one-dimensional Wiener processes defined on a 

complete probability space (�, F , P ) equipped with an increasing filtration of σ -fields Ft ⊂
F , each of which contains all (F , P )-null sets. By P we denote the predictable σ -field on 
� × (0, ∞) generated by Ft .

In this article we study the regularity theory of the stochastic partial differential equation

du =
(
Lu + f 0 +

d∑
i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t > 0, x ∈ D(M) (2.2)

under the zero Dirichlet boundary condition. Here

L :=
d∑

aij (ω, t)Dij .
i,j=1

469
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κ

2

− κ

2

d = 2 d = 3

Fig. 1. Cases of d = 2 and d = 3.

- Each of the stochastic integrals in (2.2) is understood as an Itô stochastic integral against the 
given Wiener process.

- The infinite sum of stochastic integrals is understood as the limit in probability (uniformly 
in t) of the finite sums of stochastic integrals. See Remark 2.9.

Here are our assumptions on M and the diffusion coefficients.

Assumption 2.1. The boundary ∂M of M in Sd−1 is of class C2.

Assumption 2.2. The diffusion coefficients aij , i, j = 1, · · · , d , are real-valued P-measurable 
functions of (ω, t), symmetric; aij = aji , and satisfy the uniform parabolicity condition, i.e. 
there exist constants ν1, ν2 > 0 such that for any t ∈R, ω ∈ � and ξ = (ξ1, . . . , ξd) ∈ Rd ,

ν1|ξ |2 ≤
∑
i,j

aij (ω, t)ξiξj ≤ ν2|ξ |2. (2.3)

To explain our main result in the frame of weighted Sobolev regularity, we introduce some 
function spaces (cf. [2,8]). These spaces collect the functions whose weak derivatives can be 
measured by the help of appropriate weights consisting of powers of the distance to the vertex 
and of the distance to the boundary. Let us define

ρ◦(x) = ρ◦,D := |x|, ρ(x) = ρD(x) := d(x, ∂D).

For p ∈ (1, ∞), θ ∈ R and � ∈R, we define

Lp,θ,�(D) := Lp(D, ρθ−�◦ ρ�−ddx),

and for m ∈N0 define

Km (D) := {f : ρ|α|Dαf ∈ Lp,θ,�(D), |α| ≤ m}.
p,θ,�
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The norm in Km
p,θ,�(D) is defined by

‖f ‖Km
p,θ,�(D) =

∑
|α|≤m

⎛⎝∫
D

|ρ|α|Dαf |pρθ−�◦ ρ�−d dx

⎞⎠1/p

. (2.4)

The space Km
p,θ,�(D) is related to the weighted Sobolev space Hm

p,�(D) introduced in [13,20,23]
as follows:

Hm
p,�(D) = Km

p,�,�(D),

whose norm is given by

‖f ‖Hm
p,�(D) :=

∑
|α|≤m

⎛⎝∫
D

|ρ|α|Dαf |pρ�−d dx

⎞⎠1/p

, m ∈ N0. (2.5)

Note that the weight of Hm
p,�(D) is based only on the distance to the boundary. Using the fact 

that for any μ ∈R and multi-index α

sup
x∈D

ρ|α|−μ◦ |Dαρμ◦ (x)| ≤ C(μ,α) < ∞, (2.6)

one can easily check

f ∈ Km
p,θ,�(D) if and only if ρ(θ−�)/p◦ f ∈ Hm

p,�(D),

and the norms in their corresponding spaces are equivalents, that is,

‖f ‖Km
p,θ,�(D) ∼ ‖ρ(θ−�)/p◦ f ‖Hm

p,�(D), n ∈ N0. (2.7)

Below we use relation (2.7) to define Kγ

p,θ,�(D) for all γ ∈ R. Let ψ = ψD be a smooth 
function in D (see e.g. [22, Lemma 4.13]) such that for any m ∈N0,

ψD(x) ∼ ρD(x), ρm
D|Dm+1ψD| ≤ N(m) < ∞. (2.8)

Actually, such ψ exists on any domains. Indeed, let O be an arbitrary domain, and put ρO(x) =
d(x, ∂O), and

On,k := {x ∈ O : e−n−k < ρO(x) < e−n+k}. (2.9)

Then mollifying 1On,2 one can easily construct ξn such that

ξn ∈ C∞
c (On,3), |Dmξn| ≤ C(m)emn,

∑
ξn(x) ∼ 1,
n∈Z
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and then one can take

ψ = ψO =
∑
n∈Z

e−nξn(x). (2.10)

It is easy to check that ψ = ψO satisfies (2.8) with ρO in place of ρD .
Next we choose a nonnegative function ζ ∈ C∞

c (R+) such that ζ > 0 on [e−1, e]. Then, by 
the periodicity,

∞∑
n=−∞

ζ(en+t ) > c > 0, ∀ t ∈ R. (2.11)

For p ∈ (1, ∞) and γ ∈ R, by Hγ
p = H

γ
p (Rd) we denote the space of Bessel potential with the 

norm

‖u‖H
γ
p

:= ‖(1 − �)γ/2u‖Lp(Rd ) := ‖F−1[(1 + |ξ |2)γ /2F(u)(ξ)]‖Lp(Rd ).

In case γ ∈ N0, Hγ
p (Rd) coincides with Wγ

p (Rd). The spaces of Bessel potentials enjoy the 
property

‖u‖
H

γ1
p

≤ ‖u‖
H

γ2
p

, γ1 ≤ γ2.

Especially, we have ‖u‖Lp ≤ ‖u‖H
γ
p

for any γ ≥ 0. For 	2-valued functions g we also define

‖g‖H
γ
p (	2)

:= ‖|(1 − �)γ/2g|	2‖Lp(Rd ).

Moreover, for Rd -valued functions f = (f 1, . . . , f d) we define

‖f‖H
γ
p (d) := ‖ |(1 − �)γ/2f| ‖Lp(Rd ).

From now on, if a function defined on a domain O vanishes near the boundary of O, then 
by a trivial extension we consider it as a function defined on Rd . In particular, for any k ∈ Z
and a function f on O, the function ζ(e−kψO(x))f (x) has a compact support in O and can be 
considered as a function on Rd .

Definition 2.3. Let p ∈ (1, ∞), �, γ ∈R, and O be a domain in Rd . By Hγ
p,θ (O) we denote the 

class of all distributions f on O such that

‖f ‖p

H
γ
p,�(O)

:=
∑
n∈Z

en�‖ζ(e−nψ(en·))f (en·)‖p

H
γ
p (Rd )

< ∞, (2.12)

where ψ = ψO is taken from (2.10). Similarly, Hγ
p,θ (O; 	2) is the set of 	2-valued functions g

such that

‖g‖p

H
γ
p,�(O;	2)

:=
∑

en�‖ζ(e−nψ(en·))g(en·)‖p

H
γ
p (Rd ;	2)

< ∞.
n∈Z
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It turns out (see [23, Proposition 2.2] or [8, Lemma 4.3]) that the new norm in (2.12) is 
equivalent to the norm in (2.5) if γ ∈ N0. In other words, for γ ∈N0,

∑
n∈Z

en�‖ζ(e−nψO(en·))f (en·)‖p

H
γ
p

∼
∑

|α|≤γ

∫
O

|ρ|α|Dαf |pρ�−d dx, (2.13)

and the equivalence relation depends only on p, γ, �, d, n, ζ, ψ and O.
Now we use equivalence relations (2.7) and (2.13), and define Kγ

p,θ,�(D) for any chosen 
γ ∈ R.

Definition 2.4. Let p ∈ (1, ∞), θ, �, γ ∈ R, and D be a conic domain in Rd . We write f ∈
K

γ

p,θ,�(D) if and only if ρ(θ−�)/p◦ f ∈ H
γ

p,�(D), and define

‖f ‖K
γ
p,θ,�(D) := ‖ρ(θ−�)/p◦ f ‖H

γ
p,�(D). (2.14)

The space Kγ

p,θ,�(D; 	2) and its norm are defined similarly. Also we write f=(f 1, f 2, · · · , f d) ∈
K

γ

p,θ,�(D; Rd) if

‖f‖K
γ
p,θ,�(D;Rd ) :=

d∑
i=1

‖f i‖K
γ
p,θ,�(D) < ∞.

Note that the new norm of the space Kγ

p,θ,�(D) is equivalent to the previous one if γ ∈ N0. 
Below we collect some basic properties of the space Kγ

p,θ,�(D).

Lemma 2.5. Let p ∈ (1, ∞) and θ, �, γ ∈ R.

(i) For a domain O and η ∈ C∞
c (R+),∑

n∈Z
en�‖η(e−nψO(en·))f (en·)‖p

H
γ
p

≤ C(p,�,d, γ, η,O)‖f ‖p

H
γ
p,�(O)

. (2.15)

The reverse inequality also holds if η satisfies (2.11). Moreover, the same statements hold 
for 	2-valued functions.

(ii) C∞
c (D) is dense in Kγ

p,θ,�(D).
(iii) For any μ ∈R,

‖ψμf ‖K
γ
p,θ,�(D) ∼ ‖f ‖K

γ
p,θ+μp,�+μp(D), (2.16)

where ψ satisfies (2.8). The same statement holds for 	2-valued functions.
(iv) (Pointwise multiplier) Let γ∈R, n ∈N0 with |γ | ≤ n. If |a|(0)

n := supD
∑

|α|≤|n| ρ|α||Dαa| <
∞, then

‖af ‖K
γ

(D) ≤ C(n,p,d)|a|(0)
n ‖f ‖K

γ
(D). (2.17)
p,θ,� p,θ,�
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(v) The operator Di : K
γ

p,θ,�(D) → K
γ−1
p,θ+p,�+p(D) is bounded for any i = 1, . . . , d . In gen-

eral, for any multi-index α we have

‖Dαf ‖
K

γ−|α|
p,θ+|α|p,�+|α|p(D)

≤ C‖f ‖K
γ
p,θ,�(D). (2.18)

The same statement holds for 	2-valued functions.
(vi) (Sobolev-Hölder embedding) Let γ − d

p
≥ n + δ, where n ∈N0 and δ ∈ (0, 1). Then for any 

f ∈ K
γ

p,θ−p,�−p(D),

∑
k≤n

|ρk−1+ �
p ρ(θ−�)/p◦ Dkf |C(D)

+[ρn−1+δ+ �
p ρ(θ−�)/p◦ Dnf ]Cδ(D) ≤ C‖f ‖K

γ
p,θ−p,�−p(D), (2.19)

where C = C(d, γ, p, θ, �, M).

Proof. All the results follow from Definition 2.4 and properties of the weighted Sobolev space 
H

γ

p,�(O) (cf. [23,20,16,13]). See e.g. [23, Proposition 2.2] for (i)-(iii) and see [23, Theorem 3.1]
for (iv).

To prove (v), we put ξ = ρ
(θ−�)/p◦ . Then, using ξDf = D(ξf ) − ξ(ξ−1Dξ)f and (2.14), we 

get

‖Df ‖
K

γ−1
p,θ+p,�+p(D)

≤ ‖D(ξf )‖
H

γ−1
p,�+p(D)

+ ‖(ξ−1Dξ)f ‖
K

γ−1
p,θ+p,�+p(D)

.

By [23, Theorem 3.1],

‖D(ξf )‖
H

γ−1
p,�+p(D)

≤ C‖ξf ‖H
γ
p,�(D) = C‖f ‖K

γ
p,θ,�(D).

Using (2.6), one can check |ψξ−1Dξ |(0)
m < ∞ for any m ∈N . Thus, by (2.16) and (2.17),

‖(ξ−1Dξ)f ‖
K

γ−1
p,θ+p,�+p(D)

≤ C‖(ψξ−1Dξ)f ‖
K

γ−1
p,θ,�(D)

≤ C‖f ‖
K

γ−1
p,θ,�(D)

.

Thus (v) is proved.
Finally we prove (vi). Put g = ξf . Then by [23, Theorem 4.3],∑

k≤n

|ρk−1+ �
p Dkg|C(D) + [ρn−1+δ+ �

p Dng]Cδ(D) ≤ C‖g‖H
γ
p,�−p(D). (2.20)

Hence, to prove (vi), it is enough to note that the left hand side of (2.19) is bounded by a constant 
times of the left hand side of (2.20). The lemma is proved. �

Using the aforementioned spaces, we now introduce the function spaces for the solutions u to 
equation (2.2) as well as the function spaces for the inputs f 0, f, and g. To make equation (2.2)
well-defined after all, we restrict p ∈ [2, ∞); see Remark 2.9 (i) below. With such p and a fixed 
time T ∈ (0, ∞) we first define
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Hγ
p(T ) := Lp(� × (0, T ],P;Hγ

p ),

Hγ
p(T , 	2) := Lp(� × (0, T ],P;Hγ

p (	2)).

Next, for θ, �, γ ∈R we define the function spaces

Kγ

p,θ,�(D, T ) := Lp(� × (0, T ],P;Kγ

p,θ,�(D)),

Kγ

p,θ,�(D, T , d) := Lp(� × (0, T ],P;Kγ

p,θ,�(D;Rd)),

Kγ

p,θ,�(D, T , 	2) := Lp(� × (0, T ],P;Kγ

p,θ,�(D;	2)),

and denote

Lp,θ,�(D, T ) := K0
p,θ,�(D, T ), Lp,θ,�(D, T , d) := K0

p,θ,�(D, T , d),

Lp,θ,�(D, T , 	2) := K0
p,θ,�(D, T , 	2).

Also, by K∞
c (D, T ) we denote the space of all functions f of the form

f (ω, t, x) =
m∑

i=1

1(τi−1(ω),τi (ω)](t)fi(x),

where τ0 ≤ · · · ≤ τm is a finite sequence of bounded stopping times with respect to the filtration 
(Ft )t≥0, and fi ∈ C∞

c (D), i = 1, . . . , m. Similarly, we define K∞
c (D, T , 	2) as the space of 

	2-valued functions g = (g1, g2, . . .) such that the first finite number of gk are in K∞
c (D, T )

and the rest are all identically zero. We also define K∞
c (D, T , d) for Rd -valued functions f =

(f 1, . . . , f d) in the same manner. Moreover, by K∞
c (D) we denote the space of all functions f

of the form

f (ω,x) =
m∑

i=1

1Ai
(ω)fi(x),

where Ai ∈ F0 and fi ∈ C∞
c (D), i = 1, . . . , m.

Remark 2.6. For any θ, �, γ ∈R, K∞
c (D, T ) is dense in Kγ

p,θ,�(D, T ) and so is K∞
c (D, T , 	2)

in Kγ

p,θ,�(D, T , 	2). Indeed, by the definition of P , any function f ∈ Kγ

p,θ,�(D, T ) can be ap-
proximated by functions of the type

m∑
i=1

1(τi (ω),τi+1(ω)](t)hi(x),

where τm are bounded stopping times and hi ∈ K
γ

p,θ,�(D), i = 1, . . . , m. Thus the claim fol-

lows from Lemma 2.5 (ii). Similarly, K∞
c (D) is dense in Lp(�; Kγ

p,θ,�(D)) := Lp(�, F0, P ;
K

γ
(D)).
p,θ,�
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, 
From now on we will also use the notation

U
γ+2
p,θ,�(D) := K

γ+2−2/p

p,θ+2−p,�+2−p(D).

The following definition frames the spaces for the solutions of our SPDE.

Definition 2.7. Let p∈[2, ∞) and θ, �, γ∈R. We write u∈Kγ+2
p,θ,�(D, T ) if u∈Kγ+2

p,θ−p,�−p(D, T )

u(0, ·)∈Uγ+2
p,θ,�(D):=Lp(�, F0, P ; Uγ+2

p,θ,�(D)), and there exists (f̃ , g̃) ∈ Kγ

p,θ+p,�+p(D, T ) ×
Kγ+1

p,θ,�(D, T , 	2) such that

du = f̃ dt +
∑

k

g̃kdwk
t , t ∈ (0, T ]

in the sense of distributions on D, that is, for any ϕ ∈ C∞
c (D) the equality

(u(t, ·), ϕ) = (u(0, ·), ϕ) +
t∫

0

(f̃ (s, ·), ϕ)ds +
∞∑

k=1

t∫
0

(g̃k(s, ·), ϕ)dwk
s (2.21)

holds for all t ∈ (0, T ] (a.s.). In this case we write

Du := f̃ and Su := g̃.

The norm in Kγ+2
p,θ,�(D, T ) is given by

‖u‖Kγ+2
p,θ,�(D,T )

= ‖u‖
Kγ+2

p,θ−p,�−p(D,T )
+ ‖Du‖Kγ

p,θ+p,�+p(D,T ) + ‖Su‖
Kγ+1

p,θ,�(D,T ,	2)

+ ‖u(0, ·)‖
Uγ+2

p,θ,�(D)
.

Remark 2.8. Let us go back to our main equation (2.2). Let f 0 ∈ Kγ

p,θ+p,�+p(D, T ), f =
(f 1, · · · , f d) ∈ Kγ+1

p,θ,�(D, T , d), g ∈ Kγ+1
p,θ,�(D, T , 	2), u(0, ·) ∈ Uγ+2

p,θ,�(D), and u belong to 

Kγ+2
p,θ−p,�−p(D, T ) and be a solution to equation (2.2), that is, u satisfies

du =
(
Lu + f 0 +

d∑
i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t ∈ (0, T ]

in the sense of distributions on D. Then by (2.18) in Lemma 2.5 (v), we have

Lu + f 0 +
d∑

i=1

f i
xi ∈ Kγ

p,θ+p,�+p(D, T )

and consequently u belongs to Kγ+2
(D, T ) with the accompanied inequality
p,θ,�
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‖u‖Kγ+2
p,θ,�(D,T )

≤ C
(
‖u‖

Kγ+2
p,θ−p,�−p(D,T )

+ ‖f 0‖Kγ
p,θ+p,�+p(D,T ) +

d∑
i=1

‖f i‖
Kγ+1

p,θ,�(D,T )

+‖g‖
Kγ+1

p,θ,�(D,T ,	2)
+ ‖u(0, ·)‖

Uγ+2
p,θ,�(D)

)
. (2.22)

Remark 2.9.

(i) Note that for any m, n ∈N with m > n, the quadratic variation of the continuous martingale ∑m
k=n

∫ t

0 (g̃k, ϕ)dwk
s is 

∑m
k=n

∫ t

0 (g̃k(s), ϕ)2ds. Following the lines in [17, Remark 3.2] and 
using the condition p ≥ 2, one can easily check

E
∞∑

k=1

T∫
0

(g̃k(t), ϕ)2dt ≤ N(ϕ,p,T )‖g̃‖p

Lp,θ,�(D,T ,	2)
,

which implies the infinite series 
∑∞

k=1

∫ t

0 (g̃k(s), ϕ)dwk
s converges in L2

(
�; C([0, T ])) and 

in probability uniformly in t ∈ [0, T ]. As a consequence, (u(t, ·), ϕ) in (2.21) is a continuous 
semi-martingale on [0, T ].

(ii) In Definition 2.7, Du and Su are uniquely determined. This can be seen by using the same 
arguments in [17, Remark 3.3].

Theorem 2.10. For any p ∈ [2, ∞) and θ, �, γ ∈ R, Kγ+2
p,θ,�(D, T ) is a Banach space.

Proof. We only need to prove the completeness. This can be proved by repeating argument in 
Remark 3.8 of [16], which treats the case θ = � and D = Rd+. The argument in this proof is 
quite universal and, without any changes, works on any conic domain D with any θ, � ∈R. �

The following theorem addresses important temporal properties of the functions in
Kγ+2

p,θ,�(D, T ). See Section 1 for the notations [·]Cα and | · |Cα .

Theorem 2.11. Let p ∈ [2, ∞) and θ, �, γ ∈ R.

(i) If 2/p < α < β ≤ 1, then for any u ∈Kγ+2
p,θ,�(D, T ),

E[ψβ−1u]p
Cα/2−1/p

(
[0,T ];Kγ+2−β

p,θ,� (D)
) ≤ C T (β−α)p/2‖u‖p

Kγ+2
p,θ,�(D,T )

, (2.23)

and in addition, if ψβ−1u(0, ·) ∈ Lp(�; Kγ+2−β

p,θ,� (D)),

E|ψβ−1u|p
C
(
[0,T ];Kγ+2−β

p,θ,� (D)
) ≤ CE‖ψβ−1u(0, ·)‖p

K
γ+2−β
p,θ,� (D)

+CT pβ/2−1‖u‖p

Kγ+2
(D,T )

, (2.24)

p,θ,�
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where ψ satisfies (2.8) and constants C are independent of T and u.
(ii) For any u ∈Kγ+2

p,θ,�(D, T ) with u(0, ·) = 0, u belongs to Lp(�; C([0, T ]; Kγ

p,θ,�(D)) and

E sup
t≤T

‖u(t)‖p

K
γ+1
p,θ,�(D)

≤ C‖u‖p

Kγ+2
p,θ,�(D,T )

,

where C = C(d, p, n, θ, �, D, T ). In particular, for any t ≤ T ,

‖u‖p

Kγ+1
p,θ,�(D,t)

≤
t∫

0

E sup
r≤s

‖u(r)‖p

K
γ+1
p,θ,�(D,r)

ds ≤ C

t∫
0

‖u‖p

Kγ+2
p,θ,�(D,s)

ds. (2.25)

Proof. We follow the argument in [16, Section 6] (or the proof of [9, Theorem 2.8]), using [16, 
Corollary 4.12].

(i). As usual, we suppress the argument ω. Put ξ(x) = |x|(θ−�)/p and set v = ξu, f̄ = ξDu, 
ḡ = ξSu. Then we have

dv = f̄ dt +
∞∑

k=1

ḡkdwk
t , t ∈ (0, T ]

in the sense of distributions on D with the initial condition v(0, ·) = ξu(0, ·). By (2.16) and 
Definition 2.4, we have

I1 := E
[
ψβ−1u

]p

Cα/2−1/p([0,T ],Kγ+2−β
p,θ,� (D))

∼ E [v]p
Cα/2−1/p([0,T ],Hγ+2−β

p,�+p(β−1)
(D))

(2.26)

≤ C
∑
n

en(�+p(β−1))E
[
v(·, en·)ζ(e−nψ(en·))]pCα/2−1/p([0,T ];Hγ+2−β

p )
.

Now, by assumption, the function vn(t, x) := v(t, enx)ζ(e−nψ(enx)) belongs to Hγ+2
p (T ) and 

satisfies

dvn = f̄ (t, enx)ζ(e−nψ(enx))dt +
∞∑

k=1

ḡk(t, enx)ζ(e−nψ(enx))dwk
t , t > 0 (2.27)

on the entire space Rd . Then, by [16, Corollary 4.12] and (2.27), there exists a constant N > 0, 
independent of T and u, so that for any constant a > 0,

E
[
v(·, en·)ζ(e−nψ(en·))]pCα/2−1/p([0,T ];Hγ+2−β

p )

≤ C T (β−α)p/2aβ−1
(
a‖v(·, en·)ζ(e−nψ(en·))‖p

Hγ+2
p (T )

+a−1‖f̄ (·, en·)ζ(e−nψ(en·))‖p

Hγ
(T )

+ ‖ḡk(·, en·)ζ(e−nψ(en·))‖p
γ+1

)

p Hp (T ,	2)
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holds. Taking a = e−np , we note that (2.26) yields

I1 ≤ C T (β−α)p/2
(∑

n

en(�−p)‖v(·, en·)ζ(e−nψ(en·))‖p

Hγ+2
p (T )

+
∑
n

en(�+p)‖f̄ (·, en·)ζ(e−nψ(en·))‖p

Hγ
p(T )

+
∑
n

en�‖ḡk(·, en·)ζ(e−nψ(en·))‖p

Hγ+1
p (T ,	2)

)
= C T (β−α)p/2

(
‖u‖p

Kγ+2
p,θ−p,�−p(D,T )

+ ‖Du‖p

Kγ
p,θ+p,�+p(D,T )

+ ‖Su‖p

Kγ+1
p,θ,�(D,T ,	2)

)
≤ C T (β−α)p/2‖u‖p

Kγ+2
p,θ,�(D,T )

.

Thus (2.23) is proved.

If ψβ−1u(0, ·) ∈ Lp(�; Kγ+2−β

p,θ,� (D)), then we note that ψβ−1u belongs to C
(
[0, T ];

K
γ+2−β

p,θ,� (D)
)

now. For estimate (2.24), we have

I2 := E|ψβ−1u|p
C([0,T ];Kγ+2−β

p,θ,� (D)
)

≤ C
∑
n

en(�+p(β−1))E|v(·, en·)ζ(e−nψ(en·))|p
C([0,T ];Hγ+2−β

p )
(2.28)

and by [16, Corollary 4.12] again, for any constant a > 0,

E|v(·, en·)ζ(e−nψ(en·))|p
C([0,T ];Hγ+2−β

p

)
≤ CE‖v(0, en·)ζ(e−nψ(en·))‖p

H
γ+2−β
p

+C T pβ/2−1aβ−1
(
a‖v(·, en·)ζ(e−nψ(en·))‖p

Hγ+2
p (T )

+a−1‖f̄ (·, en·)ζ(e−nψ(en·))‖p

Hγ
p(T )

+ ‖ḡk(·, en·)ζ(e−nψ(en·))‖p

Hγ+1
p (T ,	2)

)
.

This, (2.28), and the same argument above, especially the adjustment a = e−np for each n, lead 
us to (2.24).

(ii). We use the notations used in (i). Obviously,

E sup
t≤T

‖u(t)‖p

K
γ+1
p,θ,�(D)

≤ C
∑
n

en�E sup
t≤T

‖v(t, en·)ζ(e−nψ(en·))‖p

H
γ+1
p

.

By Remark 4.14 in [16] with β = 1 there, vn ∈ Lp(�; C([0, T ]; Hγ+1
p )) and for any a > 0,
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E sup
t≤T

‖v(t, en·)ζ(e−nψ(en·))‖p

H
γ+1
p

≤ C
(
a‖v(·, en·)ζ(e−nψ(en·))‖p

Hγ+2
p (T )

+a−1‖f̄ (·, en·)ζ(e−nψ(en·))‖p

Hγ
p(T )

+ ‖ḡk(·, en·)ζ(e−nψ(en·))‖p

Hγ+1
p (T ,	2)

)
.

Again, taking a = e−np and following the above arguments, we get

E sup
t≤T

‖u(t)‖p

K
γ+1
p,θ,�(D)

≤ C
(
‖u‖p

Kγ+2
p,θ−p,�−p(D,T )

+ ‖Du‖p

Kγ
p,θ+p,�+p(D,T )

+ ‖Su‖p

Kγ+1
p,θ,�(D,T ,	2)

)
= C ‖u‖p

Kγ+2
p,θ,�(D,T )

.

The theorem is proved. �
Remark 2.12. The additional condition ψβ−1u(0, ·) ∈ Lp(�; Kγ+2−β

p,θ,� (D)) for (2.24) does not 

follow from the assumption u ∈Kγ+2
p,θ,�(D, T ). This condition is unnecessary when we prove the 

corresponding result on polygonal domains. See Remark 5.3 for detail.

Remark 2.13. Theorems 2.10 and 2.11 hold for any θ, � ∈ R, but certain restrictions will be 
given later for our main results, Theorems 2.19 and 2.21. Actually the admissible range of θ
for our Sobolev-regularity theory of equation (2.2) is affected by the shape of D = D(M), the 
uniform parabolicity of the leading coefficients, the space dimension d , and the summability 
parameter p. On the hand, the admissible range of � depends only on d and p, that is,

d − 1 < � < d − 1 + p.

To explain the admissible range of θ for equation (2.2) we need the following definitions. For 
some of the notations in them one can refer to Section 1.

Definition 2.14 (cf. Section 2 of [15]). Let L = ∑d
i,j=1 αij (t)Dij be a uniformly parabolic “de-

terministic” operator with bounded coefficients αij s.

(i) By λ+
c,L = λ+

c,L,D we denote the supremum of all λ ≥ 0 such that for some constant K0 =
K0(λ, L, M) it holds that

|v(t, x)| ≤ K0

( |x|
R

)λ

sup
QD

3R
4

(t0,0)

|v|, ∀ (t, x) ∈ QD
R/2(t0,0) (2.29)

for any R > 0, t0, and the deterministic function v = v(t, x) belonging to Vloc(Q
D
R (t0, 0))

and satisfying

vt = Lv in QD(t0,0) ; v(t, x) = 0 for x ∈ ∂D. (2.30)
R
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(ii) By λ−
c,L we denote the supremum of λ ≥ 0 with above property for the operator

L̂ :=
∑
i,j

αij (−t)Dij .

Note that K0 in (2.29) may depend on the operator L. Such dependency on L is one of 
major obstacles when one handles SPDE having random coefficients, since it naturally involves 
infinitely many operators at the same time. To treat such case, which is in fact our case in this 
article, we design the following definition.

Definition 2.15.

(i) By Tν1,ν2 we denote the collection of all “deterministic” operators in the form L =∑d
i,j=1 αij (t)Dij , where αij (t) are measurable in t and satisfy Assumption 2.2 with the 

fixed constants ν1, ν2 in the uniform parabolicity condition (2.3).
(ii) For a fixed D = D(M), by λc(ν1, ν2) = λc(ν1, ν2, D) we denote the supremum of all λ ≥ 0

such that for some constant K0 = K0(λ, ν1, ν2, M) it holds that for any operator L ∈ Tν1,ν2 , 
R > 0 and t0,

|v(t, x)| ≤ K0

( |x|
R

)λ

sup
QD

3R
4

(t0,0)

|v|, ∀ (t, x) ∈ QD
R/2(t0,0), (2.31)

provided that v is a deterministic function in Vloc(Q
D
R (t0, 0)) satisfying

vt = Lv in QD
R (t0,0) ; v(t, x) = 0 for x ∈ ∂D.

Remark 2.16.

(i) Note that the dependency of K0 in Definition 2.15 is more explicit compared to that of 
Definition 2.14. By definitions, if L is an operator in Tν1,ν2 , then

λ±
c,L ≥ λc(ν1, ν2).

(ii) The values of λ±
c,L and λc(ν1, ν2) do not change if one replaces 3

4 in (2.29) and (2.31) by any 
number in (1/2, 1) (see [15, Lemma 2.2]). Following the proof of [15, Lemma 2.2], one can 
also show that for any constant β > 0

λ±
c,βL = λ±

c,L, λc(βν1, βν2) = λc(ν1, ν2).

Below are some sharp estimates for λ± and λc(ν1, ν2). See [15] for more information.
c,L
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Proposition 2.17.

(i) If L = �x , then

λ±
c,L = −d − 2

2
+
√

� + (d − 2)2

4
> 0,

where � = �D is the first eigenvalue of Laplace-Beltrami operator with the Dirichlet con-
dition on M. In particular, if d = 2 and D = D(κ) (see (2.1)), then

λ±
c,L = π

κ
.

(ii) Let 0 < ν1 ≤ ν2 < ∞. Then we have λc(ν1, ν2) > 0 and

λc(ν1, ν2) ≥ −d

2
+
√

ν1

ν2

√
� + (d − 2)2

4
. (2.32)

Proof. (i) follows from [15, Theorem 2.4.3]. (ii) also follows from the proofs of [15, Theorem 
2.4.1, Theorem 2.4.7], which only consider the case ν2 = 1/ν1. Inspecting the proofs of [15, 
Theorem 2.4.1, Theorem 2.4.7] one can easily check

λ±
c,L ≥ −d

2
+
√

ν1

ν2

√
� + (d − 2)2

4
, and λ±

c,L > c > 0 if L ∈ Tν1,ν2 ,

where the constant c is the Hölder exponent of solutions to equation (2.30), and it can be chosen 
so that it depends only on ν1, ν2 and M. Moreover, for λ > 0 satisfying

λ < c ∨
(

− d

2
+
√

ν1

ν2

√
� + (d − 2)2

4

)
the constant K0 in (2.31) can be chosen so that it depends only on ν1, ν2 and M. This proves 
(2.32). �
Example 2.18 (d = 2). For κ ∈ (0, 2π) and α ∈ [0, 2π), we consider

D = Dκ,α :=
{
x = (r cos θ, r sin θ) ∈R2 | r ∈ (0, ∞), −κ

2
+ α < θ <

κ

2
+ α

}
and the constant operator

L = aDx1x1 + b(Dx1x2 + Dx2x1) + cDx2x2 ,

where a, b, c are constants such that a + c > 0 and ac − b2 > 0. Then, by [7, Proposition 4.1], 
we have
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λ±
c,L = λ±

c,L,Dκ,α
= π

κ̃
,

where

κ̃ = π − arctan
( c̄ cot(κ/2) + b̄√

det(A)

)
− arctan

( c̄ cot(κ/2) − b̄√
det(A)

)
with constants ā, b̄, c̄ from the relation(

ā b̄

b̄ c̄

)
=
(

cosα sinα

− sinα cosα

)(
a b

b c

)(
cosα − sinα

sinα cosα

)
.

In particular, we have κ̃ = π if κ = π .
Now, let κ �= π , α = 0 for D. Also, let b = 0 in L. In this case we can take ν1 = a ∧ c and 

ν2 = a ∨ c in (2.3). We note that κ̃ is determined by the simple relation

tan
( κ̃

2

)
=
√

a

c
tan

( κ

2

)
.

We are ready to pose our Sobolev regularity results on conic domains. We formulate them into 
two theorems to handle random and non-random coefficients separately. The proofs of them are 
located in Section 4. Note that the admissible range of θ for non-random coefficients is relatively 
wider than that of random coefficients.

Theorem 2.19 (SPDE on conic domains with non-random coefficients). Let L =∑
ij aij (t)Dij

be non-random, p ∈ [2, ∞), and γ ≥ −1. Also assume that Assumptions 2.1 and 2.2 hold, and 
θ, � ∈R satisfy

p(1 − λ+
c,L) < θ < p(d − 1 + λ−

c,L), d − 1 < � < d − 1 + p. (2.33)

Then for any f 0∈Kγ∨0
p,θ+p,�+p(D, T ), f=(f 1, · · · , f d) ∈ Kγ+1

p,θ,�(D, T , d), g ∈Kγ+1
p,θ,�(D, T , l2), 

and u0 ∈ Uγ+2
p,θ,�(D), equation (2.2) has a unique solution u in the class Kγ+2

p,θ,�(D, T ) and 
moreover we have

‖u‖Kγ+2
p,θ,�(D,T )

≤ C
(‖f 0‖

Kγ∨0
p,θ+p,�+p(D,T )

+ ‖f‖
Kγ+1

p,θ,�(D,T ,d)
+ ‖g‖

Kγ+1
p,θ,�(D,T ,l2)

+‖u0‖Uγ+2
p,θ,�(D)

)
, (2.34)

where the constant C depends only on M, d, p, θ, �, L, γ . In particular, it is independent of T .

Remark 2.20.

(i) A particular result of the above theorem is introduced in [2] (cf. [3]). More precisely, the 
combination of Theorem 2.8 and Corollary 2.11 in [2] covers the case

L = �, � = d = 2, D = D(κ) of (2.1).
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(ii) If γ ≥ 0, the separation of two terms f 0 and f = (f 1, · · · , f d) in our equation is redundant 
and we simply pose f ∈ Kγ

p,θ+p,�+p(D, T ) instead. This is because, by (2.18), we have 

h0 +∑d
i=1 hi

xi ∈ K
γ

p,θ+p,�+p(D) for h0 ∈ K
γ

p,θ+p,�+p(D), hi ∈ K
γ+1
p,θ,�(D), i = 1, . . . , d . 

The corresponding change in the estimate (2.34) is clear.

Theorem 2.21 (SPDE on conic domains with random coefficients). Let L =∑
ij aij (ω, t)Dij be 

random, p ∈ [2, ∞), and γ ≥ −1. Also assume that Assumptions 2.1 and 2.2 hold, d − 1 < � <
d − 1 + p, and

p
(
1 − λc(ν1, ν2)

)
< θ < p

(
d − 1 + λc(ν1, ν2)

)
. (2.35)

Then all the claims of Theorem 2.19 hold with a constant N = N(M, d, p, γ, θ, �, ν1, ν2).

Remark 2.22. By Proposition 2.17, (2.35) is fulfilled if

p

⎛⎝d + 2

2
−
√

ν1

ν2

√
�D + (d − 2)2

4

⎞⎠< θ < p

⎛⎝d − 2

2
+
√

ν1

ν2

√
�D + (d − 2)2

4

⎞⎠ . (2.36)

In the case of L = �, by Proposition 2.17, (2.33) is fulfilled if

p

⎛⎝d

2
−
√

�D + (d − 2)2

4

⎞⎠< θ < p

⎛⎝d

2
+
√

�D + (d − 2)2

4

⎞⎠ .

Remark 2.23. By (2.4), inequality (2.34) yields (1.7). In particular, if γ = −1 and u(0, ·) ≡ 0, 
then we have

E

T∫
0

∫
D

(
|ρ−1u|p + |ux |p

)
ρθ−�◦ ρ�−d dx dt

≤ CE

T∫
0

∫
D

(
|ρf 0|p +

d∑
i=1

|f i |p + |g|p	2

)
ρθ−�◦ ρ�−d dx dt.

Remark 2.24. The solutions u in Theorems 2.19 and 2.21 satisfy zero Dirichlet boundary con-
dition. Indeed, under the assumption d − 1 < � < d − 1 + p, [6, Theorem 2.8] implies that the 
trace operator is well defined for functions in K1

p,θ−p,�−p(D, T ), and hence by Lemma 2.5 (iv) 
we have u|∂D = 0.

Here comes our Hölder regularity properties of solutions on conic domains.

Theorem 2.25 (Hölder estimates on conic domains). Let p ∈ [2, ∞), θ, � ∈ R, and u ∈
Kγ+2

(D, T ) be the solution taken from Theorem 2.19 (or from Theorem 2.21).
p,θ,�
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(i) If γ + 2 − d
p

≥ n + δ, where n ∈N0 and δ ∈ (0, 1], then for any 0 ≤ k ≤ n,

|ρk−1+ �
p ρ(θ−�)/p◦ Dku(ω, t, ·)|C(D) + [ρn−1+δ+ �

p ρ(θ−�)/p◦ Dn(ω, t, ·)]Cδ(D) < ∞

holds for a.e. (ω, t), in particular,

|u(ω, t, x)| ≤ C(ω, t)ρ
1− �

p (x)ρ(−θ+�)/p◦ (x) for all x ∈D. (2.37)

(ii) Let

2/p < α < β ≤ 1, γ + 2 − β − d/p ≥ m + ε,

where m ∈N0 and ε ∈ (0, 1]. Put η = β − 1 + �/p. Then for any 0 ≤ k ≤ m,

E sup
t �=s≤T

∣∣ρη+kρ
(θ−�)/p◦

(
Dku(t, ·) − Dku(s, ·))∣∣pC(D)

|t − s|pα/2−1 < ∞, (2.38)

E sup
t �=s≤T

[
ρη+m+ερ

(θ−�)/p◦ (Dmu(t, ·) − Dmu(s, ·))
]p

Cε(D)

|t − s|pα/2−1 < ∞. (2.39)

Proof. (i) By definition, for almost all (ω, t), we have u(ω, t, ·) ∈ K
γ+2
p,θ−p,�−p(D). Thus (i) is a 

consequence of (2.19). Similarly, the claims of (ii) follow from (2.19) (2.23), and the observation

E sup
t �=s≤T

‖ψβ−1(u(t) − u(s))‖p

K
γ+2−β
p,θ,� (D)

|t − s|(α/2−1/p)p

∼ E sup
t �=s≤T

‖u(t) − u(s)‖p

K
γ+2−β
p,θ+βp−p,�+βp−p(D)

|t − s|(α/2−1/p)p
. �

Remark 2.26.

(i) (2.37) tells how fast the solution from Theorem 2.19 (or Theorem 2.21) vanishes near the 
boundary. Near boundary points away from the vertex, u is controlled by ρ1−�/p and, if 
p > �, the decay near the vertex is not slower than ρ1−θ/p◦ .

(ii) In (2.38) and (2.39), α/2 − 1/p is the Hölder exponent in time and η is related to the decay 
rate near the boundary. As α/2 − 1/p → 1/2 − 1/p, η must increase accordingly.

(iii) Suppose θ = d satisfies (2.36), and let u ∈K1
p,d,d(D, T ) be the solution from Theorem 2.21. 

Assume

κ0 := 1 − (d + 2)
> 0.
p
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Then for any κ ∈ (0, κ0), we have

E sup
t≤T

sup
x,y∈D

∣∣∣ |u(t, x) − u(t, y)|
|x − y|κ

∣∣∣p +E sup
t �=s≤T

sup
x∈D

∣∣∣ |u(t, x) − u(s, x)|
|t − s|κ/2

∣∣∣p < ∞. (2.40)

Indeed, (2.40) can be obtained from (2.38) and (2.39) with appropriate choices of α, β . For 
the first part, to apply (2.39) we take β = κ0 −κ + 2/p such that 2/p < β < 1, and take ε =
1 − β − d/p = κ = −η. For the second part, we use (2.38) with α = κ + 2/p, β = 1 − d/p

so that 1 − αp/2 = −pκ/2.

3. Key estimates on conic domains

In this section we consider the solutions to SPDEs having a non-random operator. We fix a 
deterministic operator

L0 :=
∑
i,j

αij (t)Dij ∈ Tν1,ν2 . (3.1)

See Definition 2.15. We will estimate the zeroth order derivative of the solution of the equation

du =
(

L0u + f 0 +
d∑

i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t > 0, x ∈D(M). (3.2)

Let G(t, s, x, y) denote the Green’s function for the operator ∂t − L0 on D = D(M). By 
definition (cf. [15, Lemma 3.7]), G is a nonnegative function such that for any fixed s ∈ R and 
y ∈D, the function v(t, x) = G(t, s, x, y) satisfies(

∂t − L0
)
v(t, x) = δ(x − y)δ(t − s) in R×D,

v(t, x) = 0 on R× ∂D ; v(t, x) = 0 for t < s.

Now, for any given

f 0 ∈ Lp,θ+p,�+p(D, T ), f = (f 1, · · · , f d) ∈ Lp,θ,�(D, T , d),

g ∈ Lp,θ,�(D, T , 	2), u0 ∈ Lp(�;K0
θ+2−p,�+2−p(D)),

we define the function R(u0, f 0, f, g) by

R(u0, f
0, f, g)(t, x)

:=
∫
D

G(t,0, x, y)u0(y)dy

+
t∫ ∫

G(t, s, x, y)f (s, y)dyds −
d∑

i=1

t∫ ∫
Gyi (t, s, x, y)f i(s, y)dyds
0 D 0 D
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+
∞∑

k=1

t∫
0

∫
D

G(t, s, x, y)gk(s, y)dy dwk
s . (3.3)

One immediately notices that the function R(u0, f 0, f, g) is a representation of a solution of 
(3.2) with zero boundary condition and initial condition u(0, ·) = u0(·); see Lemma 4.3 in the 
next section. Our main result of this section is about this representation and it is given in the 
following lemma.

Lemma 3.1. Let T < ∞, p ∈ [2, ∞) and let θ ∈R, � ∈ R satisfy

p(1 − λ+
c,L0

) < θ < p(d − 1 + λ−
c,L0

) and d − 1 < � < d − 1 + p.

If f 0 ∈ Lp,θ+p,�+p(D, T ), f ∈ Ld
p,θ,�(D, T , d), g ∈ Lp,θ,�(D, T , 	2), and u0 ∈ Lp(�;

K0
θ+2−p,�+2−p(D)) := Lp(�, F0; K0

θ+2−p,�+2−p(D)), then u := R(u0, f 0, f, g) belongs to 
Lp,θ−p,�−p(D, T ) and the estimate

‖u‖Lp,θ−p,�−p(D,T ) ≤ C
(
‖f 0‖Lp,θ+p,�+p(D,T ) + ‖f‖Lp,θ,�(D,T ,d)

+‖g‖Lp,θ,�(D,T ,	2) + ‖u0‖Lp(�;K0
θ+2−p,�+2−p(D))

)
holds, where C = C(M, d, p, θ, �, L0). Moreover, if

p (1 − λc(ν1, ν2)) < θ < p (d − 1 + λc(ν1, ν2)) ,

then the constant C depends only on M, d, p, θ, �, ν1 and ν2.

To prove Lemma 3.1, we use the following two results. Lemma 3.2 gathers rather technical 
but important inequalities we keep using in this section.

Lemma 3.2.

(i) Let α + β > 0, β > 0, and γ > 0. Then for any a ≥ b > 0

∞∫
0

1(
a + √

t
)α (

b + √
t
)β+γ

t1− γ
2

dt ≤ C

aαbβ
,

where C = C(α, β, γ ).
(ii) Let σ > 0, α + γ > −d , γ > −1 and β, ν ∈ R. Then for any x ∈D,∫

D

|y|α
(|y| + 1)β

ρ(y)γ

(ρ(y) + 1)ν
e−σ |x−y|2dy ≤ C (|x| + 1)α−β (ρ(x) + 1)γ−ν ,

where C = C(M, d, α, β, γ, ν, σ).
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Proof. See Lemma 3.2 and Lemma 3.7 in [8]. �
For the operator L0, we take the constants K0, λ

+
c,L0

, λ−
c,L0

and the operator L̂0 from Defini-
tion 2.14.

Lemma 3.3. Let λ+ ∈ (
0, λ+

c,L0

)
and λ− ∈ (

0, λ−
c,L0

)
. Denote

K+
0 = K0(L0,M, λ+), K−

0 = K0(L̂0,M, λ−).

Then, there exist positive constants C = C(M, ν1, ν2, λ±, K±
0 ) and σ = σ(ν1, ν2) such that for 

any t > s and x, y ∈D(M), the estimates

(i) G(t, s, x, y) ≤ C

(t − s)d/2 Jt−s,x Jt−s,y Rλ+−1
t−s,x Rλ−−1

t−s,y e−σ
|x−y|2

t−s

(ii)
∣∣∇yG(t, s, x, y)

∣∣≤ C

(t − s)(d+1)/2
Jt−s,x Rλ+−1

t−s,x Rλ−−1
t−s,y e−σ

|x−y|2
t−s

hold, where

Rt,x := ρ◦(x)

ρ◦(x) + √
t
, Jt,x := ρ(x)

ρ(x) + √
t
.

In particular, if λ± ∈ (0, λc(ν1, ν2)), then C depends only on M, ν1, ν2, λ±.

Proof. (i) See inequality (2.8) in [7].
(ii) Denote Ĝ(t, s, x, y) = G(−s, −t, y, x). Then Ĝ is the Green’s function of the operator 

∂t − L̂0, where L̂0 := ∑
i,j αij (−t)Dij . Then by inequality (2.14) of [7] applied to Ĝ, for any 

λ+ ∈ (0, λ+
c ) and λ− ∈ (0, λ−

c ), there exist constant C, σ > 0, with the dependencies prescribed 
in the lemma, such that

|∇xĜ(t, s, x, y)| ≤ C

(t − s)(d+1)/2
Jt−s,yR

λ−−1
t−s,x Rλ+−1

t−s,y e−σ
|x−y|2

t−s

for any t > s and x, y ∈D. This and the fact ∇yG(t, s, x, y) = ∇xĜ(−s, −t, y, x) prove (ii). �
Since R(u0, f 0, f, g) = R(u0, 0, 0, 0) +R(0, f 0, f, 0) +R(0, 0, 0, g) with 0 as zero functions 

in their corresponding function spaces, we will treat these three parts separately in following three 
lemmas and then combine them to obtain the claim of Lemma 3.1. Especially, the stochastic part 
R(0, 0, 0, g) is important in this article and elaborated thoroughly in Lemma 3.7.

Lemma 3.4. Let p ∈ (1, ∞), and let θ ∈ R, � ∈R satisfy

p(1 − λ+
c,L0

) < θ < p(d − 1 + λ−
c,L0

) and d − 1 < � < d − 1 + p.

If u0 ∈ Lp(�; K0 (D)), then u = R(u0, 0, 0, 0) belongs to Lp,θ−p,�−p(D, T ) and
θ+2−p,�+2−p
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‖u‖Lp,θ−p,�−p(D,T ) ≤ C‖u0‖Lp(�;K0
θ+2−p,�+2−p(D))

holds, where C = C(M, d, p, θ, �, L0). Moreover, if

p
(
1 − λc(ν1, ν2)

)
< θ < p

(
d − 1 + λc(ν1, ν2)

)
, (3.4)

then the constant C depends only on M, d, p, θ, �, ν1 and ν2.

Proof. Green’s function itself is not random. Hence, recalling the definitions of R(u0, 0, 0, 0)

and L = K0, for simplicity we may assume that u0 and hence u are non-random and we just 
prove

T∫
0

∫
D

|ρ−1u|pρθ−�◦ ρ�−ddxdt ≤ N

∫
D

|ρ−1+ 2
p u0|pρθ−�◦ ρ�−ddx. (3.5)

1. Let us denote μ := −1 + (θ − d + 2)/p, α := −1 + (� − d + 2)/p, and

h(x) := ρ◦(x)μ−αρ(x)αu0(x).

Then the claimed estimate (3.5) turns into a simpler form of∥∥∥ρμ−α◦ ρ
α− 2

p u

∥∥∥
Lp([0,T ]×D)

≤ N‖h‖Lp(D). (3.6)

On the other hand, by the range of θ given in the condition, we can always find λ+ ∈ (
0, λ+

c,L0

)
and λ− ∈ (

0, λ−
c,L0

)
satisfying

−d − 2

p
− λ+ < μ <

d − 2

p
+ λ−. (3.7)

Also, by the given range of � we have

−1 + 1

p
< α <

1

p
. (3.8)

Hence, we can choose and fix the constants γ , β satisfying

0 < γ < λ− + d − 2

p
− μ, 0 < β <

1

p
− α.

Noting d−2
p

< d − d
p

, 1
p

< 2 − 1
p

which is due to condition p ∈ (1, ∞), we then have

0 < γ < λ− + d − d

p
− μ, 0 < β < 2 − 1

p
− α. (3.9)
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Moreover, as λ+ ∈ (0, λ+
c,L0

) and λ− ∈ (0, λ−
c,L0

), by Lemma 3.3 there exist constants C =
C(M, L0, ν1, ν2, λ±), σ = σ(ν1, ν2) > 0 such that

G(t,0, x, y) ≤ C t−
d
2 Rλ+−1

t,x Rλ−−1
t,y Jt,xJt,y e−σ

|x−y|2
t

= C t−
d
2 Rλ+−1

t,x Jt,x R
γ
t,y

(
Jt,y

Rt,y

)β

R
λ−−γ
t,y

(
Jt,y

Rt,y

)1−β

e−σ
|x−y|2

t (3.10)

holds for all t > s and x, y ∈ D. Let us prove estimate (3.6).

2. Using Hölder inequality and (3.10), we have

|u(t, x)| =
∣∣∣ ∫
D

G(t,0, x, y)u0(y)dy

∣∣∣
≤
∫
D

G(t,0, x, y)|y|−μ+αρ(y)−α|h(y)|dy

≤ C · I1(t, x) · I2(t, x),

where q = p/(p − 1); 1
p

+ 1
q

= 1,

I1(t, x) =
⎛⎝∫

D

t−
d
2 e−σ

|x−y|2
t · R(λ+−1)p

t,x J
p
t,x · K1(t, y) · |h(y)|pdy

⎞⎠1/p

,

and

I2(t, x) =
⎛⎝∫

D

t−
d
2 e−σ

|x−y|2
t · K2(t, y) · |y|(−μ+α)qρ−αq(y)dy

⎞⎠1/q

with

K1(t, y) = R
γp
t,y

(
Jt,y

Rt,y

)βp

, K2(t, y) = R
(λ−−γ )q
t,y

(
Jt,y

Rt,y

)(1−β)q

.

3. We show that there exists a constant C depending only on M, d, p, θ, �, ν1, ν2 and λ−
such that

I2(t, x) ≤ C
(
|x| + √

t
)−μ+α (

ρ(x) + √
t
)−α

.

This is done by Lemma 3.2 (ii). Indeed, by change of variables y/
√

t → y and the fact 
ρ(y)/

√
t = ρ(y/

√
t), we have
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I
q
2 (t, x) = t−

d
2

∫
D

e−σ
|x−y|2

t K2(t, y)|y|(−μ+α)q |ρ(y)|−αqdy

= t−μq/2
∫
D

e
−σ | x√

t
−y|2 |y|(λ−−μ−γ−1+α+β)q

(|y| + 1)(λ
−−γ−1+β)q

· ρ(y)(1−α−β)q

(ρ(y) + 1)(1−β)q
dy,

for which we can apply Lemma 3.2 since (3.9) implies (λ− −μ −γ )q > −d and (1 −α −β)q >

−1. Thus we get constant C = C(M, d, p, θ, �, λ−, σ) such that

I
q
2 (t, x) ≤ C

(
|x| + √

t
)(−μ+α)q (

ρ(x) + √
t
)−αq

holds for all t, x.

4. To prove estimate (3.6), by Step 3 we first note

|x|μ−αρ(x)
α− 2

p · |u(t, x)| ≤ C |x|μ−αρ(x)
α− 2

p · I1(t, x) · I2(t, x)

≤ C ρ(x)−2/pR
μ−α
t,x J α

t,x · I1(t, x)

for any t, x. Using this and Fubini’s Theorem, we have

‖ρμ−α◦ ρ
α− 2

p u‖p

Lp([0,T ]×D)
≤ C

T∫
0

∫
D

|ρ(x)|−2
(
R

μ−α
t,x J α

t,x I1(t, x)
)p

dxdt

= C

∫
D

I3(y) · |h(y)|pdy,

where

I3(y) =
T∫

0

t−
d
2 K1(t, y)

⎛⎝∫
D

e−σ
|x−y|2

t R
(λ++μ−α−1)p
t,x J

(α+1)p
t,x ρ(x)−2 dx

⎞⎠dt.

Since (3.7) and (3.8) imply (λ+ + μ)p − 2 > −d and (α + 1)p − 2 > −1, by change of 
variables x/

√
t → x, the fact ρ(x)/

√
t = ρ(x/

√
t), and Lemma 3.2 (ii), we have

I3(y) =
T∫

0

1

t
K1(t, y)

∫
D

e
−σ |x− y√

t
|2 |x|(λ++μ−α−1)p

(|x| + 1)(λ
++μ−α−1)p

ρ(x)(α+1)p−2

(ρ(x) + 1)(α+1)p
dx dt

≤ C

∞∫
0

K1(t, y)
(
ρ(y) + √

t
)−2

dt

= C

∞∫ |y|(γ−β)p(|y| + √
t
)(γ−β)p

· ρ(y)βp(
ρ(y) + √

t
)βp+2 dt.
0
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Lastly, owing to γp > 0, βp > 0, and the fact |y| ≥ ρ(y) in D, we can apply Lemma 3.2 (i) and 
we obtain

I3(y) ≤ C(M, d,p, θ,�,ν1, ν2, λ
±).

Hence, there exists a constant C having the dependency described in the lemma such that∥∥∥ρμ−α◦ ρ
α− 2

p u

∥∥∥p

Lp([0,T ]×D)
≤ C‖h‖p

Lp(D)
.

Estimate (3.6) and the lemma are proved.

5. When θ obeys (3.4), we choose λ± in the interval (0, λc(ν1, ν2)). Then the constant C of 
Green’s function estimates in Lemma 3.3 depends only on M, ν1, ν2, λ±. Therefore, in particu-
lar, constant C in (3.10) does not depend on L0. Tracking the constants down through Steps 1, 2, 
3, 4, we note that the constant in (3.6) does not depend on the particular operator L0. Rather, it 
depends on ν1, ν2 and hence C = C(M, d, p, θ, �, ν1, ν2). �
Remark 3.5. For γ ≥ 0, ‖u‖Lp(Rd ) ≤ ‖u‖H

γ
p (Rd ) is a basic property of the space of Bessel po-

tentials. This with Lemma 2.5 and Definition 2.4, in the context of Lemma 3.4, yields

‖u0‖Lp(�;K0
θ+2−p,�+2−p(D)) ≤ ‖u0‖Lp(�;K1−2/p

θ+2−p,�+2−p(D))
= ‖u0‖U1

p,θ,�(D)

if p ≥ 2.

Lemma 3.6. Let p ∈ (1, ∞) and let θ ∈R, � ∈ R satisfy

p
(
1 − λ+

c,L0

)
< θ < p

(
d − 1 + λ−

c,L0

)
and d − 1 < � < d − 1 + p.

If f 0 ∈ Lp,θ+p,�+p(D, T ), f ∈ Ld
p,θ,�(D, T , d), then u := R(0, f 0, f, 0) belongs to

Lp,θ−p,�−p(D, T ) and the estimate

‖u‖Lp,θ−p,�−p(D,T ) ≤ C
(‖f 0‖Lp,θ+p,�+p(D,T ) + ‖f‖Lp,θ,�(D,T ,d)

)
holds, where C = C(M, d, p, θ, �, L0). Moreover, if

p (1 − λc(ν1, ν2)) < θ < p (d − 1 + λc(ν1, ν2)) ,

then the constant C depends only on M, d, p, θ, �, ν1 and ν2.

Proof. By the same reason explained in the beginning of the proof of Lemma 3.4, we can assume 
f 0, f, and hence u are non-random and we just prove

T∫
0

∫
D

|ρ−1u|pρθ−�
0 ρθ−ddxdt ≤ C

T∫
0

∫
D

(|ρ f |p + |f|p)ρθ−�
0 ρθ−ddxdt. (3.11)
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Furthermore, when f = 0 estimate (3.11) is already proved in [8, Lemma 3.1], the deterministic 
counterpart of this article. Hence, we may assume f 0 = 0. Finally, for simplicity we further 
assume f 2 = · · · = f d = 0.

1. We denote μ := (θ − d)/p and α := (� − d)/p and set

h(t, x) = ρμ−α◦ (x)ρα(x)f 1(t, x).

Then (3.11) turns into

∥∥∥ρμ−α
0 ρα−1u

∥∥∥
Lp([0,T ]×D)

≤ C‖h‖Lp([0,T ]×D). (3.12)

We prepare a few things as we did in Step 1 of the proof of Lemma 3.4. By the range of θ
given in the statement, we can find λ+ ∈ (0, λ+

c,L0
) and λ− ∈ (0, λ−

c,L0
) satisfying

1 − d

p
− λ+ < μ < d − 1 − d

p
+ λ−.

Also, by the range of � given we have

− 1

p
< α < 1 − 1

p
.

Then we can choose and fix the constants γ1, γ2, β1 and β2 satisfying

−d − 1

p
< γ1 < λ+ − 1 + μ + 1

p
, 0 < γ2 < λ− + d − 1 − d

p
− μ

0 < β1 < α + 1

p
, 0 < β2 < 1 − 1

p
− α. (3.13)

Moreover, since λ+ ∈ (0, λ+
c ) and λ− ∈ (0, λ−

c ), by Lemma 3.3 there exist constants C =
C(M, L0, ν1, ν2, λ±), σ = σ(ν1, ν2) > 0 such that

|∇yG(t, s, x, y)| ≤ C

(t − s)(d+1)/2
e−σ

|x−y|2
t−s Jt−s,xR

λ+−1
t−s,x Rλ−−1

t−s,y

= C

(t − s)(d+1)/2
e−σ

|x−y|2
t−s R

γ1
t−s,x

(
Jt−s,x

Rt−s,x

)β1

R
γ2
t−s,y

(
Jt−s,y

Rt−s,y

)β2

× R
λ+−γ1
t−s,x

(
Jt−s,x

Rt−s,x

)1−β1

R
λ−−1−γ2
t−s,y

(
Jt−s,y

Rt−s,y

)−β2

(3.14)

holds for all t > s and x, y ∈ D. Now, we start proving (3.12).
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2. By Hölder inequality and (3.14), we have

|u(t, x)| =
∣∣∣ t∫

0

∫
D

Gy1(t, s, x, y)f 1(s, y)dyds

∣∣∣
≤

t∫
0

∫
D

|∇yG(t, s, x, y)| · |y|−μ+αρ(y)−α|h(s, y)|dyds

≤ C I1(t, x) · I2(t, x), (3.15)

where q = p/(p − 1),

I1(t, x)

=
⎛⎝ t∫

0

∫
D

1

(t − s)(d+1)/2
e−σ

|x−y|2
t−s K1,1(t − s, x)K1,2(t − s, y)|h(s, y)|pdyds

⎞⎠1/p

and

I2(t, x)

=
⎛⎝ t∫

0

∫
D

1

(t − s)(d+1)/2
e−σ

|x−y|2
t−s K2,1(t − s, x)K2,2(t − s, y)|y|(−μ+α)qραq(y)dyds

⎞⎠1/q

with

K1,1(t, x) = R
γ1p
t,x

(
Jt,x

Rt,x

)β1p

, K1,2(t, y) = R
γ2p
t,y

(
Jt,y

Rt,y

)β2p

,

K2,1(t, x) = R
(λ+−γ1)q
t,x

(
Jt,x

Rt,x

)(1−β1)q

, K2,2(t, y) = R
(λ−−1−γ2)q
t,y

(
Jt,y

Rt,y

)−β2q

.

3. We show that there exists a constant C = C(M, d, p, θ, �, ν1, ν2) > 0 such that

I2(t, x) ≤ C|x|−μ+αρ(x)
−α+ 1

q (3.16)

holds for all t, x; we note that the right hand side is independent of t .
First, by change of variables y/

√
t − s → y and Lemma 3.2 (ii), which we can apply since 

(3.13) gives (λ− − 1 − μ − γ2)q > −d and (−α − β2)q > −1, we have

1

(t − s)(d+1)/2

∫
e−σ

|x−y|2
t−s K2,2(t − s, y)|y|(−μ+α)q |ρ(y)|−αqdy
D
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= (t − s)−(μq+1)/2
∫
D

e
−σ | x√

t−s
−y|2 |y|(λ−−μ−1−γ2+α+β2)q

(|y| + 1)(λ
−−1−γ2+β2)q

· ρ(y)(−α−β2)q

(ρ(y) + 1)−β2q
dy

≤ C(t − s)−1/2 (|x| + √
t − s

)(−μ+α)q (
ρ(x) + √

t − s
)−αq

,

where C = C(M, d, p, θ, �, ν1, ν2). Using this, we have

I
q

2 (t, x)

≤ C

t∫
0

K2,1(t − s, x) · (t − s)−1/2 (|x| + √
t − s

)(−μ+α)q (
ρ(x) + √

t − s
)−αq

ds

≤ C

t∫
−∞

|x|(λ+−1−γ1+β1)q

(|x| + √
t − s)(λ

+−1+μ−α−γ1+β1)q
· ρ(x)(1−β1)q

(ρ(x) + √
t − s)(1+α−β1)q

· 1

(t − s)1/2 ds.

Then, the change of variable t − s → s and Lemma 3.2 (i), which we can apply since we have 
(λ+ + μ − γ1)q > 1 and (1 + α − β1)q > 1 from (3.13), we further obtain

I
q
2 (t, x) ≤ C|x|(−μ+α)qρ(x)−αq+1,

which is equivalent to (3.16).

4. Now, by (3.16) and (3.15) we have

|u(t, x)| ≤ C I1(t, x) · I2(t, x) ≤ C |x|−μ+αρ(x)
−α+ 1

q I1(t, x)

and hence

‖ρμ−α
0 ρα−1u‖p

Lp([0,T ]×D)
≤ C

T∫
0

∫
D

|ρ(x)|−1I
p
1 (t, x) dxdt

= C

T∫
0

∫
D

I3(s, y) · |h(s, y)|pdyds,

where

I3(s, y) =
T∫

s

∫
D

1

(t − s)(d+1)/2
e−σ

|x−y|2
t−s K1,1(t − s, x)K1,2(t − s, y)ρ(x)−1 dxdt.

By change of variables t − s → t followed by x/
√

t → x and Lemma 3.2 (ii) with γ1p −1 > −d

and β1p − 1 > −1 from (3.13), we have
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I3(s, y) =
T∫

s

1

(t − s)(d+1)/2
K1,2(t − s, y)

⎛⎝∫
D

e−σ
|x−y|2

t−s K1,1(t − s, x)ρ(x)−1 dx

⎞⎠dt

≤
∞∫

0

1

t
K1,2(t, y)

⎛⎝∫
D

|x|(γ1−β1)p

(|x| + 1)(γ1−β1)p

ρ(x)β1p−1

(ρ(x) + 1)β1p
e
−σ |x− y√

t
|2

dx

⎞⎠dt

≤ C

∞∫
0

K1,2(t, y)
(
ρ(y) + √

t
)−1

t−1/2dt

= C

∞∫
0

|y|(γ2−β2)p(|y| + √
t
)(γ2−β2)p

· ρ(y)β2p(
ρ(y) + √

t
)β2p+1 · 1

t1/2 dt.

Lastly, due to γ2p > 0 and ν2p > 0, Lemma 3.2 (i) yields

I3(s, y) ≤ C(M, d,p, θ,�,ν1, ν2).

Hence, there exists a constant C having the dependency described in the lemma such that∥∥∥ρμ−α◦ ρα−1u

∥∥∥p

Lp([0,T ]×D)
≤ C‖h‖p

Lp([0,T ]×D)
.

(3.12) and the lemma are proved.

5. The last part of the claim related to the range of θ holds by the same reason explained in 
Step 5 of the proof of Lemma 3.4. �

Now, we move on to the stochastic part, the most important and involved one.

Lemma 3.7. Let p ∈ [2, ∞) and let θ ∈R, � ∈ R satisfy

p(1 − λ+
c,L0

) < θ < p(d − 1 + λ−
c,L0

) and d − 1 < � < d − 1 + p.

If g ∈ Lp,θ,�(D, T , 	2), then u := R(0, 0, 0, g) belongs to Lp,θ−p,�−p(D, T ) and the estimate

‖u‖Lp,θ−p,�−p(D,T ) ≤ C‖g‖Lp,θ,�(D,T ,	2) (3.17)

holds, where C = C(M, d, p, θ, �, L0). Moreover, if

p
(
1 − λc(ν1, ν2)

)
< θ < p

(
d − 1 + λc(ν1, ν2)

)
,

then the constant C depends only on M, d, p, θ, �, ν1, and ν2.

Proof. 1. Again, we denote μ := (θ − d)/p and α := (� − d)/p. We put h(ω, t, x) =
ρ

μ−α◦ (x)ρ(x)αg(ω, t, x) and recall
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�T = � × (0, T ], Lp(�T ×D) := Lp(�T ×D, dPdtdx).

Then (3.17) is the same as∥∥ρμ−α◦ ρα−1u
∥∥p

Lp(�T ×D)
≤ C

∥∥|h|	2

∥∥p

Lp(�T ×D)
. (3.18)

As we did in the proof of Lemma 3.6, we prepare few things. By the range of θ given, we can 
find constants λ+ ∈ (0, λ+

c,L0
) and λ− ∈ (0, λ−

c,L0
) satisfying

1 − d

p
− λ+ < μ < d − d

p
+ λ−.

Also, by the range of � we have

− 1

p
< α < 1 − 1

p
.

Then we can choose and fix the constants γ1, γ2, β1, and β2 satisfying

−d − 2

p
< γ1 < λ+ − 1 + μ + 2

p
, 0 < γ2 < λ− + d − d

p
− μ

1

p
< β1 < α + 2

p
, 0 < β2 < 2 − 1

p
− α. (3.19)

Further, by Lemma 3.3 there exist constants C = C(M, L0, ν1, ν2, λ±), σ = σ(ν1, ν2) > 0 >
0 such that for any t > s and x, y ∈ D,

G(t, s, x, y) ≤ C

(t − s)d/2 e−σ
|x−y|2

t−s Jt−s,x Jt−s,y Rλ+−1
t−s,x Rλ−−1

t−s,y

=C (t − s)−d/2e−σ
|x−y|2

t−s R
γ1
t−s,x

(
Jt−s,x

Rt−s,x

)β1

R
γ2
t−s,y

(
Jt−s,y

Rt−s,y

)β2

× R
λ+−γ1
t−s,x

(
Jt−s,x

Rt−s,x

)1−β1

R
λ−−γ2
t−s,y

(
Jt−s,y

Rt−s,y

)1−β2

(3.20)

holds.

2. We first estimate the p-th moment E|u(t, x)|p for any given t and x. Using Burkholder-
Davis-Gundy inequality and Minkowski’s integral inequality, we have

E|u(t, x)|p = E
∣∣∣∑
k∈N

t∫
0

∫
D

G(t, s, x, y)gk(s, y)dydwk
s

∣∣∣p

≤ CE

⎛⎜⎝ t∫ ∑
k∈N

⎛⎝∫
G(t, s, x, y)gk(s, y)dy

⎞⎠2

ds

⎞⎟⎠
p/2
0 D
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≤ CE

⎛⎜⎝ t∫
0

⎛⎝∫
D

G(t, s, x, y)|g(s, y)|	2dy

⎞⎠2

ds

⎞⎟⎠
p/2

= CE

⎛⎜⎝ t∫
0

⎛⎝∫
D

G(t, s, x, y)|y|−μ+αρ(y)−α|h(s, y)|	2dy

⎞⎠2

ds

⎞⎟⎠
p/2

.

We denote

I (ω, t, x) :=
⎛⎜⎝ t∫

0

⎛⎝∫
D

G(t, s, x, y)|y|−μ+αρ(y)−α|h(ω, s, y)|	2dy

⎞⎠2

ds

⎞⎟⎠
1/2

.

Then, using (3.20) and applying Hölder inequality twice for x and then t , we get

I (ω, t, x) ≤ C

⎛⎝ t∫
0

(∫
D

I1 · I2 dy
)2

ds

⎞⎠1/2

(3.21)

≤ C‖I1(ω, t, ·, x, ·)‖Lp((0,t)×D,ds dy)

∥∥∥‖I2(t, ·, x, ·)‖Lq(D,dy)

∥∥∥
Lr((0,t),ds)

where q = p
p−1 , r = 2p

p−2 (= ∞ if p = 2),

I
p

1 (ω, t, s, x, y) (3.22)

= (t − s)−d/2e−σ
|x−y|2

t−s

(
R

γ1
t−s,x

(
Jt−s,x

Rt−s,x

)β1

R
γ2
t−s,y

(
Jt−s,y

Rt−s,y

)β2
)p

|h(ω, s, y)|p	2

= (t − s)−d/2e−σ
|x−y|2

t−s K1,1(t − s, x)K1,2(t − s, y) |h(ω, s, y)|p	2
,

and

I
q

2 (t, s, x, y)

= (t − s)−d/2e−σ
|x−y|2

t−s

×
(

R
λ1−γ1
t−s,x

(
Jt−s,x

Rt−s,x

)1−β1

R
λ2−γ2
t−s,y

(
Jt−s,y

Rt−s,y

)1−β2
)q

|y|(−μ+α)qρ(y)−αq

= (t − s)−d/2e−σ
|x−y|2

t−s K2,1(t − s, x)K2,2(t − s, y) |y|(−μ+α)qρ(y)−αq,

with
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K1,1(t, x) = R
γ1p
t,x

(
Jt,x

Rt,x

)β1p

, K1,2(t, y) = R
γ2p
t,y

(
Jt,y

Rt,y

)β2p

,

K2,1(t, x) = R
(λ+−γ1)q
t,x

(
Jt,x

Rt,x

)(1−β1)q

, K2,2(t, y) = R
(λ−−γ2)q
t,y

(
Jt,y

Rt,y

)(1−β2)q

.

Note, by (3.21) we have

E|u(t, x)|p ≤ CEIp(t, x) (3.23)

≤ C

∥∥∥‖I2(t, ·, x, ·)‖Lq(D,dy)

∥∥∥p

Lr((0,t),ds)
E‖I1(ω, t, ·, x, ·)‖p

Lp((0,t)×D,ds dy)
.

3. In this step we will show that there exists a constant C = C(M, d, p, θ, �, ν1, ν2) > 0 such 
that ∥∥‖I2(t, ·, x, ·)‖Lq(D,dy)

∥∥
Lr((0,t),ds)

≤ C|x|−μ+αρ(x)−α+1−2/p. (3.24)

In particular, the right hand side is independent of t .

Case 1. Assume p = 2 (hence, q = 2 and r = ∞). First, we consider∫
D

I 2
2 (t, s, x, y) dy

= K2,1(t − s, x) · 1

(t − s)d/2

∫
D

e−σ
|x−y|2

t−s K2,2(t − s, y)|y|2(−μ+α)|ρ(y)|−2α dy.

Since 2(λ− − μ − γ2) > −d and 2(1 − α − β2) > −1 from (3.19), by change of variables 
y/

√
t − s → y and Lemma 3.2 (ii), we have

1

(t − s)d/2

∫
D

e−σ
|x−y|2

t−s K2,2(t − s, y)|y|2(−μ+α)|ρ(y)|−2α dy

= (t − s)−μ

∫
D

e
−σ | x√

t−s
−y|2 |y|2(λ−−μ−γ2−1+α+β2)

(|y| + 1)2(λ−−γ2−1+β2)
· ρ(y)2(1−α−β2)

(ρ(y) + 1)2(1−β2)
dy

≤ C
(|x| + √

t − s
)2(−μ+α) (

ρ(x) + √
t − s

)−2α
.

Hence, we have

sup
s∈[0,t]

⎛⎝∫
D

I 2
2 dy

⎞⎠1/2

≤ C sup
(
K2,1(t − s, x) · (|x| + √

t − s
)2(−μ+α) (

ρ(x) + √
t − s

)−2α
)1/2
s∈[0,t]
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= C sup
s∈[0,t]

(
|x|λ+−1−γ1+β1

(|x| + √
t − s)λ

+−1+μ−γ1−α+β1
· ρ(x)1−β1

(ρ(x) + √
t − s)α+1−β1

)

= C |x|−μ+αρ(x)−α sup
s∈[0,t]

(
R

λ+−1+μ−γ1
t−s,x

(
Jt−s,x

Rt−s,x

)α+1−β1
)

≤ C |x|−μ+αρ(x)−α

due to λ+ − 1 + μ − γ1 > 0, α + 1 − β1 > 0 and 0 ≤ Jt−s,x ≤ Rt−s,x ≤ 1. Thus (3.24) holds.

Case 2. Let p > 2. Again, since (λ− − μ − γ2)q > −d and (1 − α − β2)q > −1, by change 
of variables and Lemma 3.2 (ii), we observe

1

(t − s)d/2

∫
D

e−σ
|x−y|2

t−s K2,2(t − s, y)|y|(−μ+α)qρ(y)−αqdy

= (t − s)−μq/2
∫
D

e
−σ | x√

t−s
−y|2 |y|(λ−−μ−γ2−1+α+β2)q

(|y| + 1)(λ
−−γ2−1+β2)q

· ρ(y)(1−α−β2)q

(ρ(y) + 1)(1−β2)q
dy

≤C
(|x| + √

t − s
)(−μ+α)q (

ρ(x) + √
t − s

)−αq
.

Hence, we have

t∫
0

‖I2(t, s, x, ·)‖r
Lq(D,dy)ds

≤C

t∫
0

{
K2,1(t − s, x) · (|x| + √

t − s
)(−μ+α)q (

ρ(x) + √
t − s

)−αq
}r/q

ds

=C

t∫
0

|x|(λ+−1−γ1+β1)r

(|x| + √
t − s)(λ

+−1+μ−γ1−α+β1)r
· ρ(x)(1−β1)r

(ρ(x) + √
t − s)(α+1−β1)r

ds .

Moreover, since (3.19) also gives 
(
λ+ + μ − γ1

)
r > 2 and (α + 1 − β1) r > 2, using Lemma 3.2

we again obtain

∥∥‖I2(t, ·, x, ·)‖Lq(dy;D)

∥∥
Lr((0,t),ds)

=
⎛⎝ t∫

0

‖I2‖r
Lq(D,dy)ds

⎞⎠1/r

≤ C|x|−μ+αρ(x)−α+1−2/p.

4. Now, by (3.23) and (3.24) we have

E
∣∣|x|μ−αρ(x)α−1u(t, x)

∣∣p
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≤ C
(|x|μ−αρ(x)α−1)p ·E

t∫
0

∫
D

I
p
1 (t, s, x, y)dy ds · (|x|−μ+αρ(x)−α+1−2/p

)p

= C ρ(x)−2 E

t∫
0

∫
D

I
p

1 (t, s, x, y)dy ds.

Therefore, taking integrations with respect to x and t , using Fubini theorem and recalling (3.22), 
we have

E‖ρμ−α
0 ρα−1u‖p

Lp(�T ×D)
≤ CE

T∫
0

∫
D

t∫
0

∫
D

|ρ(x)|−2I
p

1 dyds dxdt

= CE

T∫
0

∫
D

I3(s, y) · |h(s, y)|p	2
dyds, (3.25)

where

I3(s, y) :=
T∫

s

∫
D

1

(t − s)d/2 e−σ
|x−y|2

t−s K1,1(t, s, x, y)K1,2(t, s, x, y)ρ(x)−2 dxdt.

Since (3.19) also implies γ1p − 2 > −d and β1p − 2 > −1, by change of variables T − t → t

followed by x/
√

t → t and Lemma 3.2 (ii), we have

I3(s, y) =
T∫

s

1

(t − s)d/2 K1,2(t − s, y)

⎛⎝∫
D

e−σ
|x−y|2

t−s K1,1(t − s, x)ρ(x)−2 dx

⎞⎠dt

≤
∞∫

0

1

t
K1,2(t, y)

⎛⎝∫
D

|x|(γ1−β1)p

(|x| + 1)(γ1−β1)p

ρ(x)β1p−2

(ρ(x) + 1)β1p
e
−σ ′|x− y√

t
|2

dx

⎞⎠dt

≤ C

∞∫
0

K1,2(t, y)
(
ρ(y) + √

t
)−2

dt

= C

∞∫
0

|y|(γ2−β2)p(|y| + √
t
)(γ2−β2)p

· ρ(y)β2p(
ρ(y) + √

t
)β2p+2 dt.

Hence, by Lemma 3.2 (i) with the conditions γ2p > 0 and β2p > 0, we finally get

I3(s, y) ≤ C(M, d,p, θ,�,ν1, ν2).

This and (3.25) lead to (3.18) and the lemma is proved.
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5. Again, the last part of the claim related to the range of θ holds by the same reason explained 
in Step 5 of the proof of Lemma 3.4. �
4. Proof of Theorems 2.19 and 2.21

In this section we prove Theorems 2.19 and 2.21, following the strategy below:

1. A priori estimate and the uniqueness:

- In Lemma 4.2 below, we first prove that for any solution u ∈Kγ+2
p,θ,�(D, T ) to equation (2.2)

equipped with the general operator L =∑d
i,j=1 aij (ω, t)Dij , we have

‖u‖Kγ+2
p,θ,�(D,T )

≤ C
(‖u‖Lp,θ−p,�−p(D,T ) + norms of the free terms

)
. (4.1)

- If L is non-random, we estimate ‖u‖Lp,θ−p,�−p(D,T ) based on Lemma 3.1.
- To treat the SPDE with random coefficients, we introduce a SPDE having non-random coef-

ficients and the same free terms f 0, f, g, u0. Then we prove a priori estimate for the original 
SPDE based on the fact that the difference between the new SPDE and the original SPDE 
becomes a PDE (with random coefficients).

- The uniqueness of solution to the original SPDE follows from the uniqueness result of PDEs.

2. The existence:

- If the coefficients of L are non-random, we use the representation formula.
- For general case, we use the method of continuity with the help of the a priori estimate.

Now we start our proofs. The following lemma is what we meant in (4.1). We emphasize that 
the lemma holds for any θ, � ∈R and the condition ∂M ∈ C2 is not needed in the proof.

Lemma 4.1. Let p ∈ [2, ∞), γ, μ, θ, � ∈ R, μ < γ , and the diffusion coefficients aij =
aij (ω, t) satisfy Assumption 2.2. Assume that f 0 ∈ Kγ

p,θ+p,�+p(D, T ), f = (f 1, · · · , f d) ∈
Kγ+1

p,θ,�(D, T , d), g ∈ Kγ+1
p,θ,�(D, T , 	2), u(0, ·) ∈ Uγ+2

p,θ,�(D), and u ∈ Kμ+2
p,θ−p,�−p(D, T ) sat-

isfies

du = (Lu + f 0 +
d∑

i=1

f i
xi ) dt +

∞∑
k=1

gkdwk
t , t ∈ (0, T ] (4.2)

in the sense of distributions on D. Then u ∈ Kγ+2
p,θ−p,�−p(D, T ), hence u ∈ Kγ+2

p,θ,�(D, T ), and 
the estimate

‖u‖
Kγ+2

p,θ−p,�−p(D,T )
≤ C

(
‖u‖

Kμ+2
p,θ−p,�−p(D,T )

+ ‖f 0‖Kγ
p,θ+p,�+p(D,T )

+ ‖f‖
Kγ+1

p,θ,�(D,T ,d)
+ ‖g‖

Kγ+1
p,θ,�(D,T ,	2)

+ ‖u(0, ·)‖
Uγ+2

p,θ,�(D)

)
holds with C = C(M, p, n, θ, �, ν1, ν2).
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The proof of Lemma 4.1 is based on the following result on Rd .

Lemma 4.2. Let p ∈ [2, ∞), γ ∈ R, and Assumption 2.2 hold. Assume f ∈ Hγ
p(T ), g ∈

Hγ+1
p (T , 	2), u(0, ·) ∈ Lp(�; Hγ+2−2/p

p ), and u ∈Hγ+1
p (T ) satisfies

du = (Lu + f )dt +
∞∑

k=1

gkdwk
t , t ∈ (0, T ]

in the sense of distributions on the whole space Rd . Then u ∈Hγ+2
p (T ) and

‖u‖
Hγ+2

p (T )
≤ C

(
‖u‖

Hγ+1
p (T )

+‖f ‖Hγ
p(T ) + ‖g‖

Hγ+1
p (T ,	2)

+ ‖u(0, ·)‖
Lp(�;Hγ+2−2/p

p )

)
, (4.3)

where C = C(d, p, ν1, ν2) is independent of T .

Proof. 1. First, we consider the case u(0, ·) ≡ 0. Then, by e.g. [17, Theorem 4.10], u ∈Hγ+2
p (T )

and

‖uxx‖Hγ
p(T ) ≤ C(d,p, ν1, ν2)(‖f ‖Hγ

p(T ) + ‖g‖
Hγ+1

p (T ,	2)
).

This and the inequality

‖u‖
Hγ+2

p (T )
≤ (‖uxx‖Hγ

p(T ) + ‖u‖Hγ
p(T ))

together with the inequality ‖u‖Hγ
p(T ) ≤ ‖u‖

Hγ+1
p (T )

, which due to a basic property of the space 

of Bessel potentials, yield the claim of the lemma.

2. For the case of general u(0, ·) �≡ 0, we use the solution v = v(ω, t, x) to the equation

dv = Lv dt, t ∈ (0, T ]
with v(ω, 0, ·) = u(ω, 0, ·) for all ω ∈ � (see [17, Theorem 5.2]). From a classical theory of 
PDE, which we apply for each ω, we have

‖v‖
Hγ+2

p (T )
≤ C‖u0‖Lp(�;Hγ+2−2/p

p )
.

Then for the function u − v, which has zero initial condition, we can apply Step 1 and we obtain 
estimate (4.3) for u simply by triangle inequality. �
Proof of Lemma 4.1. We first note that we only need to consider the case μ = γ − 1. Indeed, 
suppose that the lemma holds true if μ = γ − 1. Now let μ = γ − n, n ∈ N . Then applying the 
result for μ′ = γ − k and γ ′ = μ′ + 1 with k = n, n − 1, · · · , 1 in order, we get the claim when 
μ = γ −n. Now suppose that the difference between γ and μ is not an integer, i.e. γ −μ = n +δ, 
n = 0, 1, 2, · · · and δ ∈ (0, 1). Then, since μ > γ − (n + 1) =: μ′ and ‖ · ‖

Kμ′+2
(D,T )

≤ ‖ ·

p,θ−p,�−p
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‖
Kμ+2

p,θ−p,�−p(D,T )
, we conclude that our assumption holds for μ′, that is, u ∈Kμ′+2

p,θ−p,�−p(D, T ). 

Therefore, the case γ − μ /∈N is also covered by what we just discussed.
Now we prove the lemma when μ = γ − 1, i.e. u ∈ Kγ+1

p,θ−p,�−p(D, T ). As usual, we omit 
the argument ω for the simplicity of presentation.

1. For u ∈Kγ+1
p,θ−p,�−p(D, T ), put

ξ(x) = |x|(θ−�)/p, v := ξu, f := f 0 +
d∑

i=1

f i
xi , v0 := ξu0.

Using Definition 2.4, Definition 2.3, and the change of variables t → e2nt , we have

‖u‖p

Kγ+2
p,�−p,�−p(D,T )

= ‖v‖p

Hγ+2
p,�−p(D,T )

=
∑
n∈Z

en(�−p)‖ζ(e−nψ(en·))v(·, en·)‖p

Hγ+2
p (T )

=
∑
n∈Z

en(�−p+2)‖ζ(e−nψ(en·))v(e2n·, en·)‖p

Hγ+2
p (e−2nT )

. (4.4)

For each n ∈Z, we denote

vn(t, x) := ζ(e−nψ(enx))v(e2nt, enx), v0,n(x) = ζ(e−nψ(enx))v0(e
nx).

Then using equation (4.2) and the product rule of differentiation, one can easily check that vn

satisfies

dvn = (Lnvn + fn)dt +
∞∑

k=1

gk
ndw

n,k
t t ∈ (0, e−2nT ]

in the sense of distributions on Rd with the initial condition vn(0, ·) = v0,n(·), where

Ln :=
∑
i,j

a
ij
n (t)Dij , a

ij
n (t) := aij (e2nt),

gk
n(t, x) := enζ(e−nψ(enx))ξ(enx)gk(e2nt, enx), w

n,k
t := e−nwk

e2nt
,

and, with Einstein’s summation convention with respect to i, j ,

fn(t, x) := e2nζ(e−nψ(enx))ξ(enx)f (e2nt, enx)

+ena
ij
n (t)Diu(e2nt, enx)ζ ′(e−nψ(enx))Djψ(enx)ξ(enx)

+e2na
ij
n (t)Diu(e2nt, enx)ζ(e−nψ(enx))Dj ξ(enx)

+ena
ij
n (t)u(e2nt, enx)ζ ′(e−nψ(enx))Diψ(enx)Djξ(enx)

+e2na
ij
n (t)u(e2nt, enx)ζ(e−nψ(enx))Dij ξ(enx)
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+a
ij
n (t)u(e2nt, enx)ζ ′′(e−nψ(enx))Diψ(enx)Djψ(enx)ξ(enx)

+ena
ij
n (t)u(e2nt, enx)ζ ′(e−nψ(enx))Dijψ(enx)

=:
7∑

l=1

f l
n(t, x).

Here, ζ ′ and ζ ′′ denote the first and second derivative of ζ , respectively. We note that for each 
n ∈ Z, the operator Ln still satisfies the uniform parabolicity condition (2.3) and {wn,k

t : k ∈ N}
is a sequence of independent Brownian motions. Hence, we can apply Lemma 4.2 and from (4.4)
we get

‖u‖p

Kγ+2
p,θ−p,�−p(D,T )

≤ C
∑
n∈Z

en(�−p+2)‖vn‖p

Hγ+1
p (e−2nT )

+C

7∑
l=1

∑
n∈Z

en(�−p+2)‖f l
n‖p

Hγ
p(e−2nT )

+C
∑
n∈Z

en(�−p+2)‖gn‖p

Hγ+1
p (e−2nT ,	2)

+C
∑
n∈Z

en(�−p+2)‖v0,n‖p

Lp(�;Hγ+2−2/p
p )

(4.5)

provided that

vn ∈Hγ+1
p (e−2nT ), f l

n ∈ Hγ
p(e−2nT ), gn ∈ Hγ+1

p (e−2nT , 	2), (l = 1, . . . ,7). (4.6)

It turns out that the claims in (4.6) hold true. Indeed, the change of variable e2nt → t and Defi-
nition 2.4 yield∑

k∈Z
en(�−p+2)‖vn‖p

Hγ+1
p (e−2nT )

=
∑
n∈Z

en(�−p)‖ζ(enψ(en·))v(·, en·)‖p

Hγ+1
p (T )

= ‖u‖p

Kγ+1
p,θ−p,�−p(D,T )

(4.7)

and ∑
n∈Z

en(�−p+2)‖gn‖p

Hγ+1
p (e−2nT ,	2)

=
∑
n∈Z

en�‖ζ(enψ(en·))ξ(en·)g(·, en·)‖p

Hγ+1
p (T ,	2)

= ‖g‖p

Kγ+1
p,θ,�(D,T ,	2)

. (4.8)

In particular,

vn ∈ Hγ+1
p (e−2nT ), gn ∈Hγ+1

p (e−2nT , 	2), ∀n ∈Z.
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Next, we show that f l
n belong to Hγ

p(e−2nT ) in the following manner. For l = 1, by Definition 2.4
and the change of variables e2nt → t , we have∑

n∈Z
en(�−p+2)‖f 1

n ‖p

Hγ
p(e−2nT )

=
∑
n∈Z

en(�+p)‖ζ(e−nψ(en·))ξ(en·)f (e2n·, en·)‖p

Hγ
p(T )

= ‖f ‖p

Kγ
p,θ+p,�+p(D,T )

.

For l = 2, by Definition 2.4 and (2.15), we get∑
n∈Z

en(�−p+2)‖f 2
n ‖p

Hγ
p(e−2nT )

≤ C
∑
n∈Z

∑
i,j

en�‖Diu(·, en·)ζ ′(e−nψ(en·))ξ(en·)Djψ(en·)‖p

Hγ
p(T )

≤ C‖ψxξux‖p

Hγ
p,�(D,T )

= N‖ψxux‖p

Kγ
p,θ,�(D,T )

≤ C‖ux‖p

Kγ
p,θ,�(D,T )

≤ C‖u‖p

Kγ+1
p,θ−p,�−p(D,T )

,

where the last two inequalities are due to (2.8), (2.17), and (2.18). For l = 3, by definitions of 
norms, we have ∑

n∈Z
en(�−p+2)‖f 2

n ‖p

Hγ
p(e−2nT )

≤ C
∑
n∈Z

∑
i,j

en(�+p)‖Diu(·, en·)ζ(e−nψ(en·))Dj ξ(en·)‖p

Hγ
p(T )

= C‖uxξx‖p

Hγ
p,�+p(D,T )

= C‖ξξ−1ξxux‖p

Hγ
p,�+p(D,T )

= C‖ξ−1ξxux‖p

Kγ
p,θ+p,�+p(D,T )

≤ C‖ψξ−1ξxux‖p

Kγ
p,θ,�(D,T )

, (4.9)

where the last inequality is due to (2.16). Now we note that for any n ∈N ,

|ψξ−1ξx |(0)
n + |ψ2ξ−1ξxx |(0)

n ≤ C(n, ξ) < ∞.

Thus, by (2.17) the last term in (4.9) is bounded by

C‖ux‖p

Kγ
p,θ,�(D,T )

≤ C‖u‖p

Kγ+1
p,θ−p,�−p(D,T )

.

For other ls one can argue similarly and we gather the results:

7∑
l=1

∑
n∈Z

en(�−p+2)‖f l
n‖p

Hγ
p(e−2nT )

≤ C‖u‖p

Kγ+1
(D,T )

+ C‖f ‖p

Kγ
(D,T )

. (4.10)

p,θ−p,�−p p,θ+p,�+p
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Consequently, coming back to (4.5) and using (4.7), (4.8), and (4.10), we get

‖u‖p

Hγ+2
p,θ−p,�−p(D,T )

≤ C
(
‖u‖p

Kγ+1
p,θ−p,�−p(D,T )

+ ‖f ‖p

Kγ
p,θ+p,�+p(D,T )

+ ‖g‖p

Hγ+1
p,θ,�(D,T ,	2)

+ ‖u0‖p

Uγ+2
p,θ,�(D)

)
.

This yields what we want to have since ‖f i
xi‖K

γ
p,θ+p,�+p(D) ≤ C‖f i‖

K
γ+1
p,θ,�(D)

. The lemma is 

proved. �
Now, we take the deterministic operator L0 introduced in (3.1) and the Green function G

related to L0. Also, recall the representation R(u0, f 0, f, g) defined in (3.3) in connection with 
L0.

Lemma 4.3. If f 0 ∈ K∞
c (D, T ), f ∈ K∞

c (D, T , d), g ∈ K∞
c (D, T , 	2), and u0 ∈ K∞

c (D), then 
u = R(u0, f 0, f, g) belongs to K0

p,θ,�(D, T ) and satisfies

du =
(

L0u + f 0 +
d∑

i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t ∈ (0, T ] (4.11)

in the sense of distributions on D with u(0, ·) = u0.

Proof. First, we note that

R(u0, f
0, f, g) = R(u0,0,0,0) +R(0, f 0, f,0) +R(0,0,0, g)

=: v1 + v2 + v3.

By considering v1 for each ω and by the definition of Green’s function with the condition 
u0 ∈ K∞

c (D), we note that v1 satisfies

dv1 = L0v1dt, t > 0 ; v1(0, ·) = u0(·)
in the sense of distributions on D. Then Lemma 3.4 and the facts that K∞

c (D) is dense 
in Lp(�; K0

p,θ+2−p,�+2−p(D)) and ‖u0‖U0
p,θ,�(D) ≤ ‖u0‖Lp(�;K0

p,θ+2−p,�+2−p(D)) confirm v1 ∈
K0

p,θ,�(D, T ). Similarly, v2 satisfies

dv2 = (L0v2 + f 0 +
d∑

i=1

f i
xi )dt, t > 0

in the sense of distributions on D with zero initial condition and Lemma 3.6 leads us to have 
v2 ∈K0

p,θ,�(D, T ). The fact that v3 satisfies

dv3 = L0v3dt +
∞∑

gkdwk
t , t > 0
k=1
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in the sense of distributions on D with zero initial condition can be proved by the same way in 
the proof of [3, Lemma 3.11], which deals with the case d = 2. Then Lemma 3.7 gives v2 ∈
K0

p,θ,�(D, T ). Hence, u = v1 + v2 + v3 satisfies the assertions and the lemma is proved. �
Proof of Theorem 2.19. Note that, since L is non-random, we can take L0 = L (see (3.1)).

1. Existence and estimate (2.34):
First, we assume that f 0 ∈ K∞

c (D, T ), f ∈ K∞
c (D, T , d), g ∈ K∞

c (D, T , 	2), and u0 ∈
K∞

c (D). Then by Lemma 4.3, u = R(u0, f 0, f, g) ∈ K0
p,θ,�(D, T ) satisfies equation (4.11) in 

the sense of distributions on D with initial condition u0. Then, we use Lemma 4.1 with μ = −2. 
As γ + 2 ≥ 1, Lemma 3.1 and Remark 3.5 imply u ∈Kγ+2

p,θ,�(D, T ) and (2.34).
The general case can be easily handled by standard approximation argument. Indeed, take 

f 0
n ∈K∞

c (D, T ), fn ∈K∞
c (D, T , d), gn ∈ K∞

c (D, T , 	2), and u0,n ∈ K∞
c (D) such that f 0

n → f 0, 
fn → f, gn → g, and u0,n → u0, as n → ∞, in the corresponding spaces. Now let un :=
R(u0, f 0

n , fn, gn). Then, estimate (2.34) applied for un − um shows that {un} is a Cauchy se-

quence in Kγ+2
p,θ,�(D, T ). Taking u as the limit of un in Kγ+2

p,θ,�(D, T ), we find that u is a solution 
to equation (4.11). Estimate (2.34) for u also follows from those of un.

2. Uniqueness:
Let u ∈ Kγ+2

p,θ,�(D, T ) be a solution to equation (4.11) with f 0 ≡ 0, f ≡ 0, g ≡ 0, and u0 ≡ 0. 
Due to γ + 2 ≥ 1, u at least belongs to Lp,θ−p,�−p(D, T ), and therefore by Lemma 4.1 we 
have u ∈K2

p,θ,�(D, T ) as all the inputs are zeros. Hence, for almost all ω ∈ �, uω := u(ω, ·, ·) ∈
Lp((0, T ]; K2

p,θ−p,�−p(D)), and satisfies

uω
t = Luω, t ∈ (0, T ] ; uω(0, ·) = 0.

Hence, from the uniqueness result for the deterministic parabolic equation (see [8, Theorem 
2.12]), we conclude uω = 0 for almost all ω. This handles the uniqueness. �
Remark 4.4. The approximation argument and uniqueness result in the above proof show that if 
L is non-random, then the solution in Theorem 2.19 is given by the formula

u = R(u0, f
0, f, g), where f = (f 1, · · · , f d).

Proof of Theorem 2.21. 1. The a priori estimate:
Having the method of continuity in mind, we consider the following operators. Denote L0 =

ν1�, and for λ ∈ [0, 1] denote

Lλ = (1 − λ)L0 + λL

Obviously,

Lλ(ω, ·) ∈ Tν ,ν , ∀λ ∈ [0,1], ω ∈ �.
1 2
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Now we prove that the a priori estimate

‖v‖Kγ+2
p,θ,�(D,T )

≤ C
(
‖f 0‖

Kγ∨0
p,θ+p,�+p(D,T )

+ ‖f‖
Kγ+1

p,θ,�(D,T ,d)

+‖g‖
Kγ+1

p,θ,�(D,T ,l2)
+ ‖u0‖Uγ+2

p,θ,�(D)

)
(4.12)

holds with C = C(M, d, p, γ, θ, �, ν1, ν2), provided that v ∈ Kγ+2
p,θ,�(D, T ) is a solution to the 

equation

dv =
(
Lλv + f 0 +

d∑
i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t ∈ (0, T ] ; v(0, ·) = u0(·). (4.13)

To prove (4.12), we take u ∈ Kγ+2
p,θ,�(D, T ) from Theorem 2.19, which is the solution to 

equation (4.11) with the operator L0 = ν1� and the initial condition u(0, ·) = u0. Then v̄ :=
v − u ∈ Kγ+2

p,θ,�(D, T ) satisfies

v̄t = Lλv̄ + f̄ = Lλv̄ +
d∑

i=1

f̄ i
xi , t ∈ (0, T ] ; v̄(0, ·) = 0

where

f̄ := (L0 −Lλ)u =
d∑

i=1

⎛⎝ d∑
j=1

[ν1δ
ij − aij (ω, t)]uxj

⎞⎠
xi

=:
d∑

i=1

f̄ i
xi .

Note that for each fixed ω, v̄(ω, ·) satisfies a deterministic PDE with non-random operator 
Lλ(ω, ·) and non-random free terms f̄ i (ω, ·). Hence, using the deterministic counterpart of The-
orem 2.19 for each ω, and then taking the expectation, we get

‖v − u‖Kγ+2
p,θ,�(D,T )

= ‖v̄‖Kγ+2
p,θ,�(D,T )

≤ C

d∑
i=1

‖f̄ i‖
Kγ+1

p,θ,�(D,T )
≤ C‖u‖

Kγ+2
p,θ−p,�−p(D,T )

.

For the last inequality above we used (2.18). This with estimate (2.34) obtained for u finally 
gives (4.12).

2. Existence, uniqueness and the estimate:
Estimate (2.34) and uniqueness result of solution are direct consequences of a priori estimate 

(4.12), for which the constant C is independent of L and λ. Thus we only need to prove the 
existence result.

Let J denote the set of λ ∈ [0, 1] such that for any given f 0, f, g, u0 in their corresponding 
spaces, equation (4.13) with given λ has a solution v in Kγ+2

p,θ,�(D, T ). Then by Theorem 2.19, 
0 ∈ J . Hence, the method of continuity (see e.g. proof of [17, Theorem 5.1]) and a priori estimate 
(4.12) together yield J = [0, 1], and in particular 1 ∈ J . This proves the existence result. The 
theorem is proved. �
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In the next section, we use the result of Theorem 2.21 to study the regularity of SPDEs on 
polygonal domains in R2. We also use the following result which helps us prove the existence of 
a solution on polygonal domains.

Lemma 4.5. For j = 1, 2, let pj ≥ 2 and θj , �j ∈R, and d − 1 < �j < d − 1 + pj . Also let θj

(j = 1, 2) satisfy

pj (1 − λ+
c ) < θj < pj (d − 1 + λ−

c ) if L is non-random,

and

pj (1 − λc(ν1, ν2)) < θj < pj (d − 1 + λc(ν1, ν2)) if L is random.

Then, if u ∈ K1
p1,θ1,�1

(D, T ) is a solution to equation (2.2) with the initial condition u(0, ·) =
u0(·) and f 0, f = (f 1, · · · , f d), g, u0 satisfying

f 0 ∈ Lpj ,θj +pj ,�j +pj
(D, T ), f ∈Lpj ,θj ,�j

(D, T , d),

g ∈Lpj ,θj ,�j
(D, T , 	2), u0 ∈U1

p,θ,�(D)

for both j = 1 and j = 2, then u ∈K1
p2,θ2,�2

(D, T ).

Proof. If L is non-random, the lemma follows from Remark 4.4. In general, as before we fix 
a deterministic operator L0(t) = ∑

i,j αij (t) ∈ Tν1,ν2 and v = R(u0, f 0, f, g). Then, since L0 is 
non-random, by Remark 4.4

v ∈K1
p1,θ1,�1

(D, T ) ∩K1
p2,θ2,�2

(D, T ). (4.14)

Put ū1 := u − v. Then ū = ū1 satisfies

dū =
⎡⎣Lū +

d∑
i=1

( d∑
j=1

[αij (t) − aij (ω, t)]vxj

)
xi

⎤⎦dt, t ∈ (0, T ]. (4.15)

Also, due to (4.14), equation (4.15) has a solution ū2 ∈ K1
p2,θ2,�2

(D, T ). Now note that for each 
fixed ω, both ū1(ω, ·, ·) and ū2(ω, ·, ·) satisfy equation (4.15), which we can consider as a de-
terministic equation with non-random operator. By the above result for non-random operator we 
conclude

ū1(ω, ·, ·) = ū2(ω, ·, ·)

for almost all ω. From this we conclude that both v and u − v are in K1
p2,θ2,�2

(D, T ), and 
therefore the lemma is proved. �
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5. SPDE on polygonal domains

In this section, based on Theorem 2.21, we develop a regularity theory of the stochastic 
parabolic equations on polygonal domains in R2. This development is an enhanced version of 
the corresponding result in [2] in which L = �x and � = d . Our generalization is as follows:

• � → L =∑
i,j aij (ω, t)Dij ; operator with (random) predictable coefficients

• � = 2 → 1 < � < 1 + p

• The restriction on θ is weakened
• Sobolev regularity with γ ∈ {−1, 0, · · · }

→ Sobolev and Hölder regularities with real number γ ≥ −1

Let O ⊂ R2 be a bounded polygonal domain with a finite number of vertices {p1, . . . , pM} ⊂
∂O. For any x ∈O, we denote

ρ(x) := ρO(x) := d(x, ∂O).

In the polygonal domain, the function of x defined by

min
1≤m≤M

|x − pm|

will play the role of ρ◦,D , which is the distance to the vertex in an angular domain D. We first 
construct a smooth version of the function min1≤m≤M |x −pm|g as follows. Consider the domain 
V := R2 \ {p1, · · · , pM } and note that

ρV (x) := d(x, ∂V ) = min
1≤m≤M

|x − pm|.

Then, applying (2.9) and (2.10) for ρV and the domain V , we define ψV and set

ρ◦ = ρ◦,O := ψV .

We can check that for any multi-index α and μ ∈R,

ρ◦ ∼ min
1≤m≤M

|x − pm|, sup
O

∣∣ρ|α|−μ◦ Dαρμ◦
∣∣< ∞.

On the other hand, we also choose a smooth function ψ = ψO such that ψ ∼ ρO and satisfies 
(2.8) with ρO in place of ρD .

Then, we recall the norms of the spaces Hγ

p,�(O) and Hγ

p,�(O; 	2) introduced in Defini-
tion 2.3;

‖f ‖p

H
γ
p,�(O)

:=
∑
n∈Z

en�‖ζ(e−nψ(en·))f (en·)‖p

H
γ
p (Rd )

,

‖g‖p

H
γ
p,�(O;	2)

:=
∑

en�‖ζ(e−nψ(en·))g(en·)‖p

H
γ
p (Rd ;	2)

,

n∈Z
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where ψ = ψO . Using ρ◦,O in place of ρ◦,D , and following Definition 2.4, we define the function 
spaces

K
γ

p,θ,�(O), K
γ

p,θ,�(O;Rd), K
γ

p,θ,�(O;	2),

as well as the stochastic spaces

Kγ

p,θ,�(O, T ), Kγ

p,θ,�(O, T , d), Kγ

p,θ,�(O, T , 	2),

Kγ+2
p,θ,�(O, T ), K∞

c (O, T ), K∞
c (O, T , 	2), K∞

c (O).

More specifically, we write f ∈ K
γ

p,θ,�(O) if and only if ρ(θ−�)/p◦ f ∈ H
γ

p,�(O), and define

‖f ‖K
γ
p,θ,�(O) := ‖ρ(θ−�)/p◦ f ‖H

γ
p,�(O).

As in Section 2, if γ ∈ N0, then we have

‖f ‖p

K
γ
p,θ,�(O)

∼
∑

|α|≤γ

∫
O

|ρ|α|Dαf |pρθ−�◦ ρ�−ddx. (5.1)

Definition 5.1. We write u ∈ Kγ+2
p,θ,�(O, T ) if u ∈ Kγ+2

p,θ−p,�−p(O, T ) and there exist (f̃ , g̃) ∈
Kγ

p,θ+p,�+p(O, T ) ×Kγ+1
p,θ,�(O, T , 	2) and u(0, ·) ∈Uγ+2

p,θ,�(O) satisfying

du = f̃ dt +
∑

k

g̃kdwk
t , t ∈ (0, T ]

in the sense of distributions on O. The norm is defined by

‖u‖Kγ+2
p,θ,�(O,T )

:= ‖u‖
Kγ+2

p,θ−p,�−p(O,T )
+ ‖f̃ ‖Kγ

p,θ+p,�+p(O,T ) + ‖g̃‖
Kγ+1

p,θ,�(O,T ,	2)

+‖u(0, ·)‖
Uγ+2

p,θ,�(D)
.

Theorem 5.2. With D replaced by O, all the claims of Lemma 2.5, Remark 2.6, Theorem 2.10, 
Theorem 2.11, and Lemma 4.1 hold.

Proof. All of these claims in Section 2 are proved based on (2.12), (2.14), and some properties 
of weighted Sobolev spaces Hγ

p,�(D) taken e.g. from [23]. Since these properties in [23] hold 
true on arbitrary domains, the exactly same proofs of Section 2 work with D replaced by O. �
Remark 5.3. For the analog of Theorem 2.11 in the case of polygonal domain we do not need the 
additional condition for the initial condition. This is because since ψ is bounded and β > 2/p, 
by Lemma 2.5 (iv), we have

‖ψβ−1u(0, ·)‖
L (�;Kγ+2−β

(D))
≤ C‖ψ2/p−1u(0, ·)‖

L (�;Kγ+2−2/p
(D))

≤ C‖u‖Kγ+2 .

p p,θ,� p p,θ,� p,θ,�
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For m = 1, . . . , M , let κm denote the interior angle at the vertex pm, and denote

κ0 := max
1≤m≤M

κm.

Also, for each m, let Dm denote the conic domain in R2 such that

O ∩ Bε(pm) ∩ {pm + x : x ∈Dm} = O ∩ Bε(pm)

for all sufficiently small ε > 0. Denote

λ±
c,L,O := min

m
λ±

c,L,Dm
if L is non-random

and

λc,O(ν1, ν2) := min
m

λc(ν1, ν2,Dm) if L is random.

In Theorem 5.4 below, we pose the condition

p(1 − λ+
c,L,O) < θ < p(1 + λ−

c,L,O) (5.2)

if L is non-random, and

p(1 − λc,O(ν1, ν2)) < θ < p(1 + λc,O(ν1, ν2)) (5.3)

if L is random.
Here are our main results on polygonal domains.

Theorem 5.4 (SPDE on polygonal domains with random or non-random coefficients). Let p ∈
[2, ∞), γ ≥ −1, and Assumption 2.2 hold. Also assume that

1 < � < p + 1, (5.4)

and condition (5.2) holds if L is non-random, condition (5.3) holds if L is random. Then for 
given f 0 ∈Kγ∨0

p,θ+p,�+p(O, T ), f = (f 1, · · · , f d) ∈ Kγ+1
p,θ,�(O, T , d), g ∈Kγ+1

p,θ,�(O, T , 	2), and 

u0 ∈ Uγ+2
p,θ,�(O), the equation

du =
(
Lu + f 0 +

d∑
i=1

f i
xi

)
dt +

∞∑
k=1

gkdwk
t , t ∈ (0, T ] ; u(0, ·) = u0 (5.5)

admits a unique solution u in the class Kγ+2
p,θ,�(O, T ). Moreover, the estimate

‖u‖Kγ+2
p,θ,�(O,T )

≤ C
(‖f 0‖

Kγ∨0
p,θ+p,�+p(O,T )

+ ‖f‖
Kγ+1

p,θ,�(O,T ,d)
+ ‖g‖

Kγ+1
p,θ,�(O,T ,	2)

+‖u0‖Uγ+2
(O)

)

p,θ,�
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holds with a constant C = C(O, p, γ, ν1, ν2, θ, �, T ).

Remark 5.5. Since d = 2 in this section, the range of � in (5.4) coincides with (d −1, d −1 +p)

which we have kept throughout this article.

Theorem 5.6 (Hölder estimates on polygonal domains). Let p ≥ 2, θ, � ∈ R and u ∈
Kγ+2

p,θ,�(O, T ).

(i) If γ + 2 − d
p

≥ n + δ, where n ∈N0 and δ ∈ (0, 1), then for any k ≤ n,

|ρk−1+ �
p ρ(θ−�)/p◦ Dku(ω, t, ·)|C(O) + [ρn−1+δ+ �

p ρ(θ−�)/p◦ Dku(ω, t, ·)]Cδ(O) < ∞

holds for almost all (ω, t). In particular,

|u(ω, t, x)| ≤ C(ω, t)ρ
1− �

p (x)ρ(−θ+�)/p◦ (x).

(ii) Let

2/p < α < β ≤ 1, γ + 2 − β − d/p ≥ m + ε,

where m ∈N0 and ε ∈ (0, 1]. Put η = β − 1 + �/p. Then for any k ≤ m,

E sup
t,s≤T

∣∣ρη+kρ
(θ−�)/p◦

(
Dku(t) − Dku(s)

) ∣∣p
C(O)

|t − s|pα/2−1 < ∞,

E sup
t,s≤T

[
ρη+m+ερ

(θ−�)/p◦ (Dmu(t) − Dmu(s))
]p

Cε(O)

|t − s|pα/2−1 < ∞.

Proof. The claims follow from the corresponding results of (2.19) and (2.23) mentioned in The-
orem 5.2. �

For the proof of Theorem 5.4, we first prove the following estimate.

Lemma 5.7 (A priori estimate). Let Assumptions in Theorem 5.4 hold. Then there exists a con-
stant C = C(d, p, θ, �, ν1, ν2, O, T ) such that the a priori estimate

‖u‖Kγ+2
p,θ,�(O,T )

≤ C
(‖f 0‖

Kγ∨0
p,θ+p,�+p(O,T )

+ ‖f‖
Kγ+1

p,θ,�(O,T ,d)
+ ‖g‖

Kγ+1
p,θ,�(O,T ,	2)

+‖u0‖Uγ+2
p,θ,�(O)

)
(5.6)

holds provided that a solution u ∈Kγ+2
(D, T ) to equation (5.5) exists.
p,θ,�

514



K.-H. Kim, K. Lee and J. Seo Journal of Differential Equations 340 (2022) 463–520
Proof. First, choose a sufficiently small constant r > 0 such that each B3r (pm) contains only 
one vertex pm and intersects with only two edges for each m = 1, . . . , M . Then we choose a 
function ξ ∈ C∞

c (R2) satisfying

1Br (0)(x) ≤ ξ(x) ≤ 1B2r (0)(x) for all x ∈ R2.

Let ξm(x) := ξ(x − pm) and ξ0 := 1 − ∑M
m=1 ξm. By the choice of r and ξ , supp(ξm)s are 

disjoint and hence 0 ≤ ξ0 ≤ 1. Moreover, ξ0(x) = 1 if ρV (x) > 2r .
For m = 1, . . . , M , let Dm be the angular (conic) domain centered at pm with interior angle 

κm such that Dm ∩ B3r (pm) = O ∩ B3r (pm).
Now let G be a C1-domain in O such that

ξ0(x) = 0 for x ∈ O \ G and inf
x∈G

ρ◦(x) ≥ c > 0 with a constant c.

Then, due to the choices of ξm and Dm (m = 1, . . . , M), (2.4) and (5.1) together easily yield

‖ξmv‖p

Kn
p,θ,�(O)

∼ ‖ξmv‖Kn
p,θ,�(Dm), m = 1, . . . ,M,

for any θ, � ∈R, n ∈ {0, 1, 2, . . .}, and v ∈ Kn
p,θ,�(O). Similarly,

‖ξ0v‖p

Kn
p,θ,�(O)

∼
∫
G

|ξ0v|pρ�−ddx ∼ ‖ξ0v‖p

Hn
p,�(G)

,

and the same relations hold for 	2-valued functions. Denote

Hγ

p,�(G,T ) := Lp(� × (0, T ],P;Hγ

p,�(G)),

Hγ

p,�(G,T , 	2) := Lp(� × (0, T ],P;Hγ

p,�(G;	2)).

Then, the above observations in particular imply

‖v‖Kn
p,θ,�(O,T ) ∼

(
‖ξ0v‖Hn

p,�(G,T ) +
M∑

m=1

‖ξmv‖Kn
p,θ,�(Dm,T )

)
(5.7)

for any v ∈ Kn
p,θ,�(O, T ), where n ∈ {0, 1, 2, · · · }.

Now, for each m = 1, . . . , M we define um := ξmu. Then, since γ + 2 ≥ 1, um belongs to 
K1

p,θ−p,�−p(Dm, T ). Also, ξ0u belongs to H1
p,�−p(G, T ). Note that each um satisfies

d(um) =
(
Lum + f 0

m +
d∑

(f i
m)xi

)
dt +

∑
gk

mdwk
t , t ∈ (0, T ] (5.8)
i=1 k
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in the sense of distributions on Dm with the initial condition um(0, ·) = ξmu0 and ξ0u satisfies

d(ξ0u) =
(
L(ξ0u) + f 0

0 +
d∑

i=1

(f i
0 )xi

)
dt +

∑
k

gk
0dwk

t , t ∈ (0, T ] (5.9)

in the sense of distributions on G with the initial condition w(0, ·) = ξ0u0, where

f 0
m = f 0ξm −

d∑
i=1

f i(ξm)xi − uL(ξm), f i
m = 2

d∑
j=1

aiju (ξm)xj , gm = gξm (5.10)

for m = 0, 1, 2, . . . , M .
Since supp(ξm) ⊂ B2r (pm) and (ξm)x = 0 on a neighborhood of pm for m = 1, . . . , M , we 

have

‖u(ξm)x‖Lp,θ,�(O,t) + ‖u(ξm)xx‖Lp,θ+p,�+p(O,t) ≤ C‖u‖Lp,θ,�(O,t)

for t ≤ T , where C depends only on O, p, θ and �.
Hence, for m = 1, . . . , M , by Theorems 2.19 and 2.21, which our range of θ allows us to use, 

we have for any t ≤ T ,

‖ξmu‖K1
p,θ−p,�−p(Dm,t)

≤ C
(‖f 0

m‖Lp,θ+p,�+p(Dm,t) +
d∑

i=1

‖f i
m‖Lp,θ,�(Dm,t) + ‖gm‖Lp,θ,�(Dm,t,	2)

+ ‖ξmu0‖U1
p,θ,�(Dm)

)
≤ C

(‖u‖Lp,θ,�(O,T ) + ‖f 0‖Lp,θ+p,�+p(O,T ) + ‖f‖Lp,θ,�(O,T ,d) + ‖g‖Lp,θ,�(O,T ,	2)

+ ‖u0‖U1
p,θ,�(O)

)
.

For m = 0, by [10, Theorem 2.7] (or [11, Theorem 2.9]), we have

‖ξ0u‖H1
p,�−p(G,t)

≤ C
(
‖f 0

0 ‖Lp,�+p(G,t) +
d∑

i=0

‖f i
0‖Lp,�(G,t) + ‖g0‖Lp,�(G,t,	2) + ‖ξ0u0‖Lp(�;H 1−2/p

p,�+2−p(G))

)
≤ C

(
‖u‖Lp,θ,�(O,T ) + ‖f 0‖Lp,θ+p,�+p(O,T ) + ‖f‖Lp,θ,�(O,T ,d) + ‖g‖Lp,θ,�(O,T ,	2)

+ ‖u0‖U1
p,θ,�(O)

)
.

Summing up over all m = 0, . . . , M and using (5.7), for each t ≤ T , we have
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‖u‖K1
p,θ−p,�−p(O,t)

≤ C
(
‖u‖Lp,θ,�(O,t) + ‖f 0‖Lp,θ+p,�+p(O,T ) + ‖f‖Lp,θ,�(O,T ) + ‖g‖Lp,θ,�(O,T ,	2)

‖u0‖U1
p,θ,�(O)

)
.

Using this and the polygonal versions of (2.22) and (2.25), which mentioned in Theorem 5.2, we 
get, for each t ≤ T ,

‖u‖p

K1
p,θ,�(O,t)

≤C

t∫
0

‖u‖p

K1
p,θ,�(O,s)

ds

+ C
(
‖f 0‖p

Lp,θ+p,�+p(O,T )
+ ‖f‖p

Lp,θ,�(O,T )
+ ‖g‖p

Lp,θ,�(O,T ,	2)
+ ‖u0‖U1

p,θ,�(O)

)
.

Applying Gronwall’s inequality, we further obtain

‖u‖K1
p,θ,�(O,T )

≤ C
(
‖f 0‖Lp,θ+p,�+p(O,T ) + ‖f‖Lp,θ,�(O,T ) + ‖g‖Lp,θ,�(O,T ,	2) + ‖u0‖U1

p,θ,�(O)

)
.

This and the polygonal version of Lemma 4.1, which is mentioned in Theorem 5.2, yield a priori 
estimate (5.6). The lemma is proved. �

The following is a C1-domain version of Lemma 4.5. We use it in the proof of Theorem 5.4
below.

Lemma 5.8. Let G be a bounded C1 domain in Rd and let pj ∈ [2, ∞), �j ∈ (d −1, d −1 +pj )

for j = 1, 2. Assume that u ∈H1
p1,�1−p1

(G, T ) satisfies

du =
(
Lu + f 0 +

d∑
i=1

f i
xi

)
dt +

∑
k

gkdwk
t , t ∈ (0, T ]

in the sense of distributions on G with the initial condition u(0, ·) = u0(·) and f 0, f i (i =
1, 2, . . .), g, u0 satisfying

f 0 ∈Lpj ,�j +pj
(G,T ) ∩Lpj ,d+pj

(G,T ), f i ∈Lpj ,�j
(G,T ) ∩Lpj ,d (G,T ), i = 1, · · · , d,

g ∈Lpj ,�j
(G,T , 	2) ∩Lpj ,d(G,T , 	2),

u0 ∈ Lp(�,F0;H 1−2/pj

pj ,�j +2−pj
(G)) ∩ Lp(�,F0;H 1−2/pj

pj ,d+2−pj
(G))

for both j = 1 and j = 2. Then u belongs to H1 (G, T ).
p2,�2−p2
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Proof. See [2, Lemma 3.8]. We remark that only � is considered in [2], however the proof of 
[2, Lemma 3.8] works for general case without any changes since the proof depends only on [10, 
Theorem 2.7] (or [11, Theorem 2.9]), which involves operators having coefficients measurable 
in (ω, t) and continuous in x. �

We recall d = 2 in this section.

Proof of Theorem 5.4. Due to Lemma 5.7, we only need to prove the existence result. Further-
more, relying on standard approximation argument, we may assume

f 0 ∈ K∞
c (O, T ), f ∈K∞

c (O, T ,2), g ∈K∞
c (O, T , 	2) u0 ∈K∞

c (O).

Considering u − u0 as usual, we may assume u0 ≡ 0. Also, note that gk = 0 for all large k
(say, for all k > N ), and each gk is of the type 

∑n(k)
j=1 1(τ k

j−1,τ
k
j ](t)hkj (x), where τ k

j are bounded 

stopping times and hjk ∈ C∞
c (O). Thus the function v defined by

v(t, x) :=
∞∑

k=1

t∫
0

gkdwk
s =

∑
k≤N

∑
j≤n(k)

(
wk

τk
j ∧t

− wk

τk
j−1∧t

)
hkj (x)

is infinitely differentiable in x and vanishes near the boundary of O. Consequently v belongs to 
Kν+2

p,θ,�(O, T ) for any ν, θ, � ∈ R as we consult with Definition 5.1. Now, u satisfies equation 
(5.5) if and only if ū := u − v satisfies

dū =
(
Lū + f̄ 0 +

2∑
i=1

f i
xi

)
dt, t ∈ (0, T ] ; ū(0, ·) = 0,

where f̄ 0 = f 0 + Lv. Hence, considering f̄ 0 in place of f 0, to prove the existence we may 
further assume g = 0.

Then, by the classical results without weights for p = 2, (see, e.g. [25] or [9, Theorem 2.12, 
Corollary 2.14]), there exists a solution u in K1

2,2,2(O, T ) to equation (5.5), which now is sim-
plified as

ut = Lu + f 0 +
2∑

i=1

f i
xi , t ∈ (0, T ] ; u(0, ·) = 0.

By Theorem A in [1] (or see estimate (2.11) and proof of Theorem 2.4 in [12] for more detail), 
for any r > 4, we have

E sup
t,x

|u(t, x)|p ≤ CE‖ |f 0| + |f| ‖p

Lr ((0,T ]×O))
< ∞. (5.11)

Now we prove u ∈ K1
p,θ,�(O, T ) using Lemma 4.5 and Lemma 5.8 along with u ∈

K1
2,2,2(O, T ). Define um := ξmu in the same way we did in the proof of Lemma 5.7. Then ξmu

satisfies (5.8) in the sense of distributions on Dm for m = 1, . . . , M and ξ0u satisfies (5.9) on 
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G for m = 0 with the same f 0
m, f i

m, ξmu0 as in (5.10). Note that since f 0, f are bounded and 
f 0, f, (ξm)x, (ξm)xx vanish near vertices, we have for any θ ∈ R, q ≥ 2 and 1 < � < 1 + q ,

‖f 0
m‖q

Lq,θ+q,�+q (O,T )
+

2∑
i=1

‖f i
m‖q

Lq,θ,�(O,T )

≤ CE

T∫
0

∫
O

(1 + |u|q)ρ�−2dx ≤ C

⎛⎝∫
O

ρ�−2dx

⎞⎠E sup
t,x

(1 + |u|q) < ∞.

For the last inequality we used (5.11) and the fact � − 2 > −1. Hence, f 0
m, f i

m along with ξmu0
satisfy assumptions in Lemma 4.5 and Lemma 5.8. Consequently ξmu ∈ K1

p,θ−p,�−p(Dm, T )

as ξmu ∈ K1
p,θ,�(Dm, T ) for m = 1, 2, · · · , M and ξ0u ∈ H1

p,�−p(G, T ). These and (5.7) with 

n = 1 yield u ∈K1
p,θ−p,�−p(O, T ) and in turn u ∈K1

p,θ,�(O, T ).
Finally, the analogy of Lemma 4.1 in case of polygonal domains (see Theorem 5.2) proves 

that the solution u found above actually belongs to the space u ∈Hγ+2
p,θ,�(O, T ). The theorem is 

proved. �
Data availability

No data was used for the research described in the article.

References

[1] D.G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22 (3) 
(1968) 607–694.

[2] P.A. Cioica, K. Kim, K. Lee, On the regularity of the stochastic heat equation on polygonal domains in R2, J. Differ. 
Equ. 267 (2019) 6447–6479.

[3] P.A. Cioica, K. Kim, K. Lee, F. Lindner, An Lp-estimate for the stochastic heat equation on an angular domain in 
R2, Stoch. Partial Differ. Equ., Anal. Computat. 6 (1) (2018) 45–72.

[4] F. Flandoli, Dirichlet boundary value problem for stochastic parabolic equations: compatibility relation and regu-
larity of solutions, Stoch. Stoch. Rep. 29 (3) (1990) 331–357.

[5] J.V. Beervan, M. Veraar, L. Weis, Stochastic maximal Lp-regularity, Ann. Probab. 40 (2) (2012) 788–812.
[6] D. Kim, Elliptic equations with nonzero boundary conditions in weighted Sobolev spaces, J. Math. Anal. Appl. 

337 (2) (2008) 1465–1479.
[7] K. Kim, K. Lee, J. Seo, A refined Green’s function estimate of the time measurable parabolic operators with conic 

domains, Potential Anal. 56 (2) (2022) 317–331.
[8] K. Kim, K. Lee, J. Seo, A weighted Sobolev regularity theory of the parabolic equations with measurable coefficients 

on conic domains in Rd , J. Differ. Equ. 291 (2021) 154–194.
[9] K. Kim, A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains, J. Theor. Probab. 

27 (1) (2014) 107–136.
[10] K. Kim, On Lp-theory of stochastic partial differential equations of divergence form in C1 domains, Probab. Theory 

Relat. Fields 130 (4) (2004) 473–492.
[11] K. Kim, On stochastic partial differential equations with variable coefficients in C1 domains, Stoch. Process. Appl. 

112 (2) (2004) 261–283.
[12] K. Kim, Lq(Lp) theory and Hölder estimates for parabolic SPDEs, Stoch. Process. Appl. 114 (2) (2004) 313–330.
[13] K. Kim, N.V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in C1 domains, SIAM J. 

Math. Anal. 36 (2) (2004) 618–642.
[14] K. Kim, N.V. Krylov, On SPDEs with variable coefficients in one space dimension, Potential Anal. 21 (3) (2004) 

209–239.
519

http://refhub.elsevier.com/S0022-0396(22)00527-7/bib80E654EFDB568E34DBB8F8DC2DE99816s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib80E654EFDB568E34DBB8F8DC2DE99816s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib48899E03D8C28730A04CD6E27BA77710s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib48899E03D8C28730A04CD6E27BA77710s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibBA9BE4D153F4958190F56168A17BF45As1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib645628FE73E2B775AC66A5EB54217ED2s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib645628FE73E2B775AC66A5EB54217ED2s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD382816A3CBEED082C9E216E7392EED1s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD382816A3CBEED082C9E216E7392EED1s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib247865C012A9BD6760AF5FADE4B4CAFEs1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib247865C012A9BD6760AF5FADE4B4CAFEs1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibB65D3C3B94D0E321245DD20881752FD1s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibB65D3C3B94D0E321245DD20881752FD1s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib55CD18E88D5646318EFD3193D1837001s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib55CD18E88D5646318EFD3193D1837001s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib6D6D0B4D4307717B767B1C2793B2D1DCs1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib6D6D0B4D4307717B767B1C2793B2D1DCs1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib01AEA3E2E3431ECDE2DC28A5C86B35C3s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib29545AC41B1A0061C9F125825B293922s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib29545AC41B1A0061C9F125825B293922s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib7F9A66B84F27386258E6B8E453687790s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib7F9A66B84F27386258E6B8E453687790s1


K.-H. Kim, K. Lee and J. Seo Journal of Differential Equations 340 (2022) 463–520
[15] V.A. Kozlov, A. Nazarov, The Dirichlet problem for non-divergence parabolic equations with discontinuous in time 
coefficients in a wedge, Math. Nachr. 287 (10) (2014) 1142–1165.

[16] N.V. Krylov, Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces, J. Funct. 
Anal. 183 (1) (2001) 1–41.

[17] N.V. Krylov, An analytic approach to SPDEs, in: R. Carmona, B. Rozovskii (Eds.), Stochastic Partial Differential 
Equations: Six Perspectives, in: Math. Surveys Monogr., vol. 64, AMS, Providence, RI, 1999, pp. 185–242.

[18] N.V. Krylov, S.V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. 
Math. Anal. 31 (1) (1999) 19–33.

[19] N.V. Krylov, S.V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. 
Math. Anal. 30 (2) (1999) 298–325.

[20] N.V. Krylov, Weighted Sobolev spaces and Laplace’s equation and the heat equations in a half space, Commun. 
Partial Differ. Equ. 24 (9–10) (1999) 1611–1653.

[21] N.V. Krylov, On Lp-theory of stochastic partial differential equations in the whole space, SIAM J. Math. Anal. 
27 (2) (1996) 313–340.

[22] A. Kufner, Weighted Sobolev Spaces, Jhon Wiley & Sons, Inc., New York, 1985.
[23] S.V. Lototsky, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equa-

tions, Methods Appl. Anal. 7 (1) (2000) 195–204.
[24] A. Nazarov, Lp-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation 

in a wedge with edge of arbitrary codimension, Probl. Mat. Anal. 22 (2001) 126–159 (in Russian) English transl.: 
J. Math. Sci. 106 (3) (2001) 2989–3014.

[25] B.L. Rozovsky, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, translated 
from the Russian by A. Yarkho, Mathematics and Its Applications (Soviet Series), vol. 35, Kluwer Academic Pub-
lishers Group, Dordrecht, 1990.

[26] V.A. Solonnikov, Lp -estimates for solutions of the heat equation in a dihedral angle, Rend. Mat. Appl. (7) 21 (1–4) 
(2001) 1–15.
520

http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD9F4D344D7545DE43BB2299F0502E33As1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib6191B1EEADB4575F6FD27326DDEB19E6s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib6191B1EEADB4575F6FD27326DDEB19E6s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib91FBC1FFC46DC5E768F6B154BB548E37s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib91FBC1FFC46DC5E768F6B154BB548E37s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib91FBC1FFC46DC5E768F6B154BB548E37s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD17E2BE28C5B25D2CD3FED4813211364s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD17E2BE28C5B25D2CD3FED4813211364s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bibD17E2BE28C5B25D2CD3FED4813211364s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib91ACE8B86526808E77C9AF5C0CC3E960s1
http://refhub.elsevier.com/S0022-0396(22)00527-7/bib91ACE8B86526808E77C9AF5C0CC3E960s1

	Sobolev space theory and Hölder estimates for the stochastic partial differential equations on conic and polygonal domains
	1 Introduction
	2 SPDE on d-dimensional conic domains
	3 Key estimates on conic domains
	4 Proof of Theorems 2.19 and 2.21
	5 SPDE on polygonal domains
	Data availability
	References


