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A Sobolev space theory for the stochastic partial differential
equations with space-time non-local operators

KYEONG- HUN KiM, DAEHAN PARK AND JUNHEE RYU

Abstract. We deal with the Sobolev space theory for the stochastic partial differential equation (SPDE)
driven by Wiener processes

0 t
afu:(¢(A)u+f(u))+af’Z/()gk(u)dw’;, 1>0 xeR?
k=1

as well as the SPDE driven by space-time white noise
0 = p(Mu+ fu)+ P W, 150, xR

Here,« € (0,1),8 < a +1/2, {wf‘ :k =1,2,...}is a family of independent one-dimensional Wiener
processes and W is a space-time white noise defined on [0, 00) x R4 . The time non-local operator 37 denotes
the Caputo fractional derivative of order «, the function ¢ is a Bernstein function, and the spatial non-local
operator ¢ (A) is the integro-differential operator whose symbol is —¢ (|& |2). In other words, ¢ (A) is the
infinitesimal generator of the d-dimensional subordinate Brownian motion. We prove the uniqueness and
existence results in Sobolev spaces and obtain the maximal regularity results of solutions.

1. Introduction

We study the stochastic partial differential equations with both time and spatial non-
local operators. The time and spatial non-local operators we adopt in this article are 9;*
and ¢ (A), respectively. The Caputo fractional derivative 9/ is used in the time frac-
tional heat equation to describe, e.g., the anomalous diffusion exhibiting subdiffusive
behavior caused by particle sticking and trapping effects (e.g., [35,36]), and the spatial
non-local operator ¢(A) is the infinitesimal generator of the subordinate Brownian
motion. The operator ¢ (A) describes long range jumps of particles, diffusion on frac-
tal structures, and long-time behavior of particles moving in space with quenched and
disordered force field (e.g., [3,15]). For instance, if ¢ (A) = A8/2 then ¢ (A) = A%/
becomes the fractional Laplacian, which is related to the isotropic §-stable process. In
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this article we use both 97 and ¢ (A) for the description of the combined phenomena,
for instance, jump diffusions with a higher peak and heavier tails (e.g., [6,9,17,34]).

The goal of this article is to present an L ,-theory (p > 2) for the SPDE driven by
Wiener processes

S
0%u = (P (M + f(u))+ 9] Z/ gfwydwt, 1>0,xeR? u©0,)=0
—1 70

(1.1

as well as for the SPDE driven by multi-dimensional space-time white noise

3% = p(Mu+ fu)+ 0P Thw)W, 1>0,xeR% u©,)=0. (1.2

As mentioned above, {w,] , wt , .. .}is afamily of independent one-dimensional Wiener

processes, W is a space-time white noise on [0, 00) x R?, and « and B are constants
satisfying & € (0, 1) and B < « + 1/2, respectively. The nonlinear terms f (1), g (u)
and h(u) are functions depending on (w, t, x, u). Such types of SPDEs can be used,
e.g., to describe random effects of particles in medium with thermal memory or par-
ticles subject to sticking and trapping (see, e.g., [7]).

We interpret SPDEs (1.1) and (1.2) by their integral forms, and the restriction
B < a + 1/2 is necessary to make sense of the equations. For instance, the integral
form of (1.1) is

t
u(t,x) —u(,x) = %/ (r — s)“71(¢>(A)u(s, x)+ f(s,x,u(s, x)))ds

Z F(1+a—ﬁ)/ (1 = )" P (s, x, uls, x)duy,

and even if g is bounded, say g% = 1, the condition & — 8 > —1/2 is needed to make
sense of the integral fot (t— s)“_ﬁdwf.

In this article, under appropriate continuity of f, g, we prove the unique solvability
of equation (1.1) together with the maximal regularity

r+2)/2,,,P
Ellg(A) ullz,qo.71:L,)

<CE (||¢(A)V/2f<0)||§p([O,T];Lp) + |||¢(A)(V+C°)/2g(0)|12||£p([o,T];Lp)> ’
(1.3)

forany p > 2 and y € R. Here ¢g := (28 — )7 /a < 2. Also, we use estimate
(1.3) for y < 0 to deal with equation (1.2), that is, the SPDE driven by space-time
white noise. This is possible since one can transform equation (1.2) into the one of
type (1.1).

Now let us provide a description on the related works and their approaches. The
L p-theory (p > 2) of the classical stochastic heat equation of the type

du = Audt + gdw;, t >0, x eRd; u(,)=0
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was first introduced by N.V. Krylov [28,30]. Krylov introduced an analytic approach
and proved the maximal regularity estimate

P p
EIVull oy, < CEIZNY (orir,y: P22 (1.4)

The essence of Krylov’s approach is to control the sharp function of derivatives of u
in terms of the free term, that is

. 5 1/2 .
(Vi)' (t, x) < C<M|g| (t,x)) . V(t,x) uniformly on £, (1.5)

where t and M are used to denote the sharp and maximal functions, respectively (see
Sect. 3.1). This with the L ,-norm equivalent relation between functions and their
sharp and maximal functions leads to (1.4). Since the work of [28,30], the analytic
approach has been further used for SPDEs having different spatial operators. The
fractional Laplacian A%? is considered in [4,23], fractional Laplacian-like operator is
considered in [38], and the operator ¢ (A) is considered in [24]. It is also used for SPDE
having time non-local operator in [11,26] and [12], in which the spatial operators used
are A and A%?, respectively. As for other approaches on Sobolev regularity theory,
the method based on H*°-calculus is also available in the literature. This approach
was introduced in [39,44,45], in which the maximal regularity of »/—Au is obtained
for the stochastic convolution

t
u(t) :=/ e g(5)d W.
0

Here, W is a Brownian motion and the operator — A is assumed to admit a bounded
H*-calculus of angle less than /2 on L, where p > 2. The result of [39,44,45]
certainly generalizes Krylov’s result [28,30] as one can take A = A. The method
based on H°°-calculus is also used in [13] for the study of the mild solution to the
integral equation

1 t
u(t)—i—/ (t —)* " Au(s)ds =/ (t — )P g(s)d Wy, (1.6)
0 0

where the generator A is supposed to satisfy the assumption described above. We also
remark that a nonlinear version of equation (1.6) is studied recently in [32] with A(U)
in place of AU in the Hilbert space setting, that is, the Gelfand triple setting. Also
see [7] for a Hilbert space theory of SPDEs having time non-local operator and the
second-order spatial operators with measurable coefficients.

As is expected, our results for nonlinear equations are proved based on those for
the corresponding linear equations and certain fixed point argument. To handle linear
equations, we use both analytic approach and the one based on H*°-calculus. First,
speaking of Krylov’s analytic approach, we control the sharp functions of solutions
and their fractional derivatives in terms of free terms. In other words, we prove a
generalization of (1.5). This approach is elementary; however, the extension to general
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equations involves quite non-trivial computations. Moreover, for a technical reason,
this approach is carried out under the condition

8
C<£>0§M, VO<r <R < o0, (1.7)
r ¢(r)

where 3g € (0, 1] and ¢ > 0. Regarding the second approach based on H*°-calculus,
we check that ¢ (A) admits the bounded H *°-calculus on L p(Rd ) of angle zero. The
second approach works without condition (1.7), but it relies on abstract operator theory.

This article is organized as follows. In Sect. 2, we introduce basic facts on time
and spatial non-local operators and related function spaces. Then, we present our
main results, Theorems 2.12 and 2.19. In Sect. 3, we obtain a priori estimate for the
solutions, and finally in Sects. 4 and 5 we prove Theorems 2.12 and 2.19, respectively.

We finish the introduction with notations used in this article. We use “:=" or “=:”
to denote a definition. As usual, R? stands for the d-dimensional Euclidean space of

pointsx = (x', ..., x%). Weset B, (x) := {y € R? : |[x—y| < r},and B, := B,(0).N

denotes the natural number system and Ny := NU{0}. Fori = 1, ..., d, multi-indices
o= (01,...,0q),0; €{0,1,2,...}, and functions u(x), we set
_ Ou

Ui = o g = Dju, DJu = D' ~--DZ"u, o] =01+ +04.

We also use the notation D' for the set of partial derivatives of order m with respect to
x. For a Banach space B, by C2° (R" ; B) we denote the collection of B-valued smooth
functions having compact support in R?. We drop B if B = RY. S(R?) denotes
the Schwartz class on R?. By C}f (R4), we denote the space of twice continuously
differentiable functions on R? with bounded derivatives. For p > 1,weuse L, to
denote the set of complex-valued Lebesgue measurable functions u on R? satisfying

1/p
lully, = </R Iu(x)|pdx) < .

Generally, for a given measure space (X, M, u), L,(X, M, u; B) denotes the space
of all B-valued M*-measurable functions u so that

1/p
Nl L, x M. By = </X IIM(x)IIf;M(dx)> < 00,

where M" denotes the completion of M with respect to the measure . If there is no
confusion for the given measure and o -algebra, we usually omit the measure and the
o -algebra. We use the notations

F) @) = f&) = /R Ty, P00 = /R @

@m)?

to denote the Fourier and the inverse Fourier transforms, respectively. a A b :=
min{a, b}, a V b := max{a, b}, and at := a v 0. Also we write a ~ b if there
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exists a constant ¢ > 1 independent of a, b such that ¢ la < b < ca. If we write
C =C(a,b,...), this means that the constant C depends only on a, b, .. .. Through-
out the article, for functions depending on (w, t, x), the argument w € £2 will be
usually omitted.

2. Main results

First, we introduce some preliminary facts on the fractional calculus. For @ > 0
and ¢ € L1((0, T)), we define the Riemann-Liouville fractional integral of the order
o by

1

t
IFo = / (t—9)*o(s)ds, 0<t<T.
! (o) Jo

We also define IO(p := . Due to Jensen’s inequality, for p € [1, oo],
178¢] . 00y = C@ P T) Il 01) - 2.1)
One can easily check for any o, 8 > 0
191P o = 1%1P . (2.2)

Let € [n — 1, n) for some n € N. For a function ¢(¢) which (%)n_l I % is
absolutely continuous on [0, 7], the Riemann—Liouville fractional derivative Df and
the Caputo fractional derivative 97 of the order « are defined as

d n
D% = — 1" %), 2.3
T(p <dt> (l‘ (0) ( )
and

n—1
o' = Dy (so(t) - %w“”(@) :

k=0

In particular, if ¢ € (0, 1), then

g =(11"¢) 0. e = (1 —0O)) .

Note that D¥p = 3%¢ if p(0) = ¢V(0) = - -- = "~ D(0) = 0. By (2.2) and (2.3),
for any «, B > 0, we have
« B Dfl_ﬁgo o> B
Dyl ¢ = B—a
I7 "o a<pB,
and DDP = D Also if p(0) = V(0) = --- = =1 (0) = 0 then

I79fu = I' Djfu = u.
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Finally we define I, “¢ := D¥¢ for a > 0.

Next, we introduce the spatial non-local operator ¢ (A), and function spaces related
to this operator. Recall that a function ¢ : Ry — Ry satisfying ¢ (0+) = 0 is called
a Bernstein function if there exist a constant b > 0, called a drift, and a Lévy measure
u(G.e., f(O,oo)(l A )u(dt) < oo) such that

¢(A) =br + f (1 —e ). 2.4
(0,00)

It is known that ¢ (1) is a Bernstein function if and only if there is a subordinator (i.e.,
one-dimensional non-decreasing Lévy process) S; whose Laplace exponent is ¢ (1),
that is,

Ee 5 = ¢ M v > 0. (2.5)
From (2.4), we easily have ¢'(1) > 0 and
(—=D)"¢p™ () <0, VA>0, neN.
Actually, for any n > 1, we also have (see, e.g., [27,42])
WP )| < CmP (). (2.6)

Note also that ¢!, the inverse function of ¢, is well defined since ¢ (0+) = 0, ¢ is
strictly increasing and ¢ (4-00) = oco.
For f € S(R?), we define ¢ (A) f := —¢(—A) f as

P(A) f(x) = F (= (ENF(FE) ).

It turns out (e.g., [21, Theorem 31.5]) that ¢(A) is an integro-differential operator
defined by

¢(A)f(x) =bAf + /}éd (fx+y) = f) = V@) yly<t) J()dy (2.7)

where J(x) = j(|x]) and j : (0, c0) — (0, c0) is given by
i) :/(0 )(47rt)’d/2e”2/(4’)u(dt).
,00

The non-local operator ¢(A) is related to a certain jump process as follows (see
[25,42]). Let W; be a d-dimensional Brownian motion independent of S;, and denote
X; := Ws, (d-dimensional subordinate Brownian motion). Then, it holds that ¢ (A)
is the infinitesimal generator of X;, that is,

Efx+X0) - f®)
; ;

¢(A)f(x) = 1tl¢n(f)1
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where E denotes the expectation. Furthermore, the solution to the equation
up =¢(Au, t>0; u,-)=uo

is given by u(t, x) = Eug(x + X;).
Now we introduce Sobolev spaces related to the operator ¢(A). For p > 1 and
y € R, we denote H IZ) " by the closure of S (R4) under the norm (cf. [14])

luall yor = (1= $CAN" Pl

Note that if ¢p(1) = A, then H Zb "7 is the classical Bessel potential space H ;,/ . For

anyu € H Z) 7 and ¢ € S(RY), by (u, ¢) we denote the value of linear functional u at
@, that is,

9) = (1= (AN u, (1 - $(2) ")

Ly®RY)
Forany y,v € Randu € H,?’y,we have (1 —(/)(A))"/zu € H,?’va, and furthermore
(1= ¢(A)"u, ¢) = (u, (1 —p(A)"%p). Vo e SRY). (2.8)

Let /> denote the set of all sequences a = (al, a, .. .) such that

S 172
. k2
laly, = (E |a”™| ) < 0.
k=1

By H,?’y () = H,‘f”y (R4; 1) we denote the class of all I,-valued tempered distribu-
tions v = (vl, vZ, .. .) on R4 such that

100 y97 1y 1= NI = B(AD Pl I, < 00.

The following lemma gives basic properties of H 1? " and H Z) Y(1h).

Lemma2.1. (i) Foranyp > 1,y € R, H;f’y is a Banach space.
(ii) Forany p > 1and .,y € R, the map (1 — ¢(A)M? is an isometry from Hg)’y
to H,‘f’yiu.
(iii) If p > 1 and y1 < y», then H,?‘yz - H,?’yl, and there is a constant C > 0
independent of u such that

IIMIIH;g,n < CllullHﬁ.m
(iv) If p > 1 and y > 0, then it holds that

lull v ~ (||u||L,, + ||¢(A)V/2u||L,)) ‘
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(v) Theassertionsin(i)—(iv) also hold true for the l>-valued function spaces Hg”y (lp).

Proof. First, (i) and (ii) easily follow from the definition of HZ,W. For (iii) and (iv),
see Theorems 2.3.1 and 2.2.7 in [14], respectively. Here, we remark that the proofs
are based on Lemma 1.5.6, Theorems 1.5.10 and 2.2.10 in [14], which can be proved
for I>-valued spaces. 0

Remark 2.2. (i) Following [37, Remark 3], one can show that the embeddings
HI%” c H;f’zn and Hﬁ" () C H,?’Z” (1) are continuous for any n € N. There-
fore, using this and the fact that C2°(R") is dense in H ,’,’ / for any " € R, we
deduce that C2°(R) is dense in HY"” for all .

(i) Let v € R and ¢ € S(R?). Then for any multi-index o, D%¢ € H;f’v by (i).
Therefore, (1 — ¢(A))"/?D%¢ € L,, and this implies (1 — ¢(A))"/?¢ € H2"
forany n € N.

Let (2, %, P) be a complete probability space and {-%#;,¢ > 0} an increasing
filtration of o -fields .%; C ., each of which contains all (.%, P)-null sets. We assume
that a family of independent one-dimensional Wiener processes {wf }een relative to
the filtration {%;, ¢+ > 0} is given on £2. By P, we denote the predictable o-field
generated by %, i.e., P is the smallest o -field containing every set A x (s, t], where
s <tand A € Fy.

Now we define stochastic Banach spaces for p > 2:

HYY(T) = L, (9 x [0, T1, P H,‘f‘"’) . Lp(T) =H(T),

7 (T, 1) = Ly (2 x [0. TP HY 7 (). Lp(T, o) = HO(T, 1.
We write g = (gl, g2, ...) E HSO(T, D) if gk = 0 for all sufficiently large k, and each
gk is of the type
n(k)

gt ) =) 1k HOg ), g% e CO®Y,
i=1

where 0 < ré‘ < rlk <. < rr’f(k) are bounded stopping times. One can check that
the space HG° (7, [») is dense in Hﬁ’y (T, 1) (see, e.g., [28, Theorem 3.10]).

Remark 2.3. Let p > 2, and g denote the conjugate of p. Then, by Minkowski and
Holder inequalities, for any g € H(ﬁ’y(T, [)and ¢ € Hf’fy,

o0 T
E [Z f (86, ), <o>2ds}
k=170

— _ 12y ok (s . — -v/2
—IEL}_lfO (=), (1 = ga) )w)deS}
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T
<E /0 1= ¢ ()7 Pl I7 11— ¢(A) )7, di

=< C(T)||</>||2 y¢||g|| 2.9

HOY (T 1)

Consequently, (g, ¢) € L2(82 x [0, T], P; [), and it also follows that the sequence
of stochastic integral Y 7, fot (g% (s, ), p)dw’ converges in probability uniformly
on [0, T'], and consequently the infinite series Z;’il fot (gk(s, ), (p)dwf becomes a
continuous L-martingale on [0, T'].

The following lemma will be used later for certain approximation arguments.
Lemma 2.4. (i) Letv > 0and h € Ly(£2 x [0, T], P; [2). Then, the equality

I (Z /()vhk(s)dw‘]Y‘) =) <1,“ /()vhk(s)dw(y‘) (t)
k=1

holds for allt < T (a.s.) and also in L,($2 x [0, T]).
(ii) Suppose v > 0and h,, — hin Lo($2 x [0, T], P; l») asn — oo. Then

> (1,” / | hﬁdw§> 0 — Y (1; / ' hkdwf) )
0 k=1 0

k=1

in probability uniformly on [0, T].
(iii) Ifv < 1/2and h € Ly($2 x [0, T], P; I2), then

v [k k _ 1 oo/t vk k
) (;/Oh (s)dws)(t)_—F(l_v)]; O(z )" kK (s)dw*

(a.e.)on 2 x [0, T].
(iv) LetO <v < 1/2and h,, — hin Ly($2 x [0, T], P; ) as n — oo. Then, there
exists a subsequence n j such that

o th',i.(s)dwf (t) —> 8} Z/.hk(s)dwf )
PR = 70

(a.e.)on 2 x [0, T].

Proof. See [7, Lemma 3.1, Lemma 3.3] for (i)—(iii). We prove (iv). Put g, = h,, — h.
Then, for each ¢t > 0, by Burkholder—Davis—Gundy inequality,

t
t—s)" Ugn(s)dw < Esup

r<t

/ (t—s5)"" (s)dw

- CIE/ 1t = 5172 |gu(s) 2 ds
0
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Therefore, we have the L(£2 x [0, T]) convergence, i.e.,

T | t 2
IE/ Z/ (t — )" gk (s)dw"
0 k=1 0

as n — 00, and the claim easily follows. O

T t
dt < cIEf / It — 5172 |gu(s) [}, dsdt — 0
0 0

Now, we explain our sense of solutions.

Definition 2.5. Let u € H(f,’yl(T), f e Hﬁ’yz(T), and g € Hﬁ’m(T, Ip) for some
y; € R,i =1,2,3. Then, we say u satisfies

S t
3u(t,x) = f(t.x)+d’ Z/ (s, x)dwk, 1€, T); u©,)=0 (2.10)
0
k=1
in the sense of distributions if for any ¢ € S(RY) the equality
o t
W, 0) = IF (f0). )+ 0 Y /0 (¢©rp)aut @i
k=1

holds “a.e. on §2 x [0, T].” Here 8,‘970[ = I,af’s if B <o

Remark 2.6. (i) Due to Remark 2.3 and Lemma 2.4, the infinite series in (2.11)
makes sense.

(i) Let (2.10) hold with u, f, g as in Definition 2.5. Denote y = min{y, y2, ¥3}.
Then, (2.9), Lemma 2.4 and standard approximation argument show that (2.11)
holds a.e.on £2 x [0, T] forany ¢ € Hf’_y,whereq = p/(p — 1).Inparticular,
it holds a.e. for any (1 — ¢(A))"/?@, where v € R and ¢ € S(RY).

Remark 2.7. Let u, f and g be given as in Definition 2.5. Fix v € R, and denote
Vi =v —v,i=1,2,3. Alsodenote it = (1 — ¢(A))"/?u, and define f and g in the
same way. Then, by Lemma 2.1,

i e Hy"'(T), feHy™(T), §eHy™(T,h).
Moreover, due to Remark 2.6 (ii) and (2.8), it follows that (2.10) holds in the sense of
distributions with (iz, f, g), in place of (u, f, g).

In Definition 2.5, we only require (2.11) holds a.e. on §2 x [0, T],notforallt < T
(a.s.). Below we give an equivalent statement which will clarify our notion of solutions.

Proposition 2.8. Let u € ]H[‘f,’y, fe H‘f,’y(T), and g € Hﬁ’V(T, L) for some y € R.
Then the following are equivalent.

(i) u satisfies (2.10) in the sense of Definition 2.5 with f, and g.

(ii) For any constant A satisfying

1
A>(aVvp)and A > —,
p
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I,A_“u has an H;f’y -valued continuous version in Hﬁ’y (T), still denoted by I,A_“ (u),
such that for any ¢ € S(R?),

0 t
). ) = 1 (F ).+ ) 10 /0 (g6 0)aut @12

k=1

holds “forallt € [0, T] (a.s.).”
(iii) The claim of (ii) holds for some A satisfying A > (¢ V ) and A > %

Proof. Due to Remark 2.7, it suffices to prove only the case y = 0. In this case we
have Hg)’o = L, and thus the lemma follows from [22, Proposition 2.13]. Actually
[22, Proposition 2.13] does not include statement (iii) above. However, the proof “(ii)
—(1)” only utilizes the result of (iii). O

Remark 2.9. If « = B = 1, then we cake take A = 1. Then, (2.12) reads as

t S t
(u(r),wzfo (f(s. -),so>ds+Z/0 (g"(s, ~),¢)dwf, Vi<T(as.).
k=1

This might look wrong at first glance because in Definition 2.5 we only require this
equality holds a.e. on £2 x [0, T']. The point of Proposition 2.8 is that « has a continuous
version, still denoted by u, such that this equality holds for all # < T (a.s.).

Proposition 2.10. Let assumptions in Proposition 2.8 hold, and let u satisfy (2.10) in
the sense of Definition 2.5 with f and g.
()IfA> (aV B)and A > % then

Esup [IA~w@)|?, < C p + P ,
ZSlT3 14,77°( ())||H;”-V =< ||f||Hﬁ,y(T) ||g”H‘£’V(T,12)

where C = C(A, o, B, T, p).
(ii) Let 0 := min{l, o, 2(ac — B) + 1}. Then, foranyt < T,

t
p < NS | p p
Il ) < € /0 (t—s) (||f||Hi,y(s)+||g||Hﬁ4VM) ds,  (2.13)

where the constant C depends only o, B,d, p,y, ¢, T.

Proof. Again, we only need to consider the case y = 0. Therefore, (i) and (ii) follow
from [22, Proposition 2.13] and [26, Theorem 2.1 (iv)], respectively. O

Fora € (0,1),8 <o+ %, and k € (0, 1), define

2B - D7

co = cola, B, k) = B +rlg=1y.

Below we use notation f (), and g(u) to denote f(w,¢?, x, u), and g(w, ¢, x, u),
respectively.
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. . 42
Assumption 2.11. (i) For any u € HY? 7(T),
fy e HYY(T),  gu) € Hy (T, by).
(ii) For any ¢ > 0, there exists a constant N = N(g) > 0 so that

||f(t7 u) - f(t7 v)”H‘g’V + ||g(t7 u) - g(tv v)”Hz’J’"'CO(lz)

< ellu = vl o2 + Nl = vl s

2
for any w, t,and u, v € Hg),y+ .

Here is our main result for SPDE driven by a family of independent one-dimensional
Wiener processes. The proof of Theorem 2.12 is given in Sect. 4.

Theorem 2.12. Leta € (0,1),  <a+1/2, p>2,y e R,and T € (0, 00). Let
Assumption 2.11 hold. Then, the equation

o t
0% = ¢p(A)u + f(u)+ 9f Z/ gwydw*, e, 1], (2.14)
k=179

. . . ¢, y+2
with u(0, -) = 0 has a unique solution u € M,

and for this solution we have

(T) in the sense of distribution,

lullgsr2 gy < € (1 Ollggrgy + 18O lgoran ) (215)
where the constant C depends only on «, B,d, p, ¢, y,k, and T.

Remark 2.13. Recall ¢y = @ + k1g=1,2. Note that the pair (y + 2,y + co)
determines the regularity relation between the solution u and forcing term g(0). Here
are some comments and details on c¢gp:

—if B > 1/2, then ¢ = (zﬁa—_l) Hence, to have H,‘f’y”—valued solution u, we
@g=1)

require g(0) to be an H Z) AN (I)-valued process. This relation is optimal
and can be easily proved using a scaling argument (see, e.g., [22, Remark 2.20]).

— if B < 1/2, then ¢y = 0. Thus, the stochastic forcing term g(0) is not assumed
to be smoother than the deterministic forcing term f(0). Actually, if 8 < 1/2,
we can transform equation (2.14) into a PDE by absorbing the stochastic term
of Y22 i gk wydwk into f ().

— if B = 1/2, we assume ¢y > 0. This is a technical assumption: we handle the
case B = 1/2 based on the result for 8 > 1/2, and this approach yields extra
regularity on g(0).

Remark 2.14. Regarding the equations with nonzero initial values, the similar argu-
ment in [16, Sect. 4.4] yields that for the solution to

3u=¢(Mu, t>0x¢ RY; (0, ) = uo,
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we have
”u”H“gvV"’z(T) S CHMO||LP(Q,_7:0;B$‘V+2_2/UP)’

where Bf,”y+2_2/ “P denotes the Besov spaces related to ¢ (see, e.g., [27, Definition
2.3]). However, for the simplicity, we always assume u(0) = 0.

Remark 2.15. Bylettingae — 1andtaking 8 = 1and ¢ (A) = A, we (atleast formally)
get a classical result by Krylov [28, Theorem 5.2].

Next, we consider the semi-linear SPDE driven by space-time white noise:
0% = ¢p(Au+ fu)+ P 'hayW, t>0; u©,)=0. (2.16)

Here Wisa space-time white noise on [0, 0o) x R4, and the functions f and h depend
on (w, t,x,u).

First, to explain our sense of solutions, let us multiply by a test function ¢ € S(R?)
to the equation, integrate over [0, 1) x R?, and (at least formally) get

t 13
I =u(t, )., ¢) = /0 ($(Qu+ f@w), p)ds + 0! /0 fR [ h(weW (dxds),

where Walsh’s stochastic integral against the space-time white noise is employed
above. Applying Dt1 ~* we further get

t
(), ) = I (@(A)u + fu), p) + 3;97“/0 /;@d h(uw)eW (dxds). (2.17)
Now, let {7¥ : k = 1,2,...} be an orthogonal basis on L>(R%). Then (see [10,28])

there exists a sequence of independent one-dimensional Wiener processes { wf k=
1,2, ...} such that

t o t
/f X(s,x)W(dxds):Z// X (s, X)nf(x)dxdw®, Vi (a.s.)
0 JRrd = /0 JR?

for any X of the type X = ¢(x)1(;,»1(t), where 7, o are bounded stopping times and
;eC (R%). Thus (2.17) leads to the equation

S t
%u =¢>(A)u+f(u)+8,'32/ hn*dwk, t>0; u(0,-)=0. (2.18)
k=170

Definition 2.16. We say u is a solution to equation (2.16) in the sense of distributions
if u satisfies equation (2.18) in the sense of Definition 2.5, that is, foreach ¢ € S (Rd),

o t
W), 9) = I @(Au+ f@), )+ Z/O (nwnt, o)
k=1

holds “a.e. on £2 x [0, T].” Here 3,’3_“ = I,“_ﬂ if f<a.
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Here comes our assumption on nonlinear terms f(x) and & (u) together with some
restrictions on B and d. The argument w is omitted as usual.

Assumption 2.17. (i) The functions f and 4 are P x B(R4t!)-measurable.
(i1) Foreach w, t, x, u and v,

|f(t,x,u) - f(tv-xv U)' S Klbt - U|1 |h(t»xsu) _h(tv-xv U)| S é(l,x)|u — U,

where K is a constant and £ is a function of (w, t, x).
(i) 80 € (1/4, 11, H)''  HY,

_ +
B < (1—%)0{—}—%, d<280(2—%) =dy.  (2.19)
0

Remark 2.18. Using the Fourier multiplier theorem, one can easily check that the
embedding Hff'l CH g" in Assumption 2.17 holds under condition (3.3).

Note that dy € (1,4], and if 8 < a(l — %) + 1. then one can take d = 1,2, 3.
Recall
fO) = f(t,x,0), h(0)=h(z,x,0).
Here is our main result for SPDE driven by space-time white noise.

Theorem 2.19. Suppose Assumption 2.17 holds, and

||f(0)||H?)fk0*vo(T) + 12O L, ) + Sal)ll? 1§12y, < 00,

where ko and s satisfy

d 2B -1t d d
— <kp<|2——————|A—, —— <. (2.20)
280 o do  2kobo —d

Then, equation (2.16) has unique solution u € Hﬁ’z_kO_CO(T), and for this solution
we have

lllg02-10-0 ) = € (I Olgosoa gy + 1ROl 1))

where C is a constant independent of u.

Remark 2.20. (i) Due to the second relation in (2.19) one can always choose k satis-
fying (2.20).

(i1) Note that the space for the solution is H(ﬁ’z_ko_co (T'), and the constant 2 — kg —c
represents the regularity (or differentiability) of the solution with respect to the spatial
variable. By the definition of ¢, we have

d 26-1 . 1
_d _ =1 . -1
0<2—kyp—cp < 220 « p %

If £ is bounded, then one can choose r = 1. Thus by taking k¢ sufficiently close to
d/(280), one can make 2 — ko — cp as close to the above upper bounds as one wishes.
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3. A priori estimate for linear equation

In this section, we obtain a priori estimate for the solution to the linear equation
et t
3%u = p(Mu + 3° Z/ gkdw*, >0, u©,)=0. (3.1
0
k=1

More precisely, we prove if % <B<a+ %, then

1-28-1)/2 P p
Ellg(a)' =GP0 2w) ey = CENZILIY (o oz 3D

where C is a constant independent of u.
If « = B = 1, then a version of (3.2) is obtained in [24]. In this case, the solution
to (3.1) is given (at least formally) by the formula

0 t
uty =3 [ Sttt
k=179
where S; : f — ¢/ £ and (3.2) reads as

<c|lgls ||Lp(.(2><(0,oo)><Rd) :
L,(£2%(0,00)xR%)

o0 t
H¢—¢(A)Z / 9D gk (5)dwk
k=1 0

We give two independent proofs of (3.2). One is based on Krylov’s analytic approach
and the other is based on H°°-calculus. The first proof is much elementary, but it
requires long calculus and some extra condition on ¢.

3.1. Analytic approach

In this subsection, we impose the following assumption on ¢;

Assumption 3.1. ¢ is a Bernstein function for which there exist constants §y € (0, 1]
and o > 0 such that

R\* _ ¢(R)
ko | — < , O0<r <R<o0. 3.3)
r ¢(r)
By Assumption 3.1 and the concavity of ¢, we have
R\* _¢(R®) _R
ko | — < <—, O0<r<R<o0. 3.4
r ¢y —r

Note that we admit the case 69 = 1, and we assume (3.3) forall0 < r < R < oo.
Here are some examples of Bernstein functions satisfying Assumption 3.1 (see, e.g.,
[42, Chapter 16] for more examples):

(1) Stable subordinators : p(1) = 1#, 0 < p <1;
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(2) Sum of stable subordinators : ¢ (1) = Myl o< B, B2 <1;

(3) Stable with logarithmic correction : ¢ (1) = 2B (log(1+A), Be(,1),yc¢€
(=B, 1-B);

(4) Relativistic stable subordinators : ¢ (1) = (A+m'/#Yf—m, B € (0,1),m > 0;

(5) Conjugate geometric stable subordinators : ¢ (A) = m, B € (0,2).

Recallthat § = (S;),>( is asubordinator with Laplace exponent ¢ and W = (W;),>¢
is a d-dimensional Brownian motion, independent of S. It is well known that the
subordinate Brownian motion X, = Wyg, is a Lévy process in R¢ with characteristic
exponent ¢(|§|2) (see, e.g., [2,21]), that is,

Fe iXf = ¢ 0D vi50 £ eRY

Here, by p(t, x) = pa(t, x), we denote the transition density of X;.
Let Q; be a subordinator, independent of X, having the Laplace transform

Eexp(—AQ;) = exp(—tA%).
Such process exists since the function A — A% is a Bernstein function (see (2.5)). Let
R; :=1inf{s > 0: Q5 > ¢t}

be the inverse process of the subordinator Q;, and let ¢(¢, r) denote the probability
density function of R;. Then, it is known that (see [27, Lemma 5.1] or [5, Theorem
1.1]), the function

o8]

(.¢]
q(t, x) :=/ p(r, x)d,P(R; SV)=/ p(r,x)e(t, r)dr
0 0
becomes the fundamental solution to equation
3u=¢(MDu, t>0; u,-)=uop.

That is, g (¢, x) is the function such that under appropriate smoothness condition on
uo, the function u(t, x) := (q(t, -) *uo(-))(x) solves the above equation. Actually, the
definition of g (¢, x) implies that ¢ (¢, x) is the transition density of Y; := Xg,, which
is called subordinate Brownian motion delayed by an inverse subordinator.

For g € R, denote

Gap(t.r) = DL p(t,r) = (D) “p(.)(), (3.5)
and for (¢, x) € (0, 00) x R? \ {0} define
Go,p(1, %) = [y p(r, X)¢a,p(1, r)dr,
and
a4y (1, %) = [57 (A p(r, X)pa,p(t, r)dr.

Below we collect some properties of g4, g and q;” g The proof will be given in
Appendix A.
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Lemma 3.2. Letm € No, o, y € (0, 1), and g € R.
(i) D{giaq(t, x) is well-defined for (¢, x) € (0, 00) x R \ {0}, and it holds that

D;g_aqa‘v -x) = Qa,ﬁ(t, -x)'

(ii) D' qe,p(t, x) is well defined for (t, x) € (0, 00) x R? \ {0}, and there exists
C =C(a, B,d, b0, ko, m) such that

_gd(x]7?)
DY qo (1, %) < C 1> ﬂW. (3.6)
Additionally, if t*¢ (|x|2) > 1, then
2t% 4
D7 o (0. 2)] < C1 P / @1y 2y, (3.7)
(@ (Ix|=2)~!

where ¢~ denotes the inverse of ¢.
(iii) D)”fq;/’ﬂ(t, x) is well defined for (t, x) € (0, 00) X R4 \ {0}, and there exists
C = C(a, B,d, do, ko, ¥, m) such that

_gd (x|
|D;nq¢;/3(f,)€)| <Ct* ﬁw. 3.8)
Additionally, if t%¢ (|x|~2)) > 1, then
2%
D2l 0l <ot @ TN @ g (39)
' (@ (x| =)~
(iv) For any t > 0,
[ |qa,p(t, X)|dx < C1*7P, (3.10)
]Rd
and
/ lgz, (8, )ldx < C1170F, G.11)
R4 ’
where C = C(a, B, d, 8o, ko, V).
(v) Foranyt > 0 and € € RY,
Fa(ah ), &) = —1“PHUED Ea1—pra(—1*$(E1), (3.12)
Falqap)t, &) =t PEy 1_pra(—1"¢(IE]7)), (3.13)

where Ey g is the two-parameter Mittag—Leffler function defined as

o0 k
z
Eqp(2) = E ———— zeC,a>0,8€eC.
= '@k +p)
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Next, we introduce the representation formula of the solution. For the rest of this
section we assume

aec0 1), 1)2<B<a+1/2.

Lemma 3.3. For given g € H (T, 1), define
S t
u(t, x) = Z/O /Rd Gap(t — 5, x — (s, y)dydwk. (3.14)
k=1

Then, u € Hﬁ’z(T) and satisfies (3.1) in the sense of distributions (see Definition 2.5).

Proof. The proof is almost the same as that of [26, Lemma 4.2] which treats the case
¢ (1) = X. The only difference is that we need to use (3.12), (3.13) and [27, lemma
4.1] in place of corresponding results when ¢ (1) = A. g

Denote ¢; :=2 — (28 — 1)/« and
TP h(x) = /Rl qéjéz(l‘ —s.x —yh(dy, heCPRY.

This is well defined due to Lemma 3.2 (iv). It is also easy to check (cf. Remark 2.2
(i)

1) = /R Qo p(t = 5,3 = VP 2h(y)dy
=9 [ quplt =53 = D).
R4

Take the solution u from (3.14). Then, by the Burkholder—Davis—Gundy inequality,

T ; p/2
6@ Pl < cE [ [ ( / Z|Tﬁi§‘gk(s><x)|2ds) didx
k=1

; 172
= C(pE| ( / |T,“_’fg<s>(x>|%2ds)

Now we estimate the right hand side of (3.15) in terms of |||, (.1,) under a slightly

. (3.15
L,((0,T)xRd) ( )

general setting. Let H be a Hilbert space. For functions g € C° (R¥*1: H), we define

the operator 7 as
t
Tg(t,x):= [/
—00

where |- |y denotes the given norm in H. Note that 7 is sublinear since the Minkowski
inequality yields

5 172
7P (s, -)(x)‘H ds} ,

If + gllLac—oco,n): i) < N FllLy((=00,0): H) + 1811 La((—00,0); H)-

Note that (3.2) is a consequence of (3.15) and Theorem 3.4.
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Theorem 3.4. Let H be a separable Hilbert space, and T € (—o00, 00]. Then, for any
g€ COMRI H),

T T
/ / |Tg(t, x)|P dtdx < C/ / |g(t,x)|1;,dtdx, (3.16)
Rd J—o0 Rd J—o0

where C = C(a, B,d, p, 80, ko). Consequently, the operator T is continuously ex-
tended to LP(Rd‘H; H).

The proof of the theorem is given later after some preparations. The main strategy
is as follows.

1. First, we control the sharp function of 7 g in terms of maximal function of g
(the definitions of the sharp and maximal functions are given below), that is, we
prove

(Tg)*(r,x) < C(M,M,|g|%(t,x)"?, V(t,x) uniformly on £2.

2. Then, we apply Fefferman—Stein inequality and Hardy-Littlewood maximal in-
equality to obtain (3.16).
Recall that g = (g', g%, ...) € H(T, I) if g* = 0 for all sufficiently large k, and
each gF is of the type

n
gk(ta -x) = Z I(T,',l,f,'](t)gik(x),

i=1

where 0 < 19 < 71 < --- < 1, are bounded stopping times, and gik € C?O(Rd).

The following result, Lemma 3.5, is a version of Theorem 3.4 for p = 2. For the
proof, we use the following fact on the Mittag—Leffler function: if « € (0, 1) and
b € R, then there exist positive constants ¢ = ¢(«x) and C = C(«, b) such that

|Eap(@)| < CUA A" if 7 —e<|arg@) <7 (3.17)

(see, e.g., [40, Theorem 1.6]).
Lemma 3.5. Forany T € (—00, 0] and g € C° (R, H),

T T
f / |Tg(t, x)>dtdx < C/ / |lg(t, x)|% drdx, (3.18)
R4 J—o00 R4 J—o0

where C = C(«a, B, d) is independent of T.

Proof. We follow the proof of [26, Lemma 3.5].

Step 1. First, assume g(¢, x) = 0 for ¢+ < 0. In this case we may further assume
T > Osince the left hand side of (3.18)is zeroif T < 0. Since g(¢t,x) = T g(t,x) =0
for + < 0, by Parseval’s identity,

T
// |Tg(t, x)|>dtdx
R4 J—o0
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T pt s . - )
=f f/ DUEI Gupt — 5. )(E)]|8(s. )|}, dEdsdt
0 0 JRd

T T
= /R ) /0 / SUED Gt — 5. )@ |85, )}, drdsds

T T—s
_ / / / b (1P
R4 JO 0

By Lemma 3.2 (v) and (3.17) (recall 8 > 1/2),forO <s < T,

A

Gup(t, )| |G, &3, drdsds. (3.19)

T—s
/0 SUEP) |dus(t. )@ dr

< p(EH fo

< CH(IgH! /
0

T

2
1 PEg 1—pra (=9 (1E1D1™)| dt

$(lED) @ 2

2 Bar £ ClaE)p (181D f 1
d(E1>) @
28—1

< CoUER ) 1 CpsP) I 2p(sP) ) < C.

T tot—ﬁ

P&

where A = (& : ¢ (|€]?) = T~%}. Thus, (3.19) and Parseval’s identity yield

T T
/ / |Tg(t,x)|2dtdx§C/ / |lg(t, x)|3; dxdt,
R J—c0 0 JRd

and (3.18) holds for all T > 0 with a constant independent of T'. It follows that (3.18)
also holds for 7' = oc.

Step 2. General case. Take @ € R so that g(z, x) = 0 for t < a. Then obviously,
for g(t, x) := g(t + a, x) we have g(t) = 0 for r < 0. Also note that
2
ds
H

t+a
(Tg(t +a)* = ( /
2
ds)
H

t
2 _
= (f V g (¢ = 5.x — »)3(s. y)dy
—00 R4
= (T§0)*.
Thus, it is enough to apply the result of Step 1 with g and T — a in place of g and T,
respectively. The lemma is proved. O

2
A@ go it +a —s.x — y)g(s, y)dy

For b > 0 and (¢, x) € R?*!, we define

—1/a
k)= (p07)) T By =y e R |y x| < b},

and

Ip(t) = (t —k(b), 1), Qp(t,x) = Ip(t) x By(x).
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We also denote

Iy =1,(0), By =Bp(0), Qp= 0(0,0).

For measurable functions /4 (¢, x) on RY*! we define the sharp function

h#(t,x) = sup ][ |h(r, 7) — hQ| drdz,
0

(t,x)eQ

where

ho =]L h(s, y)dyds,
0
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and the supremum is taken over all Q C R4+ of the form Q, containing (7, x).

For functions 4 on Rd, we define the maximal function

Myh(x) := sup
* xeB,(2) 1Br(@D| JB,(x) x€B,(2)

lh(y)ldy = sup ][ lh(y)ldy.
B (2)

We also use the notation M, h(t) when d = 1 for functions depending on ¢. For

measurable functions X (z, x) set

Mich(t, x) = My (h(z, ) (x),  Mih(r, x) = M; (h(, x)) (1),

and

M;Myh(t, x) = M; (Mxh(-, x)) (2).

Below we record some useful computations which are often used in the rest of this

section.

Lemma 3.6. (i) Let f be a nonnegative integrable function on R. Assume there exists

a > 0 such that f(t) =0ift > —2a. Then, foranyv > l andt € (—a, 0),

—2a p-r —2a 0
/ / f(r)s Vdsdr = f fr)(s —r) Vdsdr

—00 —a

< C()a> "M, £ (1).

(ii) For positive real numbers v, 0 and r, define

(p~2)Y
Gyo(p) == o p(, , p>0
0
and
2r%
Hyg(r, p) i= / @ ta=)rvdl, e H = 1.
(d(p~2)~1

(3.20)

(3.21)

(3.22)
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Then, we have

d
‘%Gu,e(p) =CW.0OGvot1(p), p>0, (3.23)

< C(a, B.d, 80, ko, v, O)Hyo41(r, p),  r*¢p(p™?) = 1. (3.24)

—d H,o(r, p)
7
dp U,9 ’ 10

Proof. (i) Using integration by parts, we get

—2a 0
/ f)(s —r) Vdsdr

—a 72u
= i i) £ ((—a -l (—r)l_”> dr
—2a 0
=co [ ( / f(F)dF) ((ma =) = (=) dr

-V —v—1

—q V' <vi@-pp , we have forr < —2a < 0,

Since 0 < p < g implies p
(—a—r)" = (=" <va(—a —r)"""L

Therefore,

—2a /0 —2a
f f(r)(s—r)_”dsdrfC(v)a/ </ f(r)dr)( a—r"""lar

B —2a
= CO)aM, f(©) f —r(=r/2)" " dr
< C()a* "M, f(1).

(ii) By (2.6), we have

LG P Vo S
'—Gue( >‘ ‘ T DI
P(p2)"

< CO 0= = CO.0Guar (0)

Thus, (3.23) is proved. Now we prove (3.24). For 0 < v < r%, define

2r¢
Hoo(r,v) = / @A)l
v
Applying the fundamental theorem of calculus and using (2.6),

d d
‘%Hu,e(r, p)‘ =C ‘—Hw(r, D]y po2y 1 @O TN T (0 Hp 7

e L {0
= C—5— @0 N = C—



J. Evol. Equ. A Sobolev space theory for the SPDEs Page 23 of 57 57

By 3.3)withR =¢~ 12 Y andr = p~2,
e /2“’“’2”‘ $(p2)"
(

dl
PO+ (p-2)-1 PO+

207!
S C/ (¢71(171))(9+1)/2l7\)dr
(p(p=2)~!

2r®
S C/ (¢—1(l—]))(9+1)/2l—\1d1
(p(p=2)~!
= CH, g+1(r, p).
Therefore, we have (3.24), and the lemma is proved. O

We will also frequently use the following version of integration by parts formula:
if F and G are smooth enough, then forany 0 < ¢ < R < oo,

R
/ F(2)G(lzhdz = — / G’(p)[/ F(z)dz]dp
e<|z|<R € lz|<p

+ G(R) F(z)dz — G(e) F(z)dz. (3.25)

[z|<R lz|<e

This is easily obtained using the relations

R
/ F(2)G(|z]) dz =/ G(p) (/ F(S)dSp> dp
e<[z|<R e 3B, (0)

R d
:/ G(p)— (/ F(z)dz) dp.
e dp \JB, )

and applying standard integration by parts formula to the last term above.

In the following lemmas, Lemmas 3.7-3.11, we estimate the mean oscillation of
T g on Q. For this, we consider the following two cases

e g has support in (—3«(b), 00) X R? (see Lemma 3.8),

e g has support in (—oo, —2« (b)) X R4,

The second case above is further divided into the cases

e g has support in (—oo, —2k (b)) x B3, (see Lemma 3.9),
e g has support in (—o0, —2k (b)) x Bj, (see Lemmas 3.10 and 3.11).

Note that, by Jensen’s inequality, for any ¢ € R and function £,

2
<][ |h(7’, 7) — hQ| drdz) S][ |h(r, 7) — hQ|2drdz
0 0

2
=][ ‘][ (h(r,z) — h(s, y))dsdy| drdz (3.26)
ovo

= 4][ \h(r,2) — c|*drdz. (3.27)
0

We will consider type (3.26) and type (3.27) below.
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Lemma 3.7. Let g € C?O(Rd"'l; H) have a support in (=3« (b), 3k (b)) X B3p. Then
Jorany (t,x) € Qp,

][ T e, )2 dsdy < C(a, B, MM, |gl2 (1, x),
Op

where C = C(a, B, d).
Proof. By Lemma 3.5,

/ Tg(s. y)Pdsdy < C / (s, I dyds
0Op (=3k(b),3k (b)) x B3,

4 3k (b) )
< Cb f M, gl (s, x)ds
—3k(b)

< Cr ()b MM, [gl3 (1, x).
This certainly proves the lemma. 0
Lemma 3.8. Let g € Cfo(Rd'H; H) have a support in (—3k(b), 00) X R4, Then for
any (t,x) € Qp,
| Tet pPasdy < e gl .0,
Op

where C = C(a, B, d, 8o, ko).

Proof. Take ¢y = o(t) € C°(R) such that 0 < ¢y < 1, ¢o(t) = 1 for ¢t < 2« (b), and
Zo(t) = 0fort > 5« (b)/2. Note that 7g = 7 (gZo) on Qp, and |g&o| < |g| leads to

M, M, [g¢ol% (1, x) < MM, |g|% (t, x).

Therefore, it is enough to assume f (¢, x) = 0if |¢| > 3k (b). Take ¢ € Cfo(Rd) such
that £ = 1in By, and ¢ = 0 outside Bsp/>. Recall that 7 is a sublinear operator, and
therefore

Tg<Ty)+T((1-0)g.

Since 7 (¢g) can be estimated by Lemma 3.7, we may assume that g(z, x) = 0 if
X € Byyp.
Observe that if (s, y) € Qp and p > b, then

|x =yl =2b, By(y) C Bapip(x) C B3p(x), (3.28)

whereas if p < b, then for z € B,, |y — z| < 2b and thus g(r, y — z) = 0. Hence, by
(3.8), (3.25) and (3.28), for s > r,

2 2
‘f g s —r gy — dz| < f gk (s = r. D)l1g(r. y — )|udz
Rd H lz|=b
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o d
p / (s =N P —Ge 2.a(p) [/ lg(r,y — Z)IHdz} dp
b dp lzl<p

o0 _ad
< C/ (s =) ﬂd_Gq/Z‘d(P) [f lg(r, z)IHdz} dp,
b Y B3, (x)

where G, 2,4(p) is taken from (3.21). Therefore, by (3.23),

qS 2 (s —r2)g(r y — 2)dz
g op
R H

00 —2yc1/2
sc[ 6ot Pl [ jetolud: |dp
b P B3, (x)

00 —2ve1/2
<c f (s — r)“—ﬂ%wgm(n ¥)dp
b
< C(s =) Pod™) 1 M, gl (r, x).

For the last inequality we use (A.1) with ¢1/2. Since (M, |g|H)2 < M, |g|%1, we
have

5
/ To(s. )P dsdy = f /
Op Qp J =3k (b)

s
=< C/ / [(s — X Py M, g1 x)] drdsdy
0p J—=3k(b)

0 0
<o / f ( / (s—r>2<°‘—ﬁ>ds> M, gl (r x)drdy
By J =3k (b) r

0
< Co(b) / / (=P 1M, | (r, x)drdy
By, J—3k(b)

< Cli(b))* ¢ (h)"!

2

drdsdy
H

2
/R o (s = r gy = 2)dz

0
< / / My gl (r, x)drdy < Cic(b)b™M,M, [g[2, (1, x).
By, J—3k(b)

The lemma is proved. 0

Lemma 3.9. Let g € C° (R, H) have a support in (—oo, —2k (b)) x Bsp. Then
Jorany (t,x) € Qp,

][ Te(s, y)2dsdy < CM,M, [gf% (¢, ),
Op

where C = C(«, B, d, ¢, do, ko).
Proof. By definition of 7 g and Fubini’s theorem,

/ |7 g(s, y)|*dsdy
Op
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0 —2xk(b)
Lol |
—k(b) J—00 By

By assumption, for any y € By, the function g(r, y — -) vanishes on By, . Therefore,
by Minkowski’s inequality, for s > r,

/ /R a3 (s —r.2) gl y — 2)dz
By

By |J By
172
< (/ [ lg(r,y — 23 dy]
By, LI By
172
< (/ [/ lg(r, 1% dy}
Byp LJ Bsp

2
< CriML Igl3 (. x) (/ g2 (s — 1, z)‘dz) . (3.29)
By

2

dydrds.
H

aSM (s —r ) glry —2dz
R P

2
dy
H

2
c1/2

agf (s = 0|lgry = )l dz| dy

2
q;% (s—r Z)’ dz)

2
a5 s =, z)‘ dz)

Therefore, by (3.29), we have

/ Te(s. y)lPdsdy
Op

0 2k (b)
< de/ / M, gl %) (/
—k(b) J —oc0 Bayp
4 —2k(b) 0 5
— cb / M, [gl2 () (/
—00 —k(b) Bup

—2k(b) ) —r
_ de/ M, (gl (. x) / (/
—00 —Kk(b)—r Bap

—2k(b) —mi (b)
=cp? / -~-dr+f coedr | = CHY (1(b) + 11(b)), (3.30)

—mk (b) —00

2
q;fé2 (s—r2) a’z> drds

2
q;féz (s—r2) dz) dsdr

c1/2

2
9o.p (s, 2) dz) ds:| dr

where m is any fixed integer such thatm > 3 and (m — 1)k (b) > «(4b). Such integer
m exists due to (3.4).
Obviously, to finish the proof of the lemma, it suffices to prove

I(b) + 11(b) < Crc ()M M |g|7 (t, x). (3.31)

To prove this, we first consider the integral inside the square brackets in (3.30). If
—mk(b) <r < —2k(b), then by (3.11),

=L U

2
61(%2 (s, z)‘ dz) ds
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mk (b)
[,
Kk (b) Buyp
mk (b)
<[, (I
Kk (b) R4

mk (b)
5Cf s 'ds=Clnm < C.
Kk (b)

2
qgléz (s, z)‘ dz) ds

2
qgléz (s, Z)‘ dz) ds

Therefore,
—2k(b)
1(b) < C/ . M [gl3; (r, x)dr < Ck (b)M; M |gl7 (2, x). (3.32)
—mi (b)

Next, we estimate 11 (b).If r < —m« (b), then —k (b) —r > (m — 1)k (b) > k(4b).
Therefore, by (3.9),

—r
[ ] o /K(b)}’ (/B4b
2
< c/ / f o' 2qldz | ds.  (3.33)
—k(b)—r Bay J (12 2>>—

By Fubini’s theorem, for s > «(4b) (equivalently, 2s% > (¢ (b72/16))" 1,

s / / (@~ )2 2q1dz
Bap (@ (12172

(¢2/16)""
_ b / f @~ )P 2 gzl
0 lzl<(¢=ta—1) "2

2
q;],éz (s, z)‘ dz> ds

2s
+s—ﬂf (@~ )21 2 qzal

(66=2/16)) " J By

-2 a/z=t a—p [ —1—1\\d/2;—c1/2
_c(qs(b /16)) sﬁ+Cbsﬂ/ @1~ ) 2

(pb=2/16)~"
/2—1 “
<cC (¢(b‘2/16))q sF + cs—ﬁ¢(b—2/16)—d/2f [(=d=eD/2g).
(¢=2/16))~"

(3.34)

The last inequality above is due to (3.4) with R = b=2/16 and r = ¢~ '(I""). To
estimate the integral above, we use the following inequality: forany ¢ € Rand e > 0,

a
/ 1dl < C(c) (aC'H +bf+1) £ CE)le1a®hf. VO<b<a.
b

This is obvious if ¢ # —1, and if ¢ = —1 then we use In(a/b) < C(¢)(a/b)¢. Thus
we get
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2s¢ _ .
/ s J—d—en/2 g - C5aC—d—c)/2 e (¢(b_2/16))( 2+d+cy)/2
(6(-2/16))""
&
HleyramCe)s™ (#672/16))
Coming back to (3.34) and (3.33), and using the definition of 71 (b), we get

- —mk (b) —r
11(b) < C (¢(b7%/16))" 2/ M, |gl% (r, x)s~*dsdr
—00 —k(b)—r
_ —mk (b) —r
+C(p(b2/16)) / / M, [gl% (r, x)s 2BT*@=d=cD 4oy
—00 —k(b)—r

+ C(@) ey rama (p(72/16)

—mk (b) —r
X / / M, Iglz (r, x)s B2 gsar
—00 —k(b)—r
=:111(b) + I I,(b) + 115(b).
Now we fix ¢ > 0 such that —28 + 2ae < —1 (recall § > 1/2). Then,
-2 <—-1, =24+a2—d—cy)<—-1, —2B+20e<—1.

Therefore, all of 11;(b),i = 1, 2, 3, can be handled by (3.20). For instance, by (3.20)
withv = 28 — 2ae,

I50) < Clyrama (9072/16) w0 P2 MM g (1)

< Cx ()M, M, |gl3; (1, x). (3.35)
One can handle 77, (b) and I I;(b) in the same way, and get
11(b) < Ck(b)M M, |gl% (2, x).

This together with (3.32) proves (3.31), and the lemma is proved. g
Lemma 3.10. Let g € CE’O(R”H‘I; H) have a support in (—oo, —2k (b)) x B3,. Then
forany (t,x) € Qp,

£ st 0~ Tats o dsdvidsays = MM gl .,

b Qb

where C = C(a, B, d, 8y, ko).

Proof. Since g(r, z) = 0if |z| < 2b, by the fundamental theorem of calculus, for any
s € (—k(b),0) and y1, y» € By we have

1T g(s, y1) — Tgls, y2)I?

N
5/
—00

1 2
/ / Vq;'éz(s —ri—2) - (y2 = y)g(r, z)dudz| dr
R4 JO ' H




J. Evol. Equ. A Sobolev space theory for the SPDEs Page 29 of 57 57

s 1 5
= [ AL [ vass = ra0n - gt - dude| ar

—00 Rd 0 .

—2k(b) 1 i 2
: 4b2/ / / 'V%% (s —r,2)llg(r,u — 2)|pdudz| dr  (3.36)

0 B Jo
where i = u(u, y1, y2) = (I —u)yr +uyz, and |u| < b.
Note that for s € (—«(b),0) and r < —2« (b),

s —r > k(b), (¢_1((s — )2 S, (337)

Hence, by Lemma 3.2 (iii),

1
/ f IVag' i (s — r. N8, it — 2)| pdudz
B; Jo '

1
2 -
:/| (¢~ (s—r)~*)) 1/2_/(; IVq;}é (s —r,2)|lglr,u — z)|pdudz
Z|= (@~ ((s—r)~%)~
1
+ Y% 01/2(s —r,2)lglr,u —z)|gdudz
b<|zl<(@ ((s—r)—*))~1/2 Jo Do p > 2118, H

1
=< / / (s = PGeypar1(zDlg(r it — )| pdzdu
0 Jiziz@~ (—nn~12

1
+f / Heypp.avi(s =, |z2D)|g(r, u — 2)|ndzdu
0 Jb<lzl<@~ (s=r)~)~12

=:1(s,r,y1,y2) +11(s,r, y1, y2), (3.38)

where G, /2,4+1(|z]) and He, /2, a+1(s —r, |z]) are from (3.21) and (3.22), respectively.
By (3.38) and (3.36),

/ f 1T g(s, y1) — Tg(s, y2)|* dsdyidsdys
0p J0Op

2k (b)
<y / / f (265,731, 32) + 11267, y1. 32)) drdsdyidSdy.
Op JQp J—00

(3.39)

As in the proof of Lemma 3.8, using (3.25), (3.23) and (3.28) (recall (¢! ((s —
r)_"‘))_l/2 > b), we get

I(S,r, )’I,yz)
o —2ve1/2
< C/ (s —r)afﬂ% / o ) lndz ) dp
G G P B3y ()
o )
< CMiklglu (r, x) (s — r)a—ﬁMdp'

(@1 ((s=r)—e)~1/2 P
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Hence, by (A.1), forr < =2k (b) < s,

I(s,r, y1,y2)
—2)01/2

< CWLIglu 0@ (6 =7 [ N (s—pyp
(@~ (s=r))—)~1/2 1Y

< CML gl (r, x) (@~ ((s — )O3 (s — p)@=c1/2=F
= CM,|g|u(r, x)(¢*1((s — r)fa))l/Z(s . r)71/2
< CMy|gly (r, x)p (b2 2p~ (s — 1)~/271/2,

dp

For the last inequality, we use (3.4) withr = ¢_1 ((s—=r)~%) and R = b—2. Therefore,
by (3.20),

—2k (b)
bz/ / / I*(s,r, y1, y2)drdsdy\didy,
Op JQp J—00

0 s—k(b)
< Cb2+2d/c(b) / Iz(s, r, y1, y2)drds

—k(b) J—oc0

0
S Cb2+2dK(b)/

K

—2k(b)
/ M, |g|% (r, x)p(b~2) " b2 (s — r) " drds
(b) J—o0
< Cop(b™2) 0% (1 (b)) "M, M, |g|% (1, x)
= C(k(b)*b* M, M, |g|% (1, x). (3.40)
Similarly, by (3.25), (3.24) and (3.28) (recall (¢~ ((s — r)~%))~ /2 > b), we have

Li(s,r, y1,y2)

<¢-1((s—r>-°‘)>‘%
<c f Hoyjp.dia(s — 1. p) / (. Dlndz | dp
b B3p(x)

+ CHe 2,a+1(s —r, (¢71((s—r)*°‘))*%) /

lg(r, it — z)|pdz
B 1

@ s—r—e)~ 2
=11 (s,r)+ I Ix(s, r, y1, y2).

By definition of He, /2,411 (see (3.22)),

I1(s,r)
2=t (¢7l(171))7% 1 1 2)/21—c1/2
SCMxlng(r,x)(s—r)_ﬂ / (¢_ (l— ))(d+ )/ l—cl/ ,Odd,()dl
(k@)*  Jb
2(s—r)¥
< CM|glu (r,x)(s — r)f‘g/ (¢~ L) —a/2g)
(e (D))*

e\

2(s—r)
< CM,lglu(r, x)(s —r) P~/ 2p™! / [m12mal2g
(k (b))
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For the last inequality above we used (3.4) with R = b=2andr = ¢_1 (= h.
Also, by (3.22) and (3.4) with R = ¢~ !¢ ) and r = ¢~ ((s — r)™%) (recall
@ (s =)™ > b),

IL(s,r, y1,y2)

2(s—r)*
= CMlgln (r, x) 171G — ) PP (s = 7)) L.

(s—r)*

We use (3.4) again with R = b2andr = ¢~ ((s —r)~%), and get

II(s,r, y1,y2)

2(s—r)“

< Co(b) 7P (s — 1) PMLIglu (. x) -12-a/2g)
(s—r)
2(s—r)“

< Cob 727 (s = )P MLlgl (r, ) 7122y,

(ke (D)™
The second inequality above is due to (3.37). Thus,

117 <2111 (s, r) + I (s, 7, y1, y2))?

2(s—r)“

2
= C¢(b72)71b72(s — V)izﬁMﬂgﬁ,(}’, x) (/ ll/2c1/2dl>
(

Kk (D))*
< Co™H 71075 — 1) Mgl (r, %)
x [ s = )00 4 )1V + Ce) i 5 = 1 (e (b)) 2]
where ¢ > 0 is chosen so that —28 + 2ae < —1. Note that
-26+a(l—c)=—-1—-a< -1, -28<-1, —-2B+420e < —1.

As is done for (3.35), applying (3.20) three times with v = 1 + «, 28 and 28 — 2«e,

we get
—2k (b)
bzf / / Ilz(s, r, y1, y2)drdsdy;dsdy,
0y JQp J—00
0 —2k(b)
< Cb2+2d/<(b)/ / I1%(r, s, y1, y2)drds
—k(b) J—o00

< Clk (b))’ b M, M g|F; (¢, x).

This, (3.40) and (3.39) prove the lemma. O

Lemma 3.11. Let g € CSO(R‘“‘I; H) have a support in (—oo, —2k (b)) x B3,,. Then,
Jorany (1, x) € Qp,

][ ][ 1T g(s1,y) — T g(s2, y)I>dsidydsrdy < CM, M, |g|% (¢, x),
OpJ Qp

where C = C(a, B, d, 8o, ko).
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Proof. Since g(r, z) = 01if |z| < 2b, for 51, 52 € (—k(b),0),and y € By,

’ 12
dr
H

2 1/2
c1/2
, — ,y — z2)dud d
./Rd/ 9o 1 — 1, 2)(s1 = 52)8(r, y — 2)dudz ; r}
5 12

dr
H

[Tg(s1,y) —Tgs2,y)l

|:/—2K(b)
|:/—2K(b)

—2k(b)
< Ck(b) /

where 5§ = 5(u, s1,52) = (1 — u)sy + uss.
Note that for B,(y) C B,(x) if p > b, and x, y € By,. Therefore, by Lemma 3.2
(i), (3.25), (3.23) and (A.1), for 51, 520 € (—«(b),0) and r < —2k(b),

/Rd/ qéléH —r,y —2)(s1 — $2)g(r, 2)dudz

/ / quléﬂ —r,2)8(r,y — 2)dudz

’/ q;'é+1(s —r,2)g(r,y —2)dz
H

_ wf (p72)c']/2
SC/ G = 1¢d—+1 / 18(r, D ndz | dp
b 1Y By, (x)

0 —2y¢1/2
= CML|glu(r, x)/ G— r)a—ﬂ—1%
b

< CML gl (r, x)(5 — r)* P lpm=2)1 /2.

dp

Since —«x(b) < s1,52 < 0, and r < —2«(b), we have % < 2L < 2 for any
s € (—«k(b), 0). Hence, by (3.20) (recall 2o — 28 — 2 < —1),

[’}

2k (b)
[ f [ / / 6];1,_{;“ —r,28(r,y —2)dudz| drdsids;
—k(b) J—k(b) b H
2k (b)
< Cop(b 2k (b) / M, |gl% (r, x)(s — r)** 2 2drds
—k(b) J—o00
< CM, M, g3 (t, x).
The lemma is proved. 0
Proof of Theorem 3.4. Due to Lemma 3.5, we may assume p > 2.
First we prove for each Q = Qy(f9, xo) and (¢, x) € Q,
} 1Te = To)g Pasdy = cra gl .. (341)
o

Note that for any #y € R and x¢ € R4,

Tg(t+tg, x + x0)
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r rt+io
-1
S i ) 172
= / /d q;f,é (t+1o — s, x +x0— y)g(s, y)dy dS}
R

—00 H
’ 172
ds
H

‘ 5 1/2
S IPTER  g(s. ) (x + xo)\H ds}

c1/2

[ rt

=f /qa,,g (t —s,x —y)&(s, y)dy
| /o0 R4

=7Tg(t, x),

where g(s, y) := g(s + to, ¥ + xo). Therefore,

][ Tg — (T) gy ney dsdy = ][ IT% — (T2) 00 I2dsdy.
QO (t0,x0) 0,(0,0)

This implies that, to prove (3.41), it suffices to consider the only case Q = Q(0, 0).

Now we fix b > 0and take a function¢ € C*®°(R) suchthat = 1on[—7k(b)/3, c0),
¢ =0on (—o0, —8k(b)/3),and 0 < ¢ < 1. We also choose a function 1 € CSO(Rd)
such that n = 1 on B7;/3, n = 0 outside of Bgp/3,and 0 < n < 1. Set

g1t,x)=g¢, g@=g0-0n, g=g0-00-n).

We show that for any ¢ € R,

[Tg(s,y)—cl < |Tgi(s, Y|+ 17 (g2 + g3)(s, y) — ¢
<|Tgi(s, M|+ 1Tgs, M|+ 17 g3(s,y) —cl. (3.42)

Fix ¢ € R.If T g(s, y) > c, then due to the sublinearity of 7°

Tg(s,y) —c=<Tgi(s,y)+Tgals,y)+Tgsls,y) —c
ST gi(s, I+ 1T ga(s, Y + 1T g3(s. y) — ¢l
Suppose 7 g(s, y) < c. Again by the sublinearity,
Tg>-Tgi+7T(g2+g3),

Therefore,

c—Tg(s,y) <Tgi(s,y)+c—T(g2+g3)(s,)
SITe1(s, M+ lc—Tg3ls, )|+ 1Tgs(s,y) —T(g2+ g3)(s, y)l
<|Tg1(s, M|+ 1Tgs, I+ 17Tg3(s,y) —cl.

Thus, (3.42) is proved.
By Lemmas 3.8 and 3.9, we have

][Q |7 g1(s, y)|*dyds < CM,M,|g1|3 < CM,M,|g|%, (3.43)
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][ T g2(s, y)I*dyds < CM;M,|g>|% < CM,M|gl%. (3.44)
0

Also using Lemmas 3.10 and 3.11, we have

][Q T g3(s,y) — (T g3)ol*dzdrdyds
< C][ ][ T g3(s,y) — Tg3(s, 2)|*dzdrdyds
0J0
+ C][ ][ |Tg3(s, 2) — T g3(r, 2)|*dzdrdyds
0J0

< CMM,|gl% (1, x). (3.45)

Therefore, if we take ¢ = (ng)Q, by (3.27), (3.43), (3.44), and (3.45) it follows that

][ Tg — (Tg)ol*dyds
0
<c ][ (Tg1(s. y)Pdyds + C ][ (T (s, y)Pdyds
0 0
e ][Q Tea(s. ) — (Tg3)ol*dyds
< CM,M,|gl3 (t, x),
and thus (3.41) is proved. By (3.41) and Jensen’s inequality,
# 5 1/2
(Te*a,x) = € (MM gl 6,0) L V(). (3.46)
Therefore, by Fefferman—Stein theorem (e.g., [43, Theorem IV.2.2]) and (3.46),
1Tgl? < Cll(T*I? < CIM, M g% 177
LpRd+) = Lp(Rd+1) = R8T L, a1y

Next, we use Hardy-Littlewood maximal theorem (e.g., [43, Theorem 1.3.1]) twice
with respect to time and spatial variables in order, and get

2 \P/2 5 \P/2
/Rd/R<M,Mx|g|H) didx < C/Rd/R(Mx|g|H) dtdx
_ 2 \P/?
_C/R/Rd (Mx|g|H> dxdi

2 yp/2 _ »
< C/R/H;ﬂg"{) dxdt = C|||g|H||Lp(Rd+])‘

This proves the theorem if 7 = co. For T < cotake§ € C*°(R) suchthat0 <& <1,
E=1fort <Tand& =0fort > T +¢,e > 0. Then, it is enough to apply the result
for T = oo with g&. Since ¢ > 0 is arbitrary, the theorem is proved. g
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3.2. H®°-calculus

First, we provide some definitions related to H*°-calculus. For > 0, let
Xy :={z e C\{0}:|arg(2)| < n}.

By H? (X)) (1 < p < 00), we denote the (complex) Banach space of all holomorphic
functions f : X, — C satisfying

1z, = sup Dl @, a) < oo
vl<n
Let A be a linear operator on a Banach space X. We say that z is in the resolvent set
p(A) of A if the range of A, := z — A is dense in X and A_ has a continuous inverse.
Here, for z € p(A), we can define R(z, A) := (z — A)~'. We say that a linear operator
A is sectorial if there exists w € (0, 7r) such that the spectrum o (A) := C \ p(A) is
contained in X, and

sup [zR(z, A)|| < oo.
2e(Z,)¢

In this case, we say A is w-sectorial. The infimum of all w such that A is w-sectorial
is called the angle of sectoriality of A and is denoted by w(A).

Let A be a sectorial operator with angle of sectoriality w(A). For functions
fe H'(%,), denote

1
f(A) = i f(@)R(z, A)dz
Tl Jax,

where w(A) < v < o is chosen arbitrarily. It is well known (see [19, Sect. 10.2]) that
the definition of f(A) is independent of the choice of v. For a constanto € (w(A), ),
we say that the operator A has a bounded H (X, )-calculus if there exists a constant
C > 0 such that

If (A < Cllif L. f€H' (Zg)NH®(Z,).
We define
wp=(A) :=inf{o € (w(A), ) : A hasabounded H°(X,)-calculus},

and we say that A has a bounded H°-calculus of angle wgy~(A). For instance, the
Laplace operator — A has a bounded H *°-calculus on L p(Rd ) of angle O (see, e.g.,
[19, Theorem 10.2.25]).

Now we are ready to prove the following:

Theorem 3.12. Let ¢ be a Bernstein function. Then, —¢ (A) = ¢ (— A) has a bounded
H*-calculus on L,,(Rd) of angle 0.
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Proof. Note that ¢ can be extended to a holomorphic function which maps C, :=

{z € C: Re(z) > 0} into itself and satisfies ¢ (X,) C X, forany o € [0, ) (see [1,

Proposition 3.3]). Hence, [1, Theorem 1.1] yields that —¢ (A) = ¢ (— A) is O-sectorial.
Next, for f € H®(X,) with0 < o < 7, define

waNe=F 10 PEO]L ¢ e S®.
For any multi indices « € {0, l}d and & € X, one can easily show that

11D (F(1E1%)) = g2 (DY £) (1813 = 2&/1ED*(1E1D) I (D* £)(1E1).

Also, by the Cauchy formula,

(1&1H(D* HH(g») <

27

I &2 £ (2)] C/ 1
— | =g <—| ———a ,
/n,, o — gt = o [ e 4 =

where Iy := {z € C\ {0} : arg(z) = o0’} with 6’ € (0, ). Thus, by Mihlin’s
multiplier theorem (see, e.g., [20, Theorem 5.5.10]), ¥4 (f) is a bounded operator on
L,. Since f o ¢ € H*(X,), by considering f o ¢ instead of f, we find that the
operator

v(Ne=F 1@ PO, ¢ eS®D,

is a bounded operator on L,. Moreover, by following the proof of [19, Theorem
10.2.25], one can check that the mapping f — ¥ (f) satisfies the assumptions of [19,
Theorem 10.2.14]. Thus, by [19, Theorem 10.2.14], —¢ (A) has a bounded H° (X, )-
calculus. Since o > 0 is arbitrary, the theorem is proved. 0

Now we define an operator associated with («, 8, —¢(A)). Let

1
To p(Dv 1= — MY —pA)) A vdr, >0,
27i Iy

forve L, ¢ € (%,m),and
Ny =" Jt| <y}U{peV 11 <p<oo}U{pe™™ :1<p < oo}
We have the following representation for solution (cf. [12]).

Lemma 3.13. For given g € Hg°(T, I2), the function
o t
u(t, x) := Z/ Top(t — 5)g" (s, x)dwk. (3.47)
0
k=1

isin Hﬁ’z(T) and satisfies (3.1) in the sense of distributions.
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Proof. We first show that u € Hﬁ’z(T). By the Burkholder-Davis—Gundy inequality,

t 2
lul?cry < C(PIE| ( /0 |Ta,ﬁ(l‘—s)g(s)(x)|122ds> |

L,((0,T)xR4)

< C“g”]]’:p(T,lz)'

For the second inequality above we used [12, Lemma 5.6].
Applying (5.16) in [12], we get

& t
d(Au(t, x) = Z/ Tup(t — )P (A)gh(s, x)dwk, Vi >0. (3.48)
k=170

Hence, using [12, Lemma 5.6] again, we have (recall g € HG (7, [2))
l¢(MDullL, ) < Cllg(A)gIL, (7.1) < 0.

Therefore, by Lemma 2.1 (iv), we getu € Hﬁ’z(T).
Next we show that u satisfies (3.1). By (5.17) in [12],

t
u(t, x) = %/O (t — )" 'p(A)u(s, x)ds

o0

1 '
_ a—B k k
+ TF'a—pB+1) ,;/o (1 —95)"7g (s, x)dwg (3.49)

forall t > 0, a.e. on R? x 2. Let ¢ € S(RY). Multiplying both sides of (3.49) by
¢ and applying (stochastic) Fubini’s theorem (see, e.g., [31, Lemma 2.7]), one can
easily show that u satisfies (3.1) in the sense of distributions. The lemma is proved.

O

Theorem 3.14. Let p € [2,00), g € HS"(T, 1»), and let u(t, x) be taken from Lem-
ma 3.13. Then we have

I/ (MuliL,ry < CliglL, i (3.50)
where c1 ;=2 — (2B — 1)/ and C is a constant independent of g and T.

Proof. Due to Theorem 3.12, the operator ¢ (A) satisfies the assumption in [13, The-
orem 3.1]. Thus, (3.50) is a direct consequence of [13, Theorem 3.1] if we take
(¢, 1 +a — B,0, c1/2) in place of («, B, 1, 6) therein. O

Remark 3.15. (i) Actually, Theorem 3.12 and [13, Theorem 3.1] together yield L -
estimates for D;'¢(A)?u, where n € (=1, ) N (=B +1/2,0 — B+ 1/2) and 0 :=
c1/2—n/a. This also can be obtained using Krylov’s analytic approach if one considers
0 _ c1/2-nja . 1 f c1/2
9o, p+n = da,p+n M Pplaceotq, g
(i1) As in [33, Section 8G], one can also obtain sharp estimates of D,'7 1) (A)u in the
space L4 (L) given with appropriate weights. Here, p > 2, ¢ > 2.
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4. Proof of Theorem 2.12

The following lemma is used to estimate solutions of SPDEs when 8 < 1/2.

Lemmad4.1. Lety e R, p>28 < %,andg € Hﬁ’V(T, [2). Then, foranyt € [0, T,

t o0 . 14
1-2
E / > of / g s, aawf| dr=cd.p.p. DL Pl O
0 0 p (2)
k=1 H,“,’*V
In particular,
r | oo . p
B keo Nk < p
E /O >0 [0 g oduy | dr = Cllglfy, -
k=1 H;’-V

Proof. Due to the isometry (1 — d(A)Y/2 H;f’y — L, it is enough to prove the
case y = 0. In this case, it is a consequence of [26, Lemma 4.1]. The lemma is proved.
O

Recall

-1
-

co +rlp=12 €10,2),

where ¥ > 0 is a fixed constant.

Lemmad4.2. Lety e R,p > 2, « € (0,1) and B < o + 1/2. Then for any g €
H?;’VﬂLC’O(T, 1), the linear equation

0 t
wu=¢mm+§yffgW@gz>m u©,) =0 4.1
0
k=1

has a unique solutionu € H?’H_Z (T) in the sense of distributions, and for this solution
we have

lllgge+2 gy < Clglhgevsen g (42)
where C = C(a, B,d, p, 80, ko, v, k, T). Furthermore, if B > 1/2 then
o (Dallgor iy < ClO D gllygor 7 0 4.3)

where C = C(a, B,d, p, 80, ko, v) is independent of T.

Proof. Due to Remark 2.7 and Lemma 2.1 (ii), without loss of generality we may
assume y = 0.

The uniqueness is a consequence of the corresponding result for the deterministic
equation, [41, Theorem 8.7 (a)]. Indeed, if u is a solution to the equation with g = 0,
then for each fixed w, the function u(w, -, -) satisfies the deterministic equation

v =¢(Av, t>0,xeR v(0,) =0, (4.4)
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and we conclude u(w, -, -) = 0. Therefore, it is sufficient to prove the existence result
together with estimates (4.2) and (4.3).
Step 1. First, assume g € HgO(T, [). Define u by (3.47). Then, by Lemma 3.13,

ue ]I-]I',é’z(T) becomes a solution to equation (4.1). Now we prove the estimates. We
divide the proof according to the range of S.

Case 1. B > %
We first show (4.3). Denote

v=0W) U, g=¢() .

By (3.48) and Theorem 3.14,

T
P _
||¢(A)””£p(T> - “¢(A)Cl/zv“mp(T> = CE/O /Rd 8 dxdr
= CllpD)%GIE 7.1,

Thus, (4.3) is proved. Furthermore, by (2.13),
’ 0—1
lul oy < C f (T =~ (Nl ) +18IL 1)) ds

< Cf (T — )" gl”

S
YO (5,12)

Clgll? / (T — )"~\ds < Cllg]l”

HY (T 1) HY (T 1)

Thus, we have (4.2).
Case 2. B < %
In this case, ¢ = 0. By Lemma 2.4 (iii), u satisfies

fu=¢(Au+ f,

where
7oy 1 - [ Bk k
f = m—_ﬁ); /0 (t =) Pg()dwy.
Due to [41, Theorem 8.7 (a)] and Lemma 4.1,
< CIFIL ) < CllglL 71-

Case 3: B = %
Put§ =“ and f = § +6.Then, 0 < § < @ and } < B < 2. Define v by (3.47) with
5 instead of 8. By the result from Case 1 with ¢y = (2,5 —D/a=«k,ve H?;’Z(T)
satisfies

Xt
8,‘"v:¢(A)U+ZB,ﬂ/ ghawt, ; w0, =0,
0

k=1
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and it also holds that
||v||H‘]1§v2(T) S C ||g||HﬁvL0(T’lz) .

Note that 1,‘31) also satisfies (4.1). Thus, by the uniqueness of solution, we conclude
that It‘sv = u. Therefore, by the result for the case § > 1/2 and (2.1),

l[uell = Clpl = Cligl

9207 = 1130|702 02 pco
H ™ (T) t 2 WH,(T) H} ™ (T) H, " (T,1).

Thus, the lemma is proved if g € HZ*(7T, ).

Step 2. General case. For given g € Hf,’CO(T, l»), we take a sequence g, €
HE° (T, I2) so that g, — g in H?;’CO(T, [). Define u,, using (3.47) with g, in place of
g. Then,

<
nllgsry < Cllgallgseogy -

ln =t llygg 2 7y < Clign = gmlggpeo 7. )

Thus, u,, converges to a function u € H}é’z(T). Considering (2.11) corresponding to
u, and using Lemma 2.4 (iv), we conclude that u satisfies equation (4.1) in the sense
of distributions. The estimates of u also easily follow. The lemma is proved. 0

Remark 4.3. The uniqueness result in Lemma 4.2 yields that two representations
(3.14) and (3.47) coincide under Assumption 3.1.

Now we are ready to prove Theorem 2.12.

Proof of Theorem 2.12. Step 1 (linear equation). Let f and g be independent of u.
As before, due to Remark 2.7 and Lemma 2.1 (ii), we may assume y = 0. Also, by
the uniqueness of deterministic equation (4.4), we only need to prove the existence
result and estimates of the solution.
Case 1: Let g = 0. Then, roughly speaking, using [27, Theorem 2.8], for each fixed
w one can solve the deterministic equation

3 u“(t, x) = p(Au®(t, x) + f(w,t,x), t>0,x¢€ R u®0,x) =0, (4.5)
and can define u(w, t, x) = u®(t, x) so that u solves the equation
Hu=¢pMu+f, t>0; u0,x)=0

on £2 x [0, T]. However, this method may leave the measurability issue. Therefore,
we argue as follows. First, assume f is sufficiently smooth, that is, let f be of the type

n(k)

FE0) =) e Oh (), B e COMRY)

i=1
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where 0 < 19 < 171 < --- < 1, are bounded stopping times. Define

t [ee)
ui(t,x) = / f P2 f (s, Va1 (t, r)drds,
0 JO

where @41 is defined in (3.5) and {Pto;t > 0} is the strongly continuous semi-
group generated by ¢(A) (cf. [8]). Due to (A.8), the above integral is well de-
fined. Thus, we have the desired measurability of u;. Moreover, [8, Proposition
2.3] implies that #; becomes a solution to (4.5) in the sense of distributions and
up € Loo(£2 x[0,T1], P; H,d,”Z) C Hﬁ’z(T). Also, estimate (2.15) for this «; follows
from [41, Theorem 8.7 (a)].

For general f, one can use the standard approximation argument as in the proof of
Lemma 4.2 (see Step 2 there).

Case 2: Let g # 0. Take u; € H?‘Z(T) from Case 1. Also take u € Hﬁ’z(T) from

Lemma 4.2. Then, thanks to the linearity of the equations, v := u| + u satisfies
S t
srv =g+ f+ Yol [ ddut 100 w0 =0,
0
k=1

and estimate (2.15) for v follows from those for #; and u. Therefore, the theorem is
proved for the linear equation.

Step 2 (nonlinear equation).

We first prove the uniqueness result of the equation.

ofu=¢Au+ fa+Yy ghwdwf, >0 u,)=0.
k=1

Letuy,ur € Hﬁ’yﬂ(T) be two solutions to the equation. Then, it := u| — u satisfies

it = (A + f(ur) — fu)+Y (" w)—g w))dwy, t>0; @(0,)=0.
k=1

By the continuity of f and g (Assumption 2.11 with ¢ = 1), foreacht < T,

1 (A1 — u2)llgor ) + If r) = f@)llger )
Hlg ) = g@a)llgore, ) = Cllur = uzllggrz,). (4.6)

Also, by the result for the linear case and Assumption 2.11,any ¢ > Oandt < T, we
have

P
ulp —u
I = w2l g0,

<C — P _ P

< CUF ) = @Dy +18@n) = 86D g i, )

= CePllur — w2y, + CNo@ iy — w2l
P

G HY7 (1)
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t
0—1
< CePllus —ws)’y,.r + CNoe) / (t = us — sl ., ds.
Hp t) 0 Hp )

( (s

For the last inequality above we used (2.13) and (4.6). Now we take ¢ > 0 so that
CeP < 1/2,and we conclude u; = u; due to the fractional Gronwall lemma (see [46,
Corollary 1]). The uniqueness is proved.

Next we prove the existence result. Let = Hﬁ’yH(T) denote the solution ob-
tained in Step 1 corresponding to the inhomogeneous terms f(0) and g(0). Forn > 0,
using the result of Step 1, we define u”+! € H?;’VH(T) as the solution to the equation

S t
U = (A" + Fu™) + of Zf gwmdwk, >0, u©) =0.
k=170
4.7)

Then i := u"T! — u" satisfies

" = (A" + f") — fF@" N+ Y (W) — ghw )dwf, 1> 0,
k=1

with 2" (0, -) = 0. By Step 1 and Assumption 2.11, forany ¢ > Oandr < T, we have

n+l _ nyP
I = e,
<ClIf@™ = f@Hi? + g™ — g™ O, ..
- H)7 (1) HO V40 (1,1)
Py, _ ,n—1yP n _  n—1,pP
=Ce’llu” —u ”Hﬁ””(z) + CNo(e)llu” —u ”Hﬁ”(z)' (4.8)
In particular, taking ¢ = 1, for any n > 1,
n+l _ npP n_  n—1lyp
llu u ”Hﬁ‘”z(t) =Cllu” —u ”H;‘;*V”(z)' (4.9)
Note that (1" — u”~1)(0, -) = 0. Thus, by (2.13) and (4.9),
ut — un—l p
[ [
! 0—1 1 1 2
< c/ e (O T s R Y (i B (i VL
0 P ()
n—1y _ n—2yP
g ™) = @ Ly, Nds
t
< _ 01y, n—1 _ n=2yp
_C/O (t—9)""|u u ”Hﬁ'y“(x)ds' (4.10)

Plugging (4.9) and (4.10) into (4.8), we get

< CePllu"™! —u" 2|

n+1 nypP
u —Uu
|| [ 2

OV (py
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+CNo/ t— )" u""" —un 2||H¢y+z( ds,

where Ng = Ny(e). Considering ¢C~!/? in place of ¢, and repeating the above
argument one more time, we get forz < T,

n+1
u —Uu
|| "Wgring,

3 —4
<P (a!’nu" u" ||”¢ .

o N\O—1y,,n=3 U —4
()+N1/(t s) I|u ||H¢y+2( )ds)

N1 py,n—3 _ U 4
[ =0 (o0 Irgrg,

+N1/ s =) u3 —u" 4||H¢V+2 dr)ds.

(r)
Therefore, by using the identity

re"
T'(no + 1)

t S1 Sn—1
=/ (t—S1)9_1/ (s1 —s52)77! / (1 —sn)" s, .. .ds)
0 0 0

and repeating above inequality, for n € Ny we get

41 _ 2
[|ue " n”Hzp HZ(T)
n k
NN (n—k)p 0 a7 Nk 1" (©) 1
<> TN ———|u' —
=L (k)‘E TN Fra+* — ”HW”m
—176 k
TN I'(0
< 2""P max u lu' = u®)? o2
i (k6 + 1) HO V(1)

Now fix ¢ < 1/8. Note that the above maximum is finite and is independent of n. This
and (4.9) imply

1
Z ||un+ —u ”Hd’ y+2 oo,

and therefore u” is a Cauchy sequence in Hﬁ’HZ(T). Now let u denote the its limit
in H?’VH(T). Then, taking n — oo from (4.7) and using the continuity of f and g,
we easily find that u is a solution to (2.14) in the sense of distributions.

Finally we prove estimate (2.15) for the solution u obtained above. Obviously,
0 0
sz gy < Nt = ullgoz g+ 10 lygorvzg,
Also, by Step 1 and Assumption 2.11, forany ¢ > Oand? < T,

0P
u—u
I =112,
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C -2, 1
+ ||g(1/l) g( )”H(ﬁiyﬁio(l,lz)

< CIF@ = FOIL

< CePlulflg i, + COINLg

< CePllulgppen, + @I = ulllgy,  F+ CEOMON gy . @11

Recall (u — u%)(0, -) = 0. Thus, by (2.13) and the continuity of f and g,
t
_oyp 01 . 0 _ p
=Ny, = € fo (= 9" (19— $ (A + @) = FOIL,

_ p
g =8O, Jds

t
<C f— 6—1 4 d C 0 Pr .
<C [l s+ OO

Using this and (4.11), and taking ¢ > O sufficiently small, we get fort < T

t
0 6—1 p
< + ( _
”u”Hf;J/‘FZ(t) = C”M ”Hi-y‘*'z(T) /O (t S) ”u”H(ﬁ,erZ S)ds‘

(

Since the estimate of u° is obtained in Step 1, the desired estimate follows from the
fractional Gronwall lemma. The theorem is proved. 0

5. Proof of Theorem 2.19

Recall HY'' ¢ HY for 8) € (1/4, 1], and

_ 1t
ﬂ<<1—$)a+%, d<280(2—%> =:dp.

Remark 5.1. From the relation H,‘f’l C H)°, one can deduce H,?’y C H,'EOV for
y > 0, and Hgm’ C ng,y for y < 0. Indeed, first, by [14, Theorem 2.4.6] we have
HY? < HY fory € (0, 1). Also, for y € (1, 2],

el ror = T = 227y, = [[(1 = 4)Cor 0021 — A)%0/ 2y
< N1 = ¢ANY DA = )™ u],,
= N[|(1 — %21 = ¢ (AN YD u|,

< NI = @A) ulle, = lull 4.

Repeating above argument, we get H;f’y CH goy for y > 0. Second, by the duality
theorem [14, Theorem 2.2.10], we have Hgoy C H;f’y fory <O.
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Also recall that the equation
u=dMu+ fu)+ 0’ ThwW, t>0; u©,)=0,

can be written as
0 t
9% = (A + f(u) + of Z/ gfaydwt, 1>0; u©,) =0,
0
k=1

where gk (t,x,u) = h(t,x, u)nk (x). Therefore, to prove the theorem, it suffices to
prove that f and g satisfy conditions in Assumption 2.11. To check this, we first prove
some auxiliary results below.

Note that by definition, for any ¥ > 0 and smooth function ¢, we have

FIA = 2)772)E) = (1 + )TV Flp)E)

o0 1 (5.1
_ C@(g)/ et ot L gy
0 t
where ¢ = c¢(y) > 0. Set
o0 1
Ry.4(x) ;:/ tV/Ze*’ﬁ(t,x);dr,
0
where j(t, x) = (dmt)~4/2e=X?/@40) Then,
o o0
/ Ry a(x)dx = / t”/zflefl/ p(t, x)dxdt = / 72 et dr < oo
R4 0 R4 0
Therefore, by Fubini’s theorem,
o0 2 2 1
f{R},,d} &) = c(y,d)/ 1726t HEl ?dt.
0
Hence, from (5.1) for any y > 0 we have
(1= 27"Pp=ctrd) [ | Ryt = »p()dy. (52)
R

Itis known that R,, 4 decays exponentially at infinity and is comparable to |x|~d+Y
near x = 0 (see [28] or [29]). Thus, for y < d and 2r < #, we have Ry 4 € Ly;.

Lemma 5.2. Assume

d d d
koe(=— ), 2<2r<p, 2r<——0
06(280 80) r P r <<

Let h = h(x, u) be a function of (x, u) and & = &(x) a function of x such that

lh(x,u) —h(x,v)| <E@)|u—v|, Vx eRY u,veR.
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If we set g¥(u) = h(u)n* and g = (g', g%, ...), thenforu,v € Ly, we have
18G0) = 8 yota, < ClE Ny It = vz,
wheres =r/(r — 1), and C = C(r) < oo. In particular, ifr = 1, and & € Lo, then
I180) = 8@l 40, < Cllu = vl
Proof. By Remark 5.1, (5.2) and Parseval’s identity in Hilbert space L>(R?), we have
lg@u) = gl 910,y = 8 (W) = Wy s030

12
=C (_Aéd | Rios0.d (- — y)|2|h(y, u(y)) — h(y, U(y))lzdy)

Ly

1/2
=¢ (/1‘@1 |Rk080,d(' - y)|2|$(y)|2|u(y) — U(y)|2dy)

Lp

Note that Ryys5, € Lo, since kodp < d and 2r < d/(d — kodp). Hence, by Holder’s
inequality and Minkowski’s inequality, we have

Ig() = 2@l 50,

1/2

<C (/R | Rigno.a (- = NIPEGIPuy) - v(y)|2dy>

Lp
1/2r
2r 2r
= Cli§llLyy (/1‘@1 | Rigsg,d (- — Y7 [u(y) — v(y)] dY>
L,

< Cll& N Lo 1 Rrgsg,d Lo, 1w — vz, = CliEl Lyl — v,

The lemma is proved. g

Proof of Theorem 2.19. As mentioned above, it suffices to prove that the conditions
in Theorem 2.12 hold with y = —ko — co. By [14, Theorem 2.4.6], if vi < v» < v3,
then for any ¢ > 0

luell o2 = Elluell oy + N (@) Ju] (5.3)

vy
Hp

where N (¢) depends on ¢, v1, vy and v3. Due to (2.19) one can choose « small enough
such that y +2 > 0. Since y < 0 and y + 2 > 0, by the assumption of f and (5.3),
we have for any ¢ > 0

Lf @) = fF ) yor = ClLf @) = fFO)IL, = Cllu =i,

< ellu = vl o2 + Nl = vll -
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Therefore it remains to check the conditions for g(u). Let r = s/(s — 1). Then
2r < d/(d — kodp) due to the assumption on s. Since y + cp = —ko, by Lemma 5.2
and (5.3), for any ¢ > 0, we have

I800) = 8l yorrveo ) < CUENLay e = vl

< ellu = vl o2 + N(@)llu — vl

.y .y -
Hp Hp

Hence, the condition for g is also fulfilled. Furthermore, by inspecting the proof of
Lemma 5.2, one can easily check

18O ta ) < CHAO) L.

Therefore, we finish the proof of the theorem. O
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A. Auxiliary results

In this section, we obtain some sharp upper bounds of space-time fractional deriva-
tives of the fundamental solution ¢ (¢, x) related to the equation

3u=¢(Mu, t>0; u,-)=uop.
First we record some elementary facts on Bernstein functions.

Lemma A.1. Let ¢ be a Bernstein function satisfying Assumption 3.1.
(i) There exists a constant ¢ = c(y, ko, 8o) such that for any A > 0,

o
/ r Yo Hdr < cp(WP). (A.1)
Al

(ii) For any y € (0, 1), the function ¢V = (¢ (-))Y is also a Bernstein function
with no drift, and it satisfies Assumption 3.1 with y 8o and I(())/ , in place of §o and ko,
respectively.
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(iii) Let ., be the Lévy measure of ¢7 (i.e., 7 (L) = f(o’oo)(l — e_)")u,y (dt)), and
set

Jya(r) = / (A1)~ exp(—r? /4t uy (dr), 7 > 0. (A.2)
0

Then
Jya) < cd)r ¢,  Vr>0, (A.3)

and for any f € Cg (R?) and r > 0, it holds that

P(A) f()(x) szd (fOr+3) = f) =V ) - yly<r) Jpa(yDdy — (Ad)

Proof. (1) By (3.4) this and the change of variables,

AR AU g2 000
f rlew 2>dr=/1 rleGlr 2)dr=/1 Q) o

<c foo r17200r ¢ (02) = cp (A2).
1

(ii) ¢” is a Bernstein function due to [42, Corollary 3.8 (iii)], and (3.3) easily yields
70 R)
Kg — ¢() O<r<R<o0.
r ¢(r)7’
If we denote drift of ¢¥ by b, (see (2.4)), it follows that

lim M =b, lim PR

A—00 A A—00 A

=b,.

Hence, we have

A—00

14
by = lim 2O _ fim <@) vl =o.
A A—00 A

(iii) (A.3) follows from [24, Lemma 3.3] (recall that ¢»” is a Bernstein function with
no drift), and the second assertion is a consequence of (2.7). O

Recall that p(, x) is the transition density of the subordinate Brownian motion X,
with characteristic exponent ¢ (|€|?). Also, for any ¢ > 0, and x € R?,

1 : 2
_ i&x ,—tp(&7)
p(t,x) = @y /Rd e“e d&
2
= /(o )(4ns) /2 exp <—|4—|) n: (ds) (A.5)

where 7;(ds) is the distribution of S; (see [2, Sect. 5.3.1]). Thus X; is rotationally
invariant.
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Lemma A.2. (i) There exists a constant C = C(d, 8o, ko) such that for (t,x) €
(0, 00) x R4,

2
pt.x) < C <(¢—1(r—1))d/2 A M) .

x|

(ii) For any m € N, there exists a constant C = C(d, 8¢, ko, m) so that for any
(1, x) € (0,00) x RY,

2
DY p,x)<C Y x" <(¢—1(t—l))d/2+m—n A <1|5d(lrle(m )n)>

m—2n>0,neNg
Proof. See [27, Lemma 3.4, Lemma 3.6]. O

The following lemma is an extension of [24, Lemma 4.2]. The main difference is
that our estimate holds for all # > 0. Such result is needed for us to prove estimates
of solutions to SPDEs (see, e.g., (3.2)).

Lemma A.3. Let y € (0, 1) and m € Ny. Then for any (¢, x) € (0, 00) x R,

¢ (A)" DY p(t, ) (x)]
¢ (x|~ 2)V> .

< C(d, 8. k0. m,y) (t_y(¢_l(t_l))(d+’")/2 FED
Proof. Note first that for any given a > 0,

s%e™S < c(a)e™ !, Vs > 0.

Also note that by (3.3), if a> > ¢~ 1(+™"), then

a’ ¢(a2>
K°<¢—1<t—1>) =T T,

Therefore, by (A.S),

[6(2) D pa.0)] = |F7 [F@(a) DY pia, DE)] )]

el

<Ct™7

7 (1gP) 00 g a

/ g5 ag + / |«s|’”d§>
e

[E2>p~ 1t~ [E2<p~ 1)

d+m

_KT()( ‘l%_‘2 T )80 1 1 2
m ™) — —
f$2>¢_10_1) & dg + (¢7'a™)

dm L) 26,
l(t_1)> ’ <f e~ F16] °d§+1)
6P>1

<Ct77
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d+m

= (97l ™)

(4

. d4m .
Hence, to finish the proof, we may assume 7 (¢~ ' (r~1))2 > \x|d+m (equlva-

lently, t¢(Jx|~2) < 1) and prove

m ¢ (x|
¢ (A)" DY p(t, ) (x)| < CW

By (A.4) with r = |x]|/2,
|p(A) D p(t, ) (x)|

= ‘ L, (D2 pte.x ) = D2 ptr.x) = VDI ptr. ) 31, ) jy,d(|y|>dy‘

< DY p(t, x)| Jy.a(lyDdy
Iyl>1x1/2

+ ‘/ D;"p(t,X+y)jy,d(|Y|)dY‘
yl>1x]/2

1
+ / / DI pte, x4 53) = DI (e, 0| Iy a1y Ddsdy
Ix1/2>1y|
=DV p(t,x)| x I+ 11+ 1I1.

By (A.3), (A.1) with ¢, and (3.4), we have
I< c/ rlp(rT2)dr < Co4lx|72) < Co (x| 7).
r>|x|/2

This together with Lemma A.2 (ii) yields (recall we assume 7¢ (|x 2y < 1)

SUxIH oI

|x|d+’" — |x|d+m

ID¥p(t,x)| x I <Ct

For 111, by the fundamental theorem of calculus and Lemma A.2 (ii),

1 rl
111 <C(d) / f | D22 e, x + usy)| Py a(lyDdudsdy
1x1/2>1y]

G (x +usy )
=€ /|x|/2>lvl / / |x + MS)’|d+m+2 |)’| Jra(lyDdudsdy

P (Ix17) 5.
SCt— (Y1~ jy.a(lyDdy.
pelddm+2 f sy

For the last inequality above, we used |x + usy| > |x|/2. By (A.3), and (3.4) with

r=|x|"2and R = p—2,

[x]
/ P a(lyDdy <C / pd (=2 dp
[x[/2>y] 0
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x|
<Clx|? ¢ (1x|72) / p'"rdp
0
<Clx]*p(1x|7)7.
Therefore, it follows that for z¢ (|x|~2) < 1,

$UxIH L oUxI”

1 =Ct |x|d+m — |x|d+m

Now we estimate /. By using the integration by parts m-times, we have

m—1

Ilfi/HY

k=0

+f
lyl> 5t

Differentiating j, 4(0), and then using (A.2) and (A.3), for k € Ny we get

dk
(dpkjyd) (yDDy =" p, x +y)|dsS

dm

dm
( Jy. d> (IyDp(t, x + y)‘ dy.

<C > " iyasaa-ne] = Co o).
k—21>0,leNy

This and Lemma A.2 (ii) yield that

dk
’ij,d(p)

= d=1, |—d—k| \—d—m+1+k N ¢(|X| 2y
1=y (I =) 19(x7)7 1) +C

Teld+m
= x|

¢(|x|—2)y_

- |x|d+m

for t¢(Jx|~2) < 1. Hence, the lemma is proved. O

Below we provide the proof of Lemma 3.2. The proof is mainly based on [27,
Lemma 3.7, Lemma 3.8].

Proof of Lemma 3.2. (i) See [27, Lemma 3.7 (iii)].
(ii) See [27, Lemma 3.8] for (3.6) with arbitrary 8 and for (3.7) when 8 ¢ N. Hence,
we only prove (3.7) when 8 € N. Let 8 € N, then by [27, Lemma 3.8], we have

2%
G (£, )] < C / (¢~ (- ) @M eB gy
(¢ (lx|=2)~!
2%
(@ (|x|=2)~!

For the last inequality, we used =% < 2 whenever r < 2¢%.
(iii) We follow the proof of [27, Lemma 3.8]. By [27, Lemma 3.7], there exist
constants ¢, C > 0 depending only on «, 8 such that

lpe, gt )| < CrBeetr™ )= (A.6)
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forrt™® > 1, and

Crt=*F:BeN
|@a,p(t, 7)| < {Ct_,g . B¢N (A7)
for rt=* < 1. Therefore, we have
o0
/0 |@a,p(t, r)dr < co. (A.8)

Let x € R\ {0}. Then for any » > 0 and y # O sufficiently close to x, we have
lp(A)" D p(r,y)| < C(p,x,d,m,y), |o|<m

due to Lemma A.3. Using (A.8) and the dominated convergence theorem, we get
oo
Dgl 4(t.x) = / $(2) DI p(r, X)pa,p(t, r)dr.
0

Hence, by (A.6) and (A.7) (also recall r1~% < 2 whenever r < 2t%),
tOt

D! 4,0 < C /O 16(A) D p(r, )i ~Pdr

© —ay1/(1—a)
—i—C/ (A D™ p(r, x)|tPecrt™) dr
t

o

— I+ 11 (A.9)

By Lemma A.3,

t* —2\y vy
r<c [ BT T
0 |x|d+m |X|d+m

Also, by the change of variables rt=* — r,

)
o (lx|7) el

-B
Il <Ct @

tO(
—2\y 00
B X _opl/1-)
<Ct* ﬂ—d)'(' |0|1+m) / e ar
X 1

—2\y
wp®(xI?)
=Ct |x|d+m

Hence, (3.8) is proved.
Next we prove (3.9). Assume % ¢ (|x |72) > 1. Again we consider / and /] defined
in (A.9). For I we have

@ (xI72)~!
I=17F / | (A) DY p(r, x)\dr
0
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ta
vt [ () D p(r, )l P dr
(@(x|=2))~!
=11 + b.

By Lemma A.3 (recall that t“(])(lxl_z) > 1),

(@ (x|72)! -2yy
heerr [ 0BT,
0 |x|d+m

—2\y— ~2yy-1 -
=Ct"5¢(|x| 2yy 1=Ct_ﬁ/2(¢(|x| DT (x|
| @2

Note that if r < 2(¢ (]x|72))~!, then by (3.4)

1/60
|2 <o tr ) < (:—0> o' h. (A.10)

Thus, using r < 2(¢(Jx|72))~!, we get

2 (lx72) 7!
net | @ =)
(¢ (Ix|72)~!

21
<ct? / @ )Y gy,
@ (1x72)~!

We also get, by Lemma A.3,

2t%
L < Ct—ﬁf @ =)t gy,
(@ (IxI72)~!

Thus, 7 is handled. Next we estimate /7. By (3.4), we find that
¢l =Tl <

Therefore, by Lemma A.3 and the change of variables rt~* — r,
9]
11 < Ct*ﬂ/ rfy(qb*l(;ﬁl))(d+m)/267c(rt*°f)1/(l—a)dr
tO{

> 1,-1 d+m)/2 t=el/(i=e
< Ct—ﬁ/ rr %y (o)) A2t gy
t

= CrI=a=B (=1 (g=ay)d+m)/2 /OO poy—(dtm)/2 y—ert/ 0 g
1
< Crtmrabgmlmeay)@mi2, (A.11)

As (A.10), if 7 < 2¢%, then by (3.4)

2 1/80
ot <o 2r ) < (F()) o .
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Therefore,
21

(1=p)a=p (=1 (p=ay)@+m)/2 C/ (@~ (1) Hm 2=y =B g,

t()t

2t%
< C/ @'ty Pay,
@ (x72)!

This and (A.11) take care of 11, and consequently (3.9) is proved.
(iv) See [27, Corollary 3.9] for (3.10). We prove (3.11). By (3.8), (3.9), Fubini’s
theorem, and (A.1),

Y 14
t,x)|dx = t,x)|d
/Rd |qa,ﬂ( x)|dx ./|x|>(¢—1(t—06))é |qc¢,ﬂ( x)|dx

+ / L lal (6 ) ldx
Ix|<(p~1 (=)~ 2

< c/ s T,
lx|= (@1 (=) "2 |x|

21
+c/ 1/ @'Y Pdrax
<@t @72 S (2!
—2\y
“cf Lt
rz(¢p~ 1) 2 r

2t
+C/ / @2 Paxar
0 Jg(x2)=r

2t*
< cttneh 4 C/ r e Par < et
0

(v) By (3.24) in [27] (or see (34) of [18]),

00
/ e_srgoa,ﬂ(t, rydr = ta_ﬁEaﬂl_ﬂ_%a(—Sta).
0

Hence, by Fubini’s theorem and (A.5) for y € (0, 1),
o0
fd(qZ,,g)(t, &) = /0 a,p(t, 1) [/Rd e FEG (A p(r, x)dxi| dr

= —/ %t,ﬁ(l‘,r)¢(|f§|2)Ve*r¢(I€|2)dr
0
= P& Eur—pral 19 (EP))).
Similarly, we get
0 Rd

= 1" PEy 1 pra(—1"¢(IE]7).

Thus (v) is also proved. 0
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