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ABSTRACT. We present an Lp-theory (p > 2) for semi-linear time-fractional
stochastic partial differential equations driven by Lévy processes of the type

d 0o ¢ d
k=1

i,j=1 i=1

given with nonzero intial data. Here 0 and Bf are the Caputo fractional
derivatives,
0<a<?, B <a+1/p,

and {ZéIc ik =1,2,---} is a sequence of independent Lévy processes. The
coefficients are random functions depending on (¢, z). We prove the uniqueness
and existence results in Sobolev spaces, and obtain the maximal regularity of
the solution.

As an application, we also obtain an Ljy-regularity theory of the equation

d t
Ofu= 3" au +fw+0] [ hwiz.,
i,j=1 0
where Z; is a multi-dimensional Lévy space-time white noise with the space

_ +
dimension d < 4 — %

take d = 1,2, 3.

. In particular, if 8 < a/4 4+ 1/p then one can

1. INTRODUCTION

Let {WF :k € 1,2,---} and {ZF : k = 1,2,---} be sequences of independent
one dimensional Brownian motions and d;-dimensional Lévy processes respectively.
In this article we present an L,-theory (p > 2) for the time-fractional stochastic
partial differential equation (SPDE) defined on R%:

0P =a Uiy + b'ugi + cu + f(u)

¢
+ o / (ulkumi +vFu+ gk(u)) dwk
o (1.1)
+ 852 / (ﬂirkuxi + 7"+ hrk(u)) dztk, t >0,
0

u(0,) =uo, la>10:u(0,-) = las1vo.
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Here 82,8/, 8/* are the Caputo fractional derivatives,

a€(0,2), fi<a+1/2, Bz<a+1/p, (1.2)
and Einstein’s summation convention is used in ((1.1)) for the repeated indices
i,j € {1,2,---,d}, r € {1,2,--- ,dy} and k = 1,2,---. The coefficients depend

on (w,t,z) and initial data depend on (w, z). The conditions on §; and B2 in
are necessary and will be discussed later (see Remark .

Equation is understood by its integral form (see Defintion , and this
type of SPDE naturally arises, for instance, when one describes the random effects
on transport of particles subject to sticking and trapping or particles in medium
with thermal memory. See [4] for a detailed derivation of such equations. Note that
if « = 1 = B2 =1, then becomes the classical second-order parabolic SPDE.

This article is a natural continuation of [I0], which deals with the equation driven
by Wiener processes. We extend the result of [I0] to more general equation, that
is, equation . Furthermore, unlike in [I0], we impose non-zero initial data.
Actually, even for deterministic initial-value proble

a?u = Aua t> 0; ’U,(O, ) = Uo, 1a>latu(0) = 1a>1/U07

our result is partially new and an extension of [23] Theorem 3.1], which is based
on the semi-group approach and requires some extra algebraic conditions such as
a ¢ {%, 1+ %} Our approach is based on Littlewood-Paley theory.

To explain a technical difference between the equation with Wiener processes
and the equation with Lévy processes, let us consider the model equation

t
Ofu = Au + 85/ h(s)dXy, t>0 ;5 w(0)=14>1u(0) =0.
0

It turns out that if X; is a Wiener process, then for any n > 0 and p > 2, we have

t
HD;LUHip(T) = NH (/0

where L, = L,(Q x [0,T); L,(R)), and p(t,x) is the fundamental solution to the
fractional heat equation 0fv = Aw. On the other hand, if X; is a Lévy process,
then we have

t
Dryll? <NH/ . (1.4
1Dzl oy < N | lesoeomiziny Y

A sharp estimate of the right hand side of is introduced in [I0], and in this
article we obtain a sharp upper bound of the right hand side of with the help
of Littlewood-Paley theory in harmonic analysis.

Below we introduce some related results. To the best of our knowledge, the
regularity result for the time fractional SPDE was firstly introduced in [5][6, [7]. The
authors in [5l 6] [7] applied H°-functional calculus technique to obtain a maximal
regularity for the mild solution to the integral equation

Ut) + /O (t — $)°~ AU (5)ds = /O (t — 8)P=1G(s)dW., (1.5)

where W; is a Brownian motion, and A is the generator of a bounded analytic
semigroup and is assumed to admit a bounded H°°-calculus on L,. Quite recently,
non-linear SPDE of type with non-linear term A(U) in place of AU was studied
in [15] in the Gelfand triple setting with the restriction & < 1 and 8 < (a+1/2)V 1.

P

5y N\ 1/2
(D;Dtﬁ_ap(t —5,7)) *a h(s, )‘ ds> ‘ (1.3)

Ly(T)’

(D;Dtﬁ_ap(t - S, )) *x h(S, )

! ‘




TIME-FRACTIONAL SPDES DRIVEN BY LEVY PROCESSES 3

With regard to equation (L.1)), an Lo-theory was introduced in [4] for the equation
driven only by Wiener processes, and the result of [4] was extended in [I0] for p > 2.
The zero initial condition is assumed in both [4] and [I0].

Actually equation (|1.1) can be written in the integral form like 7 and it
is much general than in the sense that it involves multiplicative noises and
random operators depending also on (¢, x) together with non-zero initial data. We
do not impose unnecessary algebraic conditions on «, 31, 82, and most importantly
our equation is driven by more general processes, that is Lévy processes. However
our results do not cover those in [Bl [6l [7, [T5] because the operator A can belong to
quite large class of operators.

For the deterministic counterpart of our result we refer e.g to [8, 11l 23]. We
also refer to [3| [12], 14] for the classical case « = §; = B2 = 1.

This article is organized as follows. In Section 2 we introduce stochastic calculus
related to Lévy processes, preliminary results on the fractional calculus, and some
properties of the solution space, and we present our main result, Theorem In
Section 3 we use Littlewood-Paley theory to obtain key estimates for solutions. In
Section 4 we prove our main result. In Section 5 we give an application to SPDEs
driven by Lévy space-time white noise.

Finally we introduce notation used in this article. We use “:=” to denote a
definition. As usual, R¢ stands for the d-dimensional Euclidean space of points
= (z1,...,2%). N denotes the set of natural numbers and N, = {0} UN. For
i=1,2,--- ,d and multi-index a = (ay,--- ,aq), where a; € N, we set

“

Diu = u,i = D= D{ ...Dj"u, |a|=a;+ -+ aq.

dzi "
We also use DJ* or D™ to denote arbitarry m-th order partial derivative with
respect to z. For a,b € R, aVb := max(a,b) and a™ := aV0. By F(f) or f we denote
the Fourier transform of f. C%(R?) denotes the set of infinitely differentiable
functions with compact support in R?, S(R?) is the class of Schwartz functions
on R? and D = D(RY) is the class of tempered distributions. For p € [1,00], a
measure space (X, A, ), a normed vector space B with norm | - ||, L,(X, A; B)
is the set of B-valued A-measurable functions f satisfying

1/p
1l con) = ( /X ||f(x)ll%du> ,

where A is the completion of A with respect to . We say X is a version of Y in
Bif | X —=Y| g = 0. If we write N = N(a,b,---), this means that the constant
N depends only on a,b,---. Throughout the article, for functions depending on
(w,t,x), the argument w € 2 will be usually omitted.

2. MAIN RESULTS

First we introduce some definitions and facts related to the fractional calculus.
For more detail, see e.g. [I, 17, 19, 20]. For o > 0 and ¢ € Ly1((0,7)), the
Riemann-Liouville fractional integral of order « is defined by

1 t
Ifp(t) = —— [ (t—s)*tp(s)ds, t<T.
Felt) = e [ (=9 elds, 1
For any p € [1, 0], we easily have

110l L, 0,1y < N(a,p, T)llellz, 0,7))- (2.1)
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It is also easy to check that if ¢ € Lp((O T);B) and o > 1/p then Ifp(t) is a
continuous function satisfying I¥p(0) = In particular if ¢ is bounded, then
I p(t) is continuous for any a > 0. The similar statements hold if ¢(¢) is an
L,(R%)-valued (or Banach space-valued) function.

Let n be the integer such that n —1 < oo < m. If ¢ is (n — 1)-times differentiable,
and (<)"~11""“¢ is absolutely continuous on [0,7], then the Riemann-Liouville
fractlonal derlvatlve Dy and the Caputo fractional derivative 05 are defined by

d " n—«
Dip _<dt) (It ‘P)’

¢ := Dy < Z k,@(’“) ) (22)

One can easily check that for any «, 8 > 0,

I°Pp(t) = I°T%p(t), D*DPp = D"y, (2.3)
and
DBy if
DBy = v ifa>f (2.4)
Iﬂ_ago ifa<p

For p > 1 and v € R, let H) = H;(Rd) denote the class of all tempered
distributions v on R such that
ull gy = [1(1 = A)ullz, < oo, (2.5)
where
(1= A) 0= F 1 (14 [€2)2F W)
The action of v on ¢ € S(R?), which is denoted by (u, ¢), is defined by

(u,9) == (1= A)Pu, (1 - A)77%9). (2.6)
It is well-known that if v =10,1,2,---, then

H) =W :={u: D% € Ly(R?), |a] <7}, HyV = (H)), 4))"

Let I denote the set of all sequences a = (a',a?,---) such that

- 1/2
lal;, := (Z ak|2> < 0.
k=1

By H)(l3) = HJ (R, 1) we denote the class of all Iy-valued tempered distributions
v = (v, v2,---) on R? such that

ol 1) = (L = A) 20l |12, < oo
Also we write b = (h*,... k%) € HY(ly,dy) if

dy
||hHH;(12,d1) = Z HhTHH;(lQ) < 0.
r=1
Let (2,.%, P) be a complete probability space and {%#;,¢t > 0} be an increasing
filtration of o-fields #; C %, each of which contains all (%, P)-null sets. We
assume that independent families of one-dimensional Wiener processes {W/}ren
and d;-dimensional Lévy processes {ZF}ien relative to the filtration {Z;,t > 0}
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are given on ). By P we denote the predictable o-field generated by %, i.e., P is
the smallest o-field containing sets of the type A X (s,t], where s < t and A € Z.
For p > 1 and v € R denote

H)(T) := L, (2 x (0,7),P; H)), Ly(T)=H)T),
HY(T,l2) := Ly, (2 x (0,T),P; H)(I2)), Lyp(T,lz) = H(T,lz),
H (T, 1y, dy) := Ly (2% (0,7),P; H)(l2,d1)), Lyp(T,lz,d1) = H)(T,l2,d1).

Also, for lo-valued functions h, we write h € H(T, l3) if h¥ = 0 for all large k, and
each h* is of the type

PE2) = S 1, (D97 (@),
=1

where 7; are bounded stopping times, 7; < 7;,1, and ¢** € C®(R?). The space
H(T,ls,d1) is defined similarly. By [I4, Theorem 3.10], H>(T,l3) is dense in
HY(T,l2). Similarly, the space L. of the functions g of the form

glw,x) = 14, (w)gi(z), A € K, g;i € CZ(RY) (2.7)
=1

is dense in Ly (2, Fo; HY).
For ¢t > 0 and A € B(R% \ {0}), denote
NF(t, A) = #{0<s<t:AZF.=7F - ZF c A}
NE(t, A) := N¥(t, A) — tvF (A),
where v#(A) := EN*(1, A) is the Lévy measure of ZF. Set

= ([, |z|puk<dz>)1/p.
k _

If ma(k) < oo, then by the Lévy-Ité6 decomposition, there exist a vector a® =
(a**, ..., a%*) anon-negative definite dy xd; matrix b*, and d;-dimensional Wiener
process W[ such that
AL / ZNF(t,dz) =: ot + VPWF + ZF
RA1
(ie. Z7% = am™t + 0 bW + o4, 2" N¥(L,dz)).
In this article we assume the following.

Assumption 2.1. (i) p € [2,00) and
my, = sup (ma(k) V my,(k)) < oc.
k
(ii) For each k, ZF = (Z% ..., Z%*) is a pure jump process with no diffusion and
drift parts (i.e. a* =0 and b* = 0).

Remark 2.2. One can also consider equation (I.1)) with general ZF, without As-
sumption (ii), by rewriting it into the form of the equation driven by a set of
Brownian motions {W/}} U {W/}} and Lévy processes ZF. See (2.1) in [12] for the
detail.
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Remark 2.3. If one only wants to prove the uniqueness and existence of Hg“-
valued path-wise solution u, then Assumption (i) can be replaced by the weaker
condition that there is an integer kg > 1 so that supy~,, m,(k) < co. In particular,
it can be completely dropped if only finitely many Lévy processes appear in .
However, under this conditon we may have E fOT Hu||iﬂ+2 dt = co. See the proof of
[13, Theorem 4.9]. ’

Due to the assumption my(k) < oo, ZF is a square integrable martingale, and the
stochastic integral against Z/* (r = 1,--- ,d;) can be easily understood as follows.
For functions h of the type h = Y ", a;il(r, 7,,,](t), where 7; are bounded stopping
times, 7; < 741, and a; are bounded F,-measurable random variables, we define

m

t
any o= [ nazt =3 ezt - 2250,

i=1
Then Ah becomes a square integrable martingale with cadlag sample paths, and
one can easily check

Esup [(Ah)e|* < ca(R)1BN17,xf0,77)-
t<T

Therefore, the stochastic integral can be continuously extended to all h € Lo(Q x

[0,7],P;R), and fothdZ[k becomes a square integrable martingale with cadlag
sample paths. Furthermore, if h; = hy in Ly(2 x [0, 7], P;R), then

t t
/ hydZ7* = / hodZi*, Yt <T (as.).
0 0
This is because both are cddlag processes.

Remark 2.4. For any h = (h',..., h™) € Ly(Q2 x [0,T], P; R%™) with a predictable
version h,

t dy t dy t
Mf :/ h-dz¥ ::Z/ h"dz;* :Z/ h"dZ*
0 r=170 r=170

is a square integrable martingale with the quadratic variation (see e.g. [18])

dy t
[MF] =) / / ) 2" 2 hThE NP (ds, dz). (2.8)
0 JR%

ril=1

By [3, Lemma 2.5] (or see [16, Lemma 1]) we have

- T ZQ_kSQkSZ o
B (Z/ /Rdl|||h<>N<d,d>>

T oo p/2 T oo
< N(p,mp)E </0 Z|hk(8)|2d$> +/O Z|hk(s)|pd8 ,
k=1

k=1

(2.9)

where |h¥(s)]? = 27(%1:1 h"*(s)|2. Since

00 ) p/2 t p/2 t
ZI%PS(ZmIQ) , ( / |h|ds) <21 [ airras,
0 0

k=1 k=1
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(recall that p > 2), we have
p/2

(Z/o /]Rd1 |Z|2|hk(8)|2Nk(ds,dz)> < NZEHMHL (071" (2.10)
k=1

where N = N(p,mp,dy,T). Therefore by the Burkholder-Davis-Gundy inequality,

25), and (Z10),

su MF
ls<€ Z
Remark 2.5. (i) If g € H))(T,l2), and h € H)(T,l2,dy), then the series

Z/ P)AW?F, Z/ (h*(s,-), ¢) - dZ*

are well-defined due to Assumption 2.1 and Remark [2.4] Indeed, using Remark [2:4]
one can show (see [14, Remark 3.2] for detail)

ZZ/ (W, ¢)2ds < N (¢, mp, dy, )HhHH”(le,dl

r=1k=1

] <NZ]E|W||L (0.TT2)" (2.11)

Therefore, the series

Z/ (h*(s,-), ) - dZ*

converges in probability uniformly on [0, 7], and it is a square integrable martingale
on [0,T], which is cddldg. The same argument holds for Y ;- , fg(gk(s, ), @)dWE,
which is a continuous martingale on [0, T.

(ii) The argument in (i) shows that if, for instance, h,, — h in H) (T’ l2, dy), then
as n — 0o,

Z/hk : de%Z/h’“ ), ¢) - dzE
in probability uniformly on [0, T7.
We say that X; = Y; for almost all ¢ < T at once if
P({w: Xi(w) =Y (w), ae.t <T}) =
and X; =Y; for all t <T at once if
P({w: Xi(w) =Y (w),Vt < T}) =1.

Lemma 2.6. Let XF = W} or XF = Z7% r € {1,--- ,d1}, and h € Lyo(Q x
[O7T]7P712)
(i) Let o > 0 and h = (h*,h?,---) € Lo(T,l3). Then

o(§ o) - Er([sms)e

for almost all t <T at once.
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(i) Under the assumptions in (i),
1« [
Ie $)dXE ) (t) = t—s)*hF(s)dX ]
Z (f et} o= g 3 [ ormtox:

a.e. on £ x [O,T].
(111) If « < 1/2, then

D¢ 3 'hk(s)dX;“) ()
ol

2.0 ([ M)()

o Z/ )"hF(s)dXx®

a.e. on Q x[0,T].

Proof. See Lemmas 3.1 and 3.3 in [4] for (i) and (iii). Actually, the case X} = W}
is proved in [4], and the same argument works for the general case for X} = ZJ*.
(ii) easily follows from the Stochastic Fubuni theorem (see [I8, Chapter IV,

Theorem 65]). O
Fix a small constant x > 0. Set
2681 —1
co = 151>1/2y + Klg =1/2,
(28— 2/p) (212)
_ 2 —4/D
C() = 1ﬁ2>1/pf + K,].ﬁ2:1/p.

Note that 0 < ¢p,¢p < 2, co =01if f1 < 1/2, and ¢y = 0 if B2 < 1/p. Also set
—o/ap)t
Up+? = Lp(Q, Fos Hy T 272007,
and

y+2—-2/a—2/ap 1
Ve { p(§2, Fo; Hy ) a>1+41/p (2.13)

L (Q, Foy HY T2 l<a<l+1/p.
Note that if « > 1+ 1/p, then2—2/a—2/ap>0, and 2 —2/a > 0 for any o > 1.

Definition 2.7. Let p > 2 and v € R. We write u € H)**(T) if u € H}T*(T)
and there exist f € H}(T),g € H)*°(T,ly),h € H}* (T, ly,d1),uo € U)"?, and
vy € Vp”f+2 such that u satisfies

oo t oo t
ou(t,z) = f(t,x) + 0 Z/ g (s, x)dWk + 8 Z/ R¥(s,z)-dzF, te(0,T]
k=170 k=170
U(O, ) = Uo, 1a>1(’)tu(0, ) = 1a>1?}0

(2.14)
in the sense of distributions. In other words, for any ¢ € S(R?), the equality

(u(t) — 1wy — toolast, 6) = T2 (f, ZIQ 4 / (s), B)aw:

+Y I (hE(s), ¢) - dzF
i)

holds a.e. on € x [0, 7], (here I 7" := DY~ if ; > a).

(2.15)



TIME-FRACTIONAL SPDES DRIVEN BY LEVY PROCESSES 9

Remark 2.8. Note that, since 51 < a+1/2 and S < o+ 1/p, the right hand side
of (2.15) makes sense due to Lemma

Remark 2.9. If 85 > o+ 1/p then (2.15) does not make sense. For simplicity, let
ug =vg =0, f =0 and g = 0. Then taking Itﬂro‘ to (2.15) we get

ItBQia(u(t)qu) = 3 t(hk(s)a¢) : dZ§
>,

Since (u(t),¢) € L,y([0,T]) (a.s.) and B2 — « > 1/p, the left hand side above is
a continuous process. However, the right hand side is only cadlag process. The
necessity of condition 81 < a + 1/2 can be derived similarly, and is explained in
detail in [4].

Due to Lemma [2.6] (iii), if 81 < 1/2 or 82 < 1/2, then the the expression in
is not unique, that is, there can be other triple (f, g, h) such that holds in
the sense of distributions.

To define a norm in H;™(T'), we introduce the space

F(T) = H)(T) x Hy (T, Iy) x H) (T, 5, dy),
and for a triple (f, g,h) € F)(T'), we define

1Cfs 9: Mgy ery = [ fllmgcry + Mgl T ||h||Hz+ag .

/
20Tl (T\l,dy)

Definition 2.10. For u € H}*?(T), we define

ullag 2y = Nl oy + N0 + Lasa 1Ol ygv2 + int {I(F, 9. B legery }

where the infimum is taken for all triples (f, g,h) € F)(T) such that (2.14) holds
in the sense of distributions.

In the following proposition, we address that our definition for (2.14]) is equivalent
to that of [10, Definition 2.5].

Proposition 2.11. Let u € H)™(T), up € U}*?, vo € V™2, and (f,g,h) €
F)(T). Then the following are equivalent;
(i) w e HJT2(T) and (2.14) holds with ug,vo, and triple (f,g,h) in the sense of

Definition [2.7
(ii) For any constant A such that

1
A > max(«, £1,B82) and A > —
p
IA% has an HJ-valued cddldg version in H(T'), still denoted by A, such
that for any ¢ € S(RY), the equality

(I %u — I *(uo + tvolas1), ¢)

o0 t oo t
10+ Y1 [t + 1 [ Gs,).0) - azt
k=1 0 0

k=1
(2.16)
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holds for all t € [0, T] at once. Moreover, in this case it holds that

Esup 112wy <N (Elluoly + Las1Elluollf;
t<T (2.17)
1y + 0 iy + 1 )

where the constant N depends only on o, 31, B2,d,dv,p,v, A and T.

Proof. Considering (1 — A)"/?u in place of u, we may assume v = 0.

(i) Suppose (2.16)) holds for all ¢ at once. Then by applying DX~ to (2.16) and
using (2.3), (2:15)), and Lemma [2.6] we find that (2.14) holds for a.e. on Q x [0, 7.

(ii) Suppose (2.14)) holds a.e. on Q x [0,T]. Note that I*~*(ug + las1tvo) is a
continuous L,-valued process, and it satisfies

Esup I (w0 + Lasatvo) [, < N(T)([uolly, + Lasillwollf,)-
t<

Hence we may assume ug = vg = 0.

Take a nonnegative funtion ¢ € C°(R?Y) with unit integral. For each n > 0,
define ¢, (x) = n~%(nz). For any tempered distribution v, define v(™ (z) := v *
Cu(x). Then (™) is infinitely differentiable function with respect to z. Plugging
¢ =Co(-—x) in and applying I;*~ to both sides of (2.14), for each z we get

(o) ™) () = (1§f<">)(t,x)+i1?*ﬁl /0 () (5, )W

k=1

+ZIA Fe / (WY (s, z) - dZF (2.18)

a.e. on Q x [0,T]. Note that since A > 1/p, I} f(™ is a continuous L,-valued
process. Also, the stochastic integrals

Z/ sxde Z/ hk(”)sx de

are Ly-valued cddldg processes, and in particular they are bounded on [0,T] (a.s.).
Therefore, the right hand side of (2.18) is an L,-valued cédldg process, and con-
sequently the left hand side has an L,-valued cddldg version, still denoted by
L (w)™.

By (1) with p = o0 and (211),

p
E sup || I} ~72 /h’c )-dzk
sup | 1 Z
LP
oo t p
<N [ Esup ItA%Z/(hk)(”)(s,x).de dx
Rd  t<T = o
[ ko of T
<N | Esu / R\ (s, x) - dZ; da:SNE/ r™ (s, )2 ds
y tﬁ; 0( ) (s, ) ; 1P (s, T, (13,00
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We handle two other terms on the right hand side of (2.18)) similarly, and get

P
Esup [ 14-(w)™)(¢,-)
t<T Ly
< N(Hf(n)Hip(T) + ||g(n)|‘£p(T7l2) + Hh(n)llﬁp(T7l27dl)>' (2.19)

Considering (2.19) corresponding to I~ (u)™ —I2 =% (u)("™) | we find that I~ (u)™
is a Cauchy sequence in L,(€; D([0,T1;L,)), where D([0,T];L,) is a space of
Ly,-valued cadldg functions. Let w denote the limit in this space. Then since
A2 (u)™ — A~y in L,(T), we conclude w = I} ™%y a.e on Q x [0,T], and w
is an L,-valued cddlag version of I;*~®u. This proves that holds for all ¢ at
once because both sides are read-valued cadlag processes. Also we easily obtain

- ) from (2.19) and the lemma is proved. ([

Theorem 2.12. Let p>2,v€ R and T € (0, 00).
(i) For any v € R, the map (1 — A)"/2 : HY¥2(T) — H)I~F2(T) is an isometry.
(it) H)T*(T) is a Banach space with the norm in Definition .

(iii) Suppose that u € H)T*(T) satisfies ([2.14) with a triple (f,g,h) € F}(T).
Then for any t < T,

llly < N / 9 (1 gy 191 ety + 11 ) 05

+N (Elluollfry + Las>1Ellvolly, ), (2.20)

where 6 := min{a, 2(a — B1) + 1, p(a — B2) + 2}, and the constant N depends only
on «, 517 ﬁQa d» dlap and T'.

Proof. (i) This easily follows from the fact that (1 — A)Y/? : HY — H/™V is an
isometry.

(ii) We only prove the completeness. Suppose that u, is a Cauchy sequence
in H)t*(T) with u,(0) = ug, and 1a>19un(0) = las1vg. Since it is enough to
prove there exists a convergent subsequence, by taking suitable subsequence we
may assume that ||un41 — u””?—["""2(T) < 27" for each n € N. By the definition, for
eachn € N, there ex1sts (frtt, gttt € F)(T) with which w11 —u, (in place

of u) satisfies (2.14), and

ltun1 — un”]{-}[”*+2 T) + ||un+1 — Ug ||U”Y+2 + 1oc>1||v
(

NG T g1y < g = tnllpggeo iy +277 <2770 (2.21)

n+l U(TJLHVP”'*'Q

We take a triple (fl,gl, iLl) € F}(T) such that u; satisfies (2.14)) with this triple,
and define

(Frrgn b)) = Y (5,85 0%),  (f9,0) =D _(f%. 55 1"),
k=1 k=1

oo
E (Ujp1 — uj) + ug.
k=1
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Then, it is obvious that u,, satisfies (2.14) with the triple (fn, gn, hn), and

= unlligy ez + lluo = W llyys2 + Lastllvo = G ly+2

oo

< 0 (e = e lhgen gy + s = b~ g0
k=n+1

Flasllof = of e + 1,5 2 g o))

< i 2—k+1.

k=n+1

Hence, to prove u, converges to u in HJ*?(T), it is enough to show u satisfies
with the triple (f,g,h). This can be easily proved using Proposition m
and Remark (ii).

(iii) We repeat the proof of [I0, Theorem 2.1] which treats the case h = 0. Note
first that by the result of (i) we may assume v = 0.

We take notation from the proof of Proposition Then, from , for each
x € R? we get

u™(t,z) = (u0)™ (@) + Las1t(vg) ™ ()

00 t
IOt )+ S 10 / () (s,2) dWE (2.22)
k=1 0

+ZI“ 52/ (h")")(s,z) - dZ¥

a.e. on Qx [0,T]. Since u™ — w in L,(T), to prove (2.20), it is enough to estimate
f|u(™) lL, (). For this, we only estimate the last term in (2.23) because other terms
are estimated in the proof of [10, Theorem 2.1]. By Lemma for each 2 € R?
we have

(f: = /'(hkﬂ")(m) de> a, Bs) Z/ (s—r)*= P2 (hF) ™) (r, z)-dZF
0

k=1

a.e. on  x [0,#]. Let h be a predictable version of h, then by the Burkerholder-
Davis-Gundy inequality, (2.10) and Fubini’s theorem, we have

p

o ﬁ2/ (nk (")(s x) - de

Lyp(t)

<N tE i ) 12)2[(s — 7)* B2 (B*) ™) (r, 2) |2 N*(dr, d=) " dsdx
R4 JO _.J0 R

<N/0 /0 p(a B2) ||h(n (r )”Ep‘ ads) drds

o 1 9 1
<N / SO BIR()E (o ayds <N / 1AL, 0,05
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Other terms in the right hand side of (2.23) can be handled similarly, and these
yield inequality (2.20) with «(™. This is enough because u(™ — u in L, (t). O

Take k' € (0,1), and for r > 0, set

Loo(RY) if r=0
BT =S CrbYRY) if r=1,2,3,...
CTH (RY)  otherwise,
where C7++’ (R?) and C"~11(RY) are Holder space and Zygmund space respectively.
We use B"(l3) for lo-valued analogue. It is known (see e.g. [I4) Lemma 5.2]) that
for w € H), and v € H)(I2)
lawlly < N(d,p, &', 7)lal g [ul . (2.23)
||bU||Hg(12) < N(d, p, Hl»7)|b\3\wl(12)||U||Hg(12)~

Assumption 2.13. (i) All the coefficients are P ® B(R?)-measurable functions.
(ii) The coefficients p?,v, 5", o™ are lp-valued functions, where i = 1,2,--- ,d
and r=1,2,--- ,d;.
(iii) There exists a constant 0 < § < 1 so that for any (w,t, z)

S|E[* < a¥(t,2)E'¢7 < 67HEP, Ve e R (2.24)

(iv) The coefficients a* (w, t, ) is uniformly continuous in (¢, x), uniformly on €.
(v) For each w,t,4, j,r,

|aij(ta ')lBIW\ + |bi(t7 '>|B|“r\ + |C(ta ')lBM + |:ui(t7 ')|B\W+co\(l2)
Hu(t, ) pirvreol (1) + 1B () il 1) + 177 (E ) pirreo 1) <071
(v) pt =0if 81 > 1/2+ /2, and g =0 if B2 > 1/p + /2.

Below we use notation f(u),g(u), and h(u) to denote f(w,t,x,u),g(w,t,x,u),
and h(w, t, z,u) respectively.

Assumption 2.14. (i)f,g and h are P x B(R%*!) measurable, and for any u &
H)*(T),

) €HY(T), glw) € P N(TLl),  h(u) € B (T, o, dy).
(ii) For any € > 0, there exists a constant K = K(g) > 0 so that

1t ) = F(E )y + gt w) = gt 0 oy o+ (1 ) = S8 0] e

(I2 p(l2,dy)

< ellu— vll gy + Kl — vl
for any w,t, and u,v € H) ™2 .
Here is the main result of this article.

Theorem 2.15. Let v € R, p > 2, and T < co. Suppose Assumption |2.15 and
Assumption [2.17) hold and

a€(0,2), fr<a+l/2, [By<a+l1/p.
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Then for any ug € U]']“, vy € Vp'VH, equation (1.1)) has a unique solution w in the
class HngQ (T) in the sense of Definition|2.7. Moreover,

lullg2ry < N (lluollyg ez + Lastllvollyzee + £ O)llisgery
(2.25)
+ 1900 lgy <0 15y + 1B O o ¢ a1 )

where the constant N depends only on «, 31, B2,d,dy,p, 0,7, K, and T.

Remark 2.16. If a € (0,1] then Assumption 2.13] (iv) can be relaxed and replaced
by the uniformly continuity in z, uniformly on Q x [0,7]. Assumption m (iv) is
inherited from a result on the deterministic equation, [TT, Theorem 2.10]. However,
if « € (0,1) then the continuity in ¢ can be completely dropped for the deterministic
equation (see [§]).

3. KEY ESTIMATES
In this section we study the convolution operators of the type
(—2)"D p) * f,

where a,b € R, p(t,z) is the fundamental solution to the time fractional heat
equation 9f'u = Au, and (—A)% is the fractional Laplacian of order a defined by

(=A)"f(z) = FH|- **F(()} ).

To explain the necessity of such study, let us consider
t
ofu = Au+ 3;6/ h(s)dZ;, t>0 ; w(0)=1,>1u(0) =0,
0

where Z; is a Lévy process. It turns out that for the solution v and ¢ > 0 we have

t
)72l oy < N []((=8)72D¢ ) «h(s)

Thus, for the estimations of solutions, we need to handle the right hand side of the
above inequality. If non-zero initial condition is given, this also leads to the similar
situation.

Below, to state our main theorems of this section, we introduce the Besov space.
We fix ¥ € S(R?) such that its Fourier transform W(£) has support in a strip
{e e RYL <[] <2}, U(€) >0 for L < [¢] <2, and

S U@ =1 for {#0.

=

p
ds

L1 (Qx[0,T);L1 (R4))

Define . A ‘
\Il](g) = \11(27]5)’ j ::l:]-aj:Qv"'a

Wo(€) =1 W5 (6).

For distributions (or functions) f, we denote f; := U, * f.
It is known that if u € H}J, then

lallery ~ | luollz,, + 11227 u; )2z, | - (3.1)

j=1
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For 1 < p < 00, s € R, we define Besov space B, = B;(Rd) as the collection of all
tempered distributions w such that

- 1/p
lull By = lluollz, + | D2 |lusllf, | < oo
j=1
Remark 3.1. It is well known (e.g. [2, 21]) that C°(RY) is dense in Bj, the
inclusion B;z C B;l holds for s; < so, and
H; C By, 2<p<oo.

Furthermore, (—A)? is a bounded operator from Bs*7 to By, and (1 — A)Y/? is an
isometry from By*7 to By and from H3*7 to Hp.

Now, let 0 < a < 2 and p(¢, x) be the fundamental solution to the equation
0w = Au, u(0,z) =wup(x), la>10u(0,z)=0. (3.2)

That is, p(t,z) is the function so that, under appropriate smoothness assumption
on ug, u = p(t,-) * ug is the solution to (3.2)). For § < o + %, we define

I Ppt,z) o> 4,
q%ﬂ(tvx) = tﬁfa( )
Dy %p(t,x) a<p.

Below we list some properties of p and g, g.

Lemma 3.2. Let 0<a <2, B<a+3, andy € [0,2).
(i) For any t >0, and x # 0,

0
ap(t,x) = Aqu1(t,x), (3.3)

and %p(t,x) — 0 ast | 0. Moreover, %p(t, \) is integrable in RY uniformly on
t € [e,T] for any e > 0.
(i) For f € C>(R%), the convolution

[ e = sy

converges to f(x) uniformly ast ] 0.
(iti) For any m € N, there exist constants ¢ = ¢(a,d,m) and N = N(«,d, m)
such that if R := |x|?*t=% > 1, then

ofp(t,x) = Ap(t, x),

a(d+m)

|D;np(t,x)| S Nt~ 2 exp{—ctfﬁ
and if R <1, then

x|z Y, (3.4)

|D™p(t, 2)| < N|z|~™(R + R|log R|14=2.m—0 + R*14=1 m—0). (3.5)
(iv) It holds that
F{D{ 4a,5(t,)} = 1777 Ea1a-p-o (—1*E%), (3.6)

where Eqp, a > 0 is the Mittag-Leffler function defined as

Boos) =S — 2 .
ab(2) kzzo Tak+o) €€
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(v) For any o > 0, there exists a constant N = N(«, 8,0,7,d) such that
D7 (=A)qq5(1, )|+ D] (=A)?0ga,p(1,2)] < N(|z| "7 Alz[7477) (3.7)
ifd>2, and
D7 (=A)2qa,p(1,2)| + | D (=A)?0yga 5(1, )]

L L (3.8)
< N(lz[77 (1 +log |z[1y=1) Az~ 77)
ifd=1.
(vi) For any o > 0, the following scaling property holds:
DE (A2, gt 2) = t 7T OB (LAY g, 51,5 2). (3.9)
Proof. For (i), (iv), (v), and (vi), see [I0, Lemma 3.1]. Also see [II, Lemma 3.1]
for (iii), and see [10, Corollary 3.2] for (ii). O
Lemma 3.3. Let 0 <a <2 and b <a+ 1. Then there exist constants
™m > 07 T2 S R7 n3 € (_17 1)
which depend only on a such that for any v > 0,
Bop(t) = 1 /oo riat exp (—rl/aZI)[r sin (¢ — 7272a) + vsin ()] ar. (3.10)
’ ma Jo 7%+ 2rvns + v

where 1 = (r) = r/%sin (12) + (n2(a + 1 = b)).

Proof. The proof is based on [0, Chapter 4]. Since 0 < a < 2, we can choose a
constant 7 satisfying §m < n < (7 Aan). Then by using formula (4.7.13) in [9], for
any v > 0 and for any 0 < A < v, we have

B y(—v) = 1 /°° 5 exp (rt/ cos (n/a))[rsin (¢ —n) + vsin (w)]dr
@ _% 2 +2 . + 2
,)7 T rvcos (n) + v (3.11)
+/ G(a,b, A, ¢, v)do,
-7
where

Y =4(r) = r'/%sin (n/a) + (n(a +1-1b)/a),
A0/ oxpy (AV @ cos (¢/a))e™
2ma Aet? + v
and v = AY%sin(¢/a) + ¢(1 + (1 — b)/a). Since b — 1 < a, by the dominated
convergence theorem, if we let A | 0, the second integral in goes to zero.
Also since §m < 1 < (7 A am), cos(n/a) has negative value, and |cos (1) # 1.
Therefore, as A goes to zero, the first integral in converges to the integral over
positive real line with the same integrand by the dominated convergence theorem.
Therefore, to finish the proof, it is enough to take 11 = —cos (n/a),n2 = n/a and

G =

)

s = cos (). O
Remark 3.4. If b = 1, then we have
sinam [ ro—l
Eu1(—v) = —rot/ VY rdr. 3.12
1(=v) s /0 r2e 4 2r¢ cos (am) + 1 exp (—rv®)rdr ( )

(see e.g. [9 Exercise 3.9.5]).
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Lemma 3.5. Let a € (0,2) and 8 < oo+ 1/2. Then there exist constants N and
m; >0, my€eR, mgeR, myeR, mye(-11),
depending only on «, B, such that for any p € R
FLU=0)""qa,5(t,)}(€)

Nawwﬁa/“ﬂp<mﬁm&%wam¢+m@+ﬁm¢+mm
0 r2e — 2roms 4+ 1

rA-1 dr,
o (3.13)
where ¢ = (r) = m2t|€|%7‘.

Proof. By the definition of fractional Laplacian and (3.6)), we have

FU=2)"qa,5(t,)}(€) = t*P|€)# Eapa—p(—t*[E%).

By (3.10) with @ = a,b = 14 « — 8, and the change of variables r — vr, for any
v > 0 we have

Ea,1+a7ﬁ(_v)
_ LS exp (o) [rsin (4 — mpa) +osin ()]
7o ), r2 + 2rons + v2

L e (<ol e rsin (v — ma) +sin ()]
Ta J, r2+2rns +1 ’

where 11 = 11 (r) = v'/*r'/%sin (n;) 4+ 128. By the change of variables r — r®,
Eoita—p(—v)

_ Lot e (<o) [ sin (0 = mpa) +sin ()] o,
- ma r2a 4 2rops + 1
- [yt SR e i s - )+ i (4]
0 r2a 4 2rops + 1
where ¥y = 15 (r) = v'/%rsin (n2) + 1728. Putting v = t*|¢|?, we have
FLU=2)"2ga,5(t, )} (€)

= Nl¢rt+*5 /°° oxp (=mut|€]5r)[r® sin (3 — maa) + sin ()]
0 r2e 4 2raps + 1

rA=1 dr,

rﬁ_ldr,

S .

due to (3.6) and (3.15), where 13 = 3(r) = sin (12)t[€

Finally, for (3.13)) we take

my =mn1, mg=-sin(n), mg=mn0, mz=mg—an, ms=7ns.
The lemma is proved. g
For each 7 =0,1,... and ¢ > 0, denote
g% (tx) = Wy (=) 2 qa p(t, )
= FH{U@27)F{(-A) 2 o} (t,-)}(2)
D F () F{(— ) gap} (1,27} (20)
= 2909, (¢, 27 ).

(3.14)
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Lemma 3.6. Assume

1 1
p>2, 0<a<?2 -—-<f<a+-, (3.15)
p p
denote c1 := w > 0. Then for any constants €, satisfying
1 1 1
S<p-2e Boa<-—6<-, (3.16)
P 2 P p
we have
laeta ™ )y < N@ETHIo o a 7575, (3.17)

where N = N(«, 8,d,p,€,0).
Proof. Put co = ¢1 + €. Then by m 0 < ¢3 < 2. Due to (3.9), we easily get
1(=2) % ga,p(t, )|z, < Nt~ 070, (3.18)

Recall that the convolution operator is bounded in L, for any p > 1, that is

If *gllz, < Ifllc.llgllz,. Thus, (3.18) together with the first equality in (3.14)
yields

_1_ae
lge2d (¢ Mo, < Nt™o %

— ”—Cz,J(

C2,j( ey = 4n.8

This and the equality ||g Iz, show that it remains to prove

j ;o1
16523 (£, )|z, < N2&ITeig=3+o,

)

By definition (see (3.14)))

F(@2])(,€) = WO F{(=2) F ga s}, 27€). (3.19)
Thus R . ‘
IF@2) (O] = [WEONF{(=A) 7 qap(t, ) }(279)] (3.20)
< Nligpej<ol F{(=A )% qaa(t, ) }2E)].
By with p = 2,
IF{(=0)F gap(t, ) }(276))] (3.21)
< N|2j§|“%+€/o exp (—m1t‘235|ET)iLZajigﬁlpn;nlgl)\ + | sin (¢ + m4)|)rﬁ_1dr,

where ¢ = m2t|2j§|%r. Note that for any polynomial @ of degree m and ¢ > 0,
there exists a constant N (¢, m) such that

Q(r)exp (—cr) < Nro» ™0 p>0. (3.22)
Applying this inequality with Q(r) =1 and ¢ = m; to (3.21)), we have
—C -2
IF@Z) (6] < Nligee|27€ate

1 o0
X (/ (t‘ng 377")_%"'57"5*16” +/ (t2j§‘2‘T)_‘1’+6Tﬁ1r2adT)
0 1

205105, 145
S N2 <o

For the second inequality above we used 8 — a < % -6 <p.
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Similarly, using (3.19)), (3.13)) and following the above computations, for any
multi-index v we get

_co, 26 i, —L1as
IDIF(G2H)(8,€)] < N2&ITTi7o 40, gy

Hence, we have
Ja223 0, = [ (14170 laP gz (o)l da
<N/ (1-+ o) sup |1+ A F(: 9)(t,€)ldz

< N2Ri+eip5 o,

For the first inequality above we used the fact that if F(f) has compact support,
then

[f(@)] = [FHF) @) < IFAle, < Nstgp|]‘_(f)|-
The lemma is proved. |

The following result will be used later to study the regularity relation between
the solutions and free terms in stochastic parts.

Theorem 3.7. Let (3.15) and (3.16) hold, and denote ¢; := w. Then
there exists a constant N depdending only on «,B,d,p,e,0, and T such that for
any g € C((0,00) x R%)

[ ] Les

Proof. Denote co = ¢; +¢ and Q(t, ) := (—A)%qa}g(t,a?). By (3.1),

T ot
/ / |Q(t — s) * g(s)(x)|[Pdxdsdt
0o Jo JRrd
v [ [ [ @9 oo
p/2

1221955 QU = ) x gD @) | drdsdr.

T
 guplt = s,0) x (o)) dodsdt < N [ lg(e) Bt

0 p
(3.23)

Note that
Uy =00+ 0+ 00), j=12,
Uy = To(Vo 4 0y).

Using this and the relation F(f1 * fo) = F(f1)F(f2), we get

)

(3.24)

oo oo Jj+1
) Y5+ (Qt =) g(s)) (@ | D Qit—s)xg;(s) (@),

[Wo * (Q(t — 5) % g(s)) ()] = 425 (t = 5) * go(5) () + 475 (£ = 5,-) * go(s) ()],

Jj=1 1=5—-1
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Therefore,

/T /t | 1Q( = 5) xg(s) ()| dudsdt
- N/ / Rd 14525 (t = ) % go(s) (x) [Pdwdsdt

+N/ // |qc2’ t — s) % go(s)(z)|Pdxdsdt

o jt+1
oh ) NP2 grdsdt. (3.
+N/0 /0 /Rd(;|l;lq 9;(s)(x)[*)” “dzdsdt. (3.25)

By (3.17)), the first two integrals on the right hand side of (3.25)) are bounded by

N / / 8) " % go(s, )|}, dtds < N(T) /0 lgo(t, )17, ¢ (3.26)

By Minkowski’s inequality and Fubini’s thoerem, the third integral is bounded by

T 0o
2
N// Z St — )P llgy (s, )2, ) drds,

where K;(t — s) = (2% 9+ (t — S)—%-Hs At — ) 3759,
If p = 2 then

Z// 5t — ) Pllgs(s, ) |3, deds
TOO s+27 a 455
N / / Q™S )10 g (s, ) |2, dtds
Too
N / / (t— 8)71 =g (s, )12, deds
*7.1

N / ZQ%JHg )3, ds.

This proves the theorem if p = 2.
If p > 2, then

T T oo
/0 / (Z|Kj<t—s)\zngj(s,->||%,,)p/2dtds

= N// Z (8,5, DI (8= ) llg5 (s, )2, )" 2 dtds
/ / Zlmsy\m—sn lg; (s, )13, )"/ *deds,

IN
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where J = {(t,s,5)[2/(t —s)2 < 1}. By (3.16), if (¢,s,4) € J, then K;(t —s) =

267

2% eIt — )*%M. Therefore, by Holder’s inequality, we have

DLl (= 9)Pllgi(s, )z,

j=1

o

1,20927 992764240 (1 — 5) "5 g (s, ) |12
1

tos) BT 2 ) (YT g (s )1 )

JEJ(t,8) JEJ(t,8)

IN
—~ <.

where ¢ = pr, a € (0, %‘S), and J(t,s) ={j =1,2,...](t,s,5) € J}. Note that

(> 29 <NE)E-s) T

JEJ(t,9)
Thus we get

T T oo
. 2
| [ (sl = 9P o, 1,)" aras
s j=1

IN

5+2 y
> / (t — 5) 10— 28 0= B 9 2B kw0 (5 |7 s

N/ Zngjng N dt. (3.27)
0

Next we cons1der the remaining part:

2«
thlK (t = 5)llg; (s )T, ZIJ 2927 (t — 5) v g (s, )17

Ly
Jj=1

S(t_s)fgfae( Z 217!1] 1/‘1 Z 92— bWHg )” )Q/P’

p
J¢J(t,s) J¢J(t,s)
where ¢ = 25, and b € (—2¢,0). Note that

(> 2T < Nt —s) 7
JgJ(t,s)
Therefore it follows that

T T oo p/2
/0 / (le,s,j)u@(ws>|2ugj<s,->||%p) dtds
Too 7&70610 bm
N / / (t— )1 =508 g (s, )| dtds

< N / Zwug I, dt. (3.28)
0

Combining (|3.26)), 13.27) and (3.28) we get (3.23)) for p > 2. Hence, the theorem is
proved. [

IN

IN
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The next part of this section is related to the non-zero initial value problem
Ofu=Au, t>0; u(0)=ug, lo>10:u(0)=0.

The solution is given in the form of p(t,-) * ug, and we study the regularity of this
convolution.

Define R ‘
pit,z) = (U;(-) * p(t, ) (x) = FH(U(277)p(t, ) (z)
= 2 F (W ()p(t, 2 ))(2] ) i= 29p;(t,27).

Lemma 3.8. Letp > 1,0 < a < 2 and o # 1. Then there exists a constant N
depending only on a,d such that

(3.29)

Ipi ()L, S N@ StV A1), ¢>0. (3.30)
Proof. Let R(t,z) := |z|>t=. Then by (3.4), and (3.5),

/|p(t,x)|dx:/ \p(t,x)|dx+/ ip(t, 2)|dz
Rd R>1 R<1

<N =% exp {— c|ac|2 st 7a Ydx
R>1

+N |z|~%(R + R|log R|14— + RY/?14—,)dz.
R<1

By using change of variables and the relation
r’|logr] < N(v) 0<r<1, v>0

we have [[p(t,-)||z, < N. Due to this and the relation ||p;(¢, )|z, = ||P;(t,-)|lL,, it
only remains to show

25
155t )10 < N2~ %4,
By definition (see (3.29))

F(ps)(t,€) = W()p(t, 27€). (3.31)
Since go o := D %p = p, by (3.6) and (3.12)), we have

1
_ _ 25 2
[ Fp;(t,8)] < N1%§|€|§2/ r®~Vexp (=27 [¢]«tr)rdr
0

+N1%<‘§|<2/ r_"_lexp(—2%|§|%tr)rdr. (3.32)
TN
Note that for any polynomial ) of degree m and constant ¢ > 0, we have
Q(r)e " < N(c,m)r— %
This and (3.32)) easily yield
_ 25,
|Fp;(t, &) < N27at 11%g\§\g2-
Similarly, using (3.31)) and following above computations, for any multi-index v we
get

2

|Dg~/rp](t7£)| < N(av%d)z_gjt_ll%g\g\g-
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Therefore, we finally have
1756 s = [ (L P70+ POl 0o
<N [l sup| 1+ AZ)F (), )l

25 .
< N2- @it
The lemma is proved. O

Theorem 3.9. Let, p>1,0< a <2 and f € C2(RY). Then we have

T
/ / Ip(t, ) * fIPdzdt < NY|F|” . | (3.33)
0 JRd B, °P

where the constant N depends only on o, d,p, and T'.

Proof. Since the case a = 1 is a classical result, we assume « # 1. By (3.24)), and
the relation F(f1 * fo) = F(f1)F(f2),

T
/ / Ip(t, )  fPdedt < N / (Ipo(t, Y a + o1 (& )P foll

oo J+1
+N/ O > et 1 £illz,) .
Jj=1li=75-1
By (3.30),
T
/O (lpo(t, Ly + llpr(Es ) )P foll7, dt < N(T)| foll7, (3.34)
and
co j+1 00
[ (S sy asy [ (et A,
j=li=j-1 Jj=1

Observe that

T o )
/0 O o@ =t ADfilL,) dt

j=1
/ (315 dt+/ lec 692 R £ )t
where J = {(t, j)|23t < 1}. By Holder’s inequality,

/Z_)mmu —/ Zraza“nfjnL)

JEJ(t
T ) .
< [OX Ry 2Ry,
O jea jea)

where a € (f%,())7 q= 32, and J(t) ={j=1,2,...[(t,j) € J}. Since

> 27 F < N(g,a)t,
JeJ(t)
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we have

T oo e} 27%‘1 0

E=NE
JRO MR IAPRRTED S DY RS e PR
R =iJo

- (3.35)
_2
< NS H |l
j=1
By Hoélder’s inequality again, for b € (—1, —%) and ¢ = p’%l,
= —2,9 P
(Zl]cz ot ||fj||Lp) dt
o 4
2 77
=[S e e,
O e
T ,
< [ 3 e RS 2R e

0 Jga () IT0)

Since ‘
Z 2*%(b+1)q < N{q, b)t(bJrl)q’
JEJ(t)
we have
T oo
2j
| (i eigl,) ”dt<NZ/ Y e gy
0o T
=t (3.36)

= NZT* 1511, -

Combining (3.34)), (3.35) and (3.36), we have 3.33). The theorem is proved. O

The last part of this section is related to the non-zero initial date problem of the
type
Ofu=A~Au, t>0; u(0,z)=0, 1lo>10:u(0,z) = 14>109(2). (3.37)
Let a > 1. Then using Lemma each  # 0, one can check that

t

P(tax) = Ga,a—1 :/ p(s,x)ds

0
is well defined and becomes a fundamental solution to (3.37)).
For 7 =0,1,2,... define
P(t,z) = (‘I’j(’) * (=A)7?P(t,-))(x)

= F NI )F(=A)P)(t,)(x)

= P WO F( AP, 20) (20)

= 274P;(t, 27 7).
Lemma 3.10. Let a € (1,2). Then, for any § € (0, ), there exists a constant N
depending only on a,d,e,§ such that for any t > 0,

IPi(t, )y < N(@THFEIH A ), (3:39)

(3.38)
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Proof. By (3.7), (3-8) and (B.9)), we easily get

[P, )]lL, < Nt.

Therefore, it suffices to show that

1P (t, ), < No~2itRipimats,
By definition,

F(P)(t,§) = W(EF(P)(t,27€). (3.40)
Also, by Lemma [3.3] and Lemma [3.5] with © =0, f# = a — 1, we have
| F{P(t,)}(27¢)]

g [T SR ) L0t
0

a—27““m5—|—1

where ¢ = m2t|2j§|%r. Note that for any polynomial @ of degree m, and ¢ > 0,
we have

Q(r)exp (—cr) < N(e,m)rt=e%o > 0. (3.41)
This with the condition § € (0, «) gives

[F(P)(t, )| < 11ja<ie|<2l F(P)(t,27)]
Ny/agjea2  ( / (t|27¢] &) o2y 4 / (#|2¢g[wr) =0T 2dr)
0 1

—2j+20 5, 1—a+6
< N2 L g <o

IN

Using ([3.40) and similar computations above, we also get for any multi-index ~
|DIF(P;)| < N2~ 2+ R il-ats Licje<ar

Therefore, we have
1P;(t, e, = /Rd(l + 2P THL + )| Py (t, z)|da
<N [ (o) sup (14 ADF(P (0,6l do
R4 3

< N2~ 2i+%ipl—a+s
The lemma is proved. O

Theorem 3.11. Let o € (1,2) and h € C>(RY). Then there exists a constant
N = N(a,d,p,T) such that

1
/ / Pt SN 5 g0 i a> 14 (3.42)
R4 ap  «

/ / @ dadt S NIAY o i 1< <1E1p (349
Rd

Proof. Case 1. Let « > 1+1/p. Then by assumption on «, we can take § € (0, )
such that

1 26
a—1-6-=->0, —2+=<0. (3.44)
p «
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By (3.24) and the relation F(hy % ho) = F(h1)F (ha),

/ /R d (2)|Pdadt

<N/ (R0t )z, + I1PL(E ) La)P Aol dE

oo J+1

LN / S ST IR g, )

j=1li=j—-1

Note that (3.39) with (3.44)) easily yields
T
/0 (Po )y + 1Pt )P thollZ, dE < N(T)lholl7, - (3.45)

Also by (3.44),

oo j+1

/ (3 S0 IR gl ) e
j=li=5—-1
< N/ lhillz, )" dt
<N/ Z t, ) L;()||hy]lL,) dt+N/ ZlJLt] )||hyllz, )" dt,
where J := {(t,7)|27t? > 1}, and
Li(t) = (270 +Rdglmatd ppy =
it) = t,j) ¢ J.

) {22#231151%5 L (t,§) €T

By Holder’s inequality,
/ ZlJL )z, )t
2b 2b5
:/ (Z1J2 I -e= 09 =22 9% || by ||, ) Pt (3.46)

(1- Oz+5)p —2bas P/q 2pj+2Lpjg2EL 1y 1p
S/O t ()2 (> 2 277 ||y 7, )dt

jeJ(t) jeJ(t)

where b € (070171*%—5), q= and J(t) ={j=1,2,...](t,5) € J}. Since

pl’

(S 2779 < N(a,pt'”,
JEJ(t)
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we have

/ Zm )z, ) e

<N/ ((1—a+d) ptbp Z 92— 2pj+22 p322‘;b’ ||h ”p )
JEJ(t)

N (3.47)
SN [y o ey
SN2 .,
. _2pi _2 P
SN 27 T hyllf
j=1
Again by Holder’s inequality,
/ ZL,C Oy, ) dt = / > 2 25 |y |, )Pt
JEJ(t)
< [T YO 21
O eI g (1)
where a € (—1 — 1 ;0), and ¢ = ;£ Since
( Z 2*%)17/'1 < N(a,p)t*?,
i (1)
we have
T o0 T 2paj
| (il i< v [t S 2% g,
0 =1 0 igJ ()
oo 2727'}
<Ny / e [ (3.48)
; 0

2pj

< NS T

N

I
-

J

Combining (3.45), (3.47), and (3.48)), we get (3.42). The theorem is proved.

Case 2. Let 1 < a <14 1/p. This time, we choose J,b > 0 such that

a—1-6>0, be(0,aa—1-9), (3.49)
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and repeat the proof of Case 1. The only difference is we need to replace (3.47) by
the following:

/ ZuL )b Iz, )P dt

<N/ 1 a+§)ptbp Z 2= 2pJ+25p]2 a
JEJ(t)

“ingly,)dt

<N/ ((1—a+8-1/p)p tbp Z 2—2p3+ p122‘;'” ||h Hp )
JEJ(t)

o 0o
_ _ 2pbj
SNZ/,Q 1 (1=a+8=1/p)pbpo—2pj+22pjo =22 ||hj||12p

< NZ 2% ||y [
On the other hand, - 3.48) still holds without any changes, and this certainly implies

/ leL sl )Pt < NS 272 s
j=1

Hence, Case 2 is also proved. (I

4. PROOF OF THEOREM [2.15)
We first prove a version of Theorem for (deterministic) equation (4.1)).

Lemma 4.1. Let 0 < a < 2,1 <p < oo andy € R. Then for any ug € Ug+2,
vo € V)2 and f € HY(T) the equation

u=Au+f, t>0,zeR?; u(0)=wug, lo>10:u(0) = 14s10 (4.1)
has a unique solution u € H)™*(T), and moreover

||U||Hg+2(T) < N(”U()HUg+2 + 1a>1||’00\|v;+2 + Hf”HZ(T)), (4.2)
where the constant N depends only on a,d,p,~y, and T.

Proof. Due to Remark it is enough to prove the lemma for a particular v, and
therefore we assume v = —2.

The statements of the lemma hold if ug = vy = 0 due to [I0, Theorem 2.3]
(or [1I, Theorem 2.10]), from which the uniqueness result follows. Furthermore,
considering u — v, where v is the solution to the equation with uy = vo = 0 taken
from [I0] Theorem 2.3], we may assume that f = 0.

Now, let ug, vy € L. and define

u(t, ) := (p(t,-) ¥ uo(-)) () + Las1(P(t, ) * vo(-))(2).

Then by Lemma (or see [11, Lemma 3.5] for more detail), u satisfies equation
(4.1), and u € H}(T') for any n € R, since ug, v € L. Moreover, for this solution
we have

lullggzry < N (lollgga + Lasaloollyzes + 1 g er)
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with v = —2 due to Theorem [3.9] Theorem [3.11} and Remark [3.1] This estimate
and the definition of norm in H%(T") certainly yield ([“2).

In general, take ug, vy € L. such that uf — up in Uz? and vy — vp in Vpo, and
for each n let u,, denote the solution to the equation with initial data u{ and vg.
Then estimate corresponding to u, — U, where n,m € N, shows that u,, is a
Cauchy sequence in ’Hg (T), which is a Banach space. Now it is easy to check that
the limit of the Cauchy sequence becomes a solution to the equation with initial
data ug and vg, and the estimate also follows. The lemma is proved. [

Remark 4.2. The proof of Lemma[.1]actually shows that the lemma holds for any
p € (1,00) with appropriate Besov spaces. Precisely speaking, if « > 1+ 1/p, then
we can use BQ*H/”’ and B;+2_2/O‘_2/ap instead of U2, and V,)*2 respectively,
and for o < 1+ 1/p, then we can use B;+272/O‘p and Bg+272/a instead of U)*+2,

and V)2 respectively.

Lemma 4.3. Let a € (0,2), 62 < o+ 1/p and h € HX(T). Denote

0ot
) =Y [ ([ aostt= s i) -zt 1)
k=170 \JR?
Then u € H;(T) and satisfies

t
Ou = Au+ 9/ / h¥(s,2) - dZF, t > 0,2 € RY u(0) = du(0)1as1 =0 (4.4)
0
in the sense of Definition [2.7

Proof. Tt is enough to repeat the proof of [4, Lemma 3.10], which deals with the
equation driven by Brownian motions. [l

Next we prove a version of Theorem for the linear equation

¢ ¢

Ou=Au+ f+ 0" / g" (s, x)dW¥F +8§2/ h*(s,x)-dZF, t> 0,2 € R,
0 0

u(0) = uo, Oru(0)las1 = las1vo, (4.5)

Theorem 4.4. Let vy € R, p > 2, 1 < a4+ 1/2 and B2 < a+ 1/p. Then, for
any ug € UJT2, 0o € VT2, f e H)(T), g € HYT(T,12) and h € HYT®(T,l5,dy),
equation (4.5) has a unique solution u in the class ’H;“‘Q (T), and for this solution
it holds that

[ullyz2 () < N(luollp+2 + Lasillvollyz+z + 11 llwy )

(4.6)
llgll ey B
P P

0(T,l2) 6(T,l2,d1))’
where N = N(a, B1, B2,d,d1,p,v,T).

Proof. Due to Remark [3.1] it is enough to prove the lemma for v = 0. The unique-
ness follows from Lemma [£11

Recall that the lemma holds if A = 0 and ug = vo = 0 by [10, Theorem 2.3], and
it holds if f = 0,9 = 0,h = 0 by Lemma By the linearity of the equation, if
h = 0 then the existence and the desired estimate is easily obtained by combining
[10, Theorem 2.3] and Lemma [4.1] The case h = 0 is proved.

Furthermore, by the result for the case h = 0 and the linearity of the equation,
to finish the proof of the lemma, we only need to prove the existence result and
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estimate (4.6), provided that ug = vo = 0, f = 0 and g = 0. Also it suffices to prove
with ||u||H;+z(T) in place of ||uHH;+2(T) due to the definition of ||u||Hg+2(T).
We divide the proof of this into following three cases.

Case 1. Let 85 > 1/p.

If h € H*(T,ly,dy), we define u € H2(T) as in such that it becomes a

solution to equation (4.4). Denote ¢; := W and take a small constant
e € (0,¢;) satisfying (3.16]) with 85 in place of 8, and set

vi= (—A) a2y p= (—A) a2,
By Burkholder-Davis-Gundy inequality, and (2.9))
||AU||€p(T) = ||(_A)(Cl+6)/2v‘|]1p‘p(T)

<N]E/Rd/ </0 A)qfqm(t_s,.)*Bk(s7.)‘2(x)ds>gdtdx

k=1

n oo
R4 0

k 1
By [10, Theorem 3.1] we have

(L2

where the constant N depends only on «, 2, d, dy, and p. Also by Theorem [3.7 and
Remark B.1]

E / /OT / f) |(=8) % gt = 5,7) < B¥(s, )| (@)dsdeda

<NEZZ/ At ||p5dt<NEZZ/ 172 ) 2

r=1k=1 r=1k=1

2

_ 2
=3 qawg2 (t—s,-)* hk(s7 )‘ (x)ds) dtdz < NHh||p

le,dl)
k=1

where the constant NV depends only on «, f33,d,d;, and p. The above estimations
and the inequality >~ |ax? < (35, |a;€|2)p/2 yield

A < N|[h|I? p 4.7
|| UH]L »(T) ” H 2Ty d) H ||H0(Tl2,d1) ( )

Also, due to (2.20) and the inequality || - ||, ) < || - [lL, (1) for s < T', we have

IN

9 1
Wl? @y < N / (18012, gy + 02, 1y )l

p P
||AU|| L, (T) + ||h|| (Tl27d1)) < N”hH Eé(T lz,d1)

IN

This, (4.7) and the inequality [lul|mz < [[ul[z, + [[Au] L, yield estimate (4.6).

For general h € Hf,o (T,ls,dy), it is enough to repeat the approximation argument
used in the proof of Lemma

Case 2. Let 83 = 1/p. The argument used in Case 1 shows that to prove the
existence result and estimate (4.6) we may assume h € H°(T,l2,d;). In this case
the existence is a consequence of Lemma
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Let u € ’Hf)(T) be the solution to the equation. Take k > 0 from (2.12)), and put
k' = ka/2 and By = 1/p+ k' > 1/p. Then by Case 1 with &, = (265 —2/p)/a = &,
if we define v as in (4.3) with 85 in place of B2, then v satisfies (4.4]) (with 35), and

[ollnz(ry < NIAllw(7,12,d0)- (4.8)

Since It'v satisfies ([£.4) (with B5), by the uniqueness of solutions, we obtain
u(t,z) = I v(t,z), and (@.6) holds due to ([2.1) and (£.8). Hence the case B, = 1/p

is also proved.

Case 3. Let 82 < 1/p. As in Case 2, we only need to prove estimate (4.6)),
provide that h € H2°(T, 2, d;) and the solution u already exists.
Put

flt,z) = I‘(liﬁﬂ/o (t —s)"P2hk () - dzF.

Then by the Burkerholder-Davis-Gundy inequality and (2.10)),

T t
VA o, gN]E/O /O(t—s)*ﬁzpm(sy.) D st < NIAIE 0. (49)

Note that by Lemma[2.6] (iii), u satisfies
ofu = Au + f,t>0; u(0)=14-10:u(0)=0.

Therefore, estimate ([4.6]) follows from (4.9) and Lemma[4.1] The theorem is proved.
O

Proof of Theorem [2.15

1. Linear case. Due to the method of continuity (see e.g. [10, Lemma 5.1]) and
Theorem we only need to prove that a priori estimate holds, provided
that a solution u € Hg“(T) to equation already exists. Also note that due to

the definition of the norm in H}™2(T), we only need to prove (2.25) with [llgy+2 )
in place of ||uHHg+2(T).
Step 1. Assume ug = vg = 0. Denote

f=bug +eut f, §° = pFuy +vFu+gb, BF = g 4+ 0Fu + R

Recall that cg, ¢y < 2. By Assumption uw=0ifcg>1,and g =0if ¢g > 1.
Therefore, by (2.23),

HgH]H[Z“U(t,lg) < Nlco<1||u’£HH;+CO(T) + NH“HHz“O(T) + ||9HH3+C0(T712)

IA

N160<1||UHH3+60+1(T) + NHUHHZ‘*’CO(T) + ”g”Hg‘*CO(ﬂhy
The similar estimate holds for f and h. Using these and the embedding inequality

||uHH;+5 < EHUHH,?“ + N((575)||u||Hg, 5 €(0,2), e >0, (4.10)
we get, for any ¢ >0 and t < T,

1 sy oy + 1y oy + Wl b0 o
< ellullgg 2y + Nl (4.11)
1Ty + 1l iy + I lggvo e ) < 00
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Recall 52; H) — HY~!is a bounded operator for any v € R. Using this, (2.23)
and Assumption we easily have

Hf”HZ(T) + HgHH;JrCO(T’lQ) + HBHH;Z*EO(T,[%M)
< Nlullggagry + 1 gm0y + Whllgzson g,y (4:12)

Due to Theorem and (4.11)), we can define v € H)*?(T) as the solution to

equation (4.5 with g and h in place of g and h, respectively. Furthermore, for each
t < T we have

ey < Nz + Nlgllggseoeayy + Nllggeco s, 0
Note that @ := u — v € HJ+?(T) satisfies
0%t = aigigi + f, t>0; 4(0) = las11(0) = 0,
where
= (CI,Z] =67 )gigs + f = f.
Therefore, by [11, Theorem 2.10] and (4.11)), for each ¢t < T
Hu||Hg+2(t) < u— U”Hg“(t) + ||v||H;+2(t)

Nellullgy+2 ) + Nllullay @) + NIy e

AN

+N||g||]}[[g+c0(t712) + N||h||HZ+EO(t,l2,d1)'
Hence,
] < Nllu”ﬁg(t) + N”f”ﬁg(t)

p
HP () S
+Nllgll® + N|h|? (4.13)

H, 90 (8,5) H, %0 (8,05,d1)

Combining this, (4.12)) and (2.20]), we get for each t <T'

t
gy < N [ (€= 0"l yds+ N lhper
N9l <0 (71,) + N Bl 420 (7,1, a1 (4.14)

We use (4.14) and Gronwall’s inequality (see [22]) to estimate ||u||§ﬂw(T). Then,
P

applying this estimate to (4.13)) and using (4.12)), we get a priori estimate ([2.25) if

Ug = Vg = 0.

Step 2. We consider non-zero initial condition. Let v € H)™?(T) denote the
solution to equation (4.5) taken from Theorem Then @ := u —v € HJ*(T)
satisfies equation (|1.1)) with uy = v9 =0, f, and h, where

fi=(a" = 07 vgigs + oy + v, §° = pFv, +vFu, B = ey + 07,
By the result of Step 1,

Hu - UHH;“(T) < N”];HHZ(T) + N”L‘?”H;*CO(TJZ) + N”BHH;%O(TJQJI)
< Nlolgyezery (4.15)

A

For the second inequality above we used the calculations in Step 1 (see (4.12))).

Combining (4.15) with the estimate for v, that is (4.6), we finally get a priori

estimate (2.25)) for u. Hence, the theorem for the linear case is proved.
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2. Non-linear case. First, set
f=bug+cutf(u), 7% =p*uy +rFu+g"w), h™" =" uy +7"Fu4hE ().
Then by Assumption (4.10)), and Assumption we have

17w = F)ly +19(0) = G0} 31, + 1B = ) prvsg

< 8 (= ol + Ll = ol g+ =l ey, )

N (1cfo<1||ni<u Ol g+ ol ))
A — £y +l9) ~ 90, + ) (o))

< ellu— vll g + Nl = oll 3,

v
H;ﬂo(lz’dl)

where u,v € Hg” and the constant N depends only on a, f1, B2,d,dy,7,p,d, k and
e. Hence by considering f, g* and h"® in place of f, g* and h™* respectively, we may
assume that b’ = ¢ = p'* =% =0, and g% = "% = 0.

By the result for the linear case, for each u € 7—[;*2 (T), one can define v = Ru €
H)2(T) as the solution to the equation

t t
080 = avgigs + f(u) + O / g" (u)dWPF + 8{32/ RF(u)dZTk, t >0
0 0
U(O) = Uo, 104>1atv(0) = 10£>1U05
and for this solution we have

[vll35+2 () < N (lollyz+2 + Las1llvollyo+2 + 11f (w)lls ()
gl )+ 1]
By forany e >0,t<T,and n=1,2,... we have
IR = Rl < N (50 = F0)1E )+ Do) = 9P,y
k) = ROy )

O (t,l2,d1)
+ NOHU - UHH;(t)

0 (T,1, d))

S Ep”u - U||§H;+2(t)

t
9_
< =gy + Mo [ (=) = vl s

where the constant Ny depends also on €. Therefore, by using the identity

/t(t _ )071 /Sl( _ )071 /Snil( _ )071d dsy = F(a)n tn0
o S1 o S1 S9 o Sn—1 Sn Sp...0A81 = F(n9+1) s

and repeating above inequality, we get

n

n _ INO&
n n < (n—k)p 0 k o P
IR = R0l o < > (k)e TN gy 1~ gy

(e M TINGT(6))"
(™ )l el
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Now fix ¢ < 1/8, and note that the above maximum is finite. This implies that if
n is large enough, then R™ is a contraction on H;’+2(T). This proves the existence
and uniqueness results, and estimate (2.25]) also follows. The theorem is proved.

5. APPLICATION TO LEVY SPACE-TIME WHITE NOISE

In this section, we assume that

31
fo< qat o (5.1)

and the spatial dimension d satisfies
2028, — 2/p)* _
@

Note that dy € (1,4], and if 83 < /4 + 1/p, then one can take d = 1,2,3. Also if
a = By =1 (in this case p < 4), then d < 4/p < 2, and thus d must be 1.

Let {nx : k = 1,2,...} be an orthonormal basis in Ly(R%) and let ZF be i.i.d.
one-dimensional %; adapted Lévy processes satisfying Assumption [2.1] Define a
cylindrical Lévy process Z; on Lo(R?) as

=3
k=1

In this section, we consider the SPDE

d<4-— :dp. (52)

t
0w = augigi + blug: + cu+ fu) + 0 / h(u)dZ,,
0 (5.3)
w(0,-) = ug, 1a>10:u(0,-) = Las1v0
where a¥,b?, ¢ are functions of (w,t,x), and f and h depend on (w,t,z) and the
unknown u. Using the expansion of Z;, we can rewrite (5.3 as
oot
0w = aYugigs + bug + cu+ f(u) + 02 Z/ g*(u)dzF,
k=170

u(O, ) = Uo, 1a>1(’)tu(0, ) = 1a>1U0

where gF(w,t, z,u) = h(w,t,z,u)nk(z).
The following result is from [I0, Lemma 7.1].

Lemma 5.1. Assume

d
ko €| =,d|l, 2<2r<p, 2r< .
2 d— Ko

Also assume that h(z,u) is a function of (x,u), and there is a function £ = &(x)
such that

[h(,u) = h(z,v)| < &(x)lu—vl.
Then for u,v € Ly, we have

lg(u) = g(0)ll o,y < M€z,

where s =r/r — 1, and N = N(r) < co. In particular, if r =1, and § € Lo, then

U7U||Lp7

lg(u) = 9(0) | o,y < Nlu—ollz,.
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Assumption 5.2. (i) The coefficients a/, b’, and ¢ are P ® B(R?)-measurable.
(ii) The functions f(t,z,u) and h(t,z,u) are P ® B(R4*+1)-measurable.
(iii) For each w,t,z,u and v,

lf(t, zu) — f(t z,0)| < Klu—0v|, |h(t,z,u) — h(t,z,v)| < K&(x)|u — v,
where ¢ is a function of (w,t, z).
Theorem 5.3. Suppose that Assumption[5.9 holds and
5Ot gy + IOy + 500 ], < K <

where kg and s satisfy

d (282 —2/p)* d
5 < fo < (2 " Ad, 2mo—d<s' (5.4)

Also assume that the coefficients a¥,b* and c satisfy Assumption with v =

—kKo — Cy, Ug € UP_KO_E"H, and vy € Vp_ﬁo_é"w. Then equation (5.3) has unique
solution u € Hi_mo_co (T'), and for this solution we have

Hu||7—£f,7”0766(T) < N(HUOHU;mfé{)M + 1a>1HU0||Vp—~g—é()+2
FUF O =ro-ct gy + ROy r)).

Proof. 1t suffices to check the conditions for Theorem holds for v = —ko — &.
Since f(u) is Lipschitz continuous, we only need to check the conditions for g% (u) =
n*h(u). Let r = s/(s—1). Then 2r < d/(d — ko) due to the assumption on s. Since
v + €, = —ko, by Lemma for any € > 0, we have

lg(u) — g(v) ) < NVlIElz.,

where the second inequality holds due to the assumption on kg. Therefore, the
condition for ¢* is also fulfilled. Hence, by Theorem we prove the claims of
the theorem with estimate (5.4) replaced by

(5.5)

Izt w—vllz, < ellu vl yee + N~ vll g,

< N(||u0||U;n0766+2 + 1a>1||U0||Vp—~0766+2
+11£(0) 19000
Furthermore, by inspecting the proof of Lemma [5.1] one can easily check
1900 -0 7y < NIIAO) i r)-
Hence, we have (5.4]), and the theorem is proved. |

Jull v

—rQ—¢

g w02t )

Remark 5.4. (i) By one can always choose kg satisfying (5.4)).

(ii) Note that the constant 2 — kg — ¢} represents the regularity (or differentia-
bility) of the solution with respect to the space variables. By using the definition
of ¢ we have

2_@_ 2p2—2/p > 1
0<2—kKo—¢y < _é o B2 /p
2 3 ngl/p.

If ¢ is bounded, then one can choose 7 = 1. Thus by taking g sufficiently close to
d/2, one can make 2 — kg — ¢, as close to the above upper bounds as one wishes.
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