contact email: donsen2 at hotmail.com

MATH221 06 extra problems Name, ID

1. If x, y are $n \times 1$ column vectors having all real elements and two conditions
1) $\quad x \neq 0$ and $y \neq 0$
2) $\quad A=x y^{T}$ where A is a symmetric matrix

Then, show that there exists a $n \times 1$ real column vector u such that $A=u u^{T}$ or $A=-u u^{T}$.
2. If A is a 2 by 2 matrix

$$
A=\frac{1}{2}\left(\begin{array}{cc}
0 & \sqrt{2} \\
-\sqrt{2} & 0
\end{array}\right)
$$

then find a matrix

$$
e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!} .
$$

