contact email: donsen2 at hotmail.com

MATH221 07 problems Name, ID

Homework due May 25th

1. Let be an orthogonormal basis for n-dimensional vector space
$V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \in \mathbb{R}^{n}$, then explain the orthogonal complement of $W=$ $\operatorname{span}\left\{i v_{i}-j v_{j} \mid 1 \leq i<j \leq n\right\} \quad$ is $W^{\perp}=\{t v \mid t \in \mathbb{R}\}$
(Hint) Use the following equation.

$$
i e_{i}-j e_{j}=\sum_{k=i}^{j-1}\left(k e_{k}-(k+1) e_{k+1}\right), \quad \text { for } 1 \leq i, j \leq n, j \geq i+2
$$

2. Let A be given by

$$
A=\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & -6 & -2 \\
-2 & 7 & 5
\end{array}\right)
$$

(1) Find an orthonormal basis for the column space of A.
(2) Let the vector b be given by $b^{T}=(1,1,0)$, then find the orthogonal projection of the vector b onto column space A.

