It is less obvious that division is also possible. We wish to show that $\alpha+i \beta /(\gamma+$ $i \delta$) is a complex number, provided that $\gamma+i \delta \neq 0$. If the quotient is denoted by $x+i y$, we must have

$$
\alpha+i \beta=(\gamma+i \delta)(x+i y)
$$

this condition can be written

$$
\alpha+i \beta=(\gamma x-\delta y)+i(\delta x+\gamma y)
$$

and we obtain the two equations

$$
\begin{aligned}
& \alpha=\gamma x-\delta y \\
& \beta=\delta x+\gamma y
\end{aligned}
$$

This system of simultaneous liear equations has the unique solution

$$
\begin{aligned}
& x=\frac{\alpha \gamma+\beta \delta}{\gamma^{2}+\delta^{2}} \\
& y=\frac{\beta \gamma-\alpha \delta}{\gamma^{2}+\delta^{2}}
\end{aligned}
$$

for we know that $\gamma^{2}+\delta^{2}$ is not zero. We have thus the result

$$
\begin{equation*}
\frac{\alpha+i \beta}{\gamma+i \delta}=\frac{\alpha \gamma+\beta \delta}{\gamma^{2}+\delta^{2}}+i \frac{\beta \gamma-\alpha \delta}{\gamma^{2}+\delta^{2}} \tag{1}
\end{equation*}
$$

2

Let \mathcal{M} be a projective plane. Define a new interpretation \mathcal{M}^{\prime} by taking as "points" of \mathcal{M}^{\prime} the lines of \mathcal{M} and as "lines" of \mathcal{M}^{\prime} the points of \mathcal{M}, with the same incidence relation. (1)Prove that \mathcal{M}^{\prime} is also a projective plane(called the dual plane of \mathcal{M}). (2)Suppose further that \mathcal{M} has only finitely many points. Prove that all lines in \mathcal{M} have the same number of points lying on them.

3

By combining (1) and (2) we obtain

$$
\begin{equation*}
\sum_{\substack{k<l l \\(\beta+m+1) k+(n-1) l \gg \ln \lambda}}\left\|T_{k, l}\right\|_{L^{2} \rightarrow L^{2}} \tag{5}
\end{equation*}
$$

4

Since this summation is uniformly convergent on $\partial \Delta_{R}(a)$,

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\sum_{n=0}^{\infty}\left[\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta\right](z-a)^{n}
$$

for all z such that $|z-a|<r$.

5

$$
\begin{gathered}
M_{1}=\left[\begin{array}{ccccc}
1 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \cdots & a & \cdots & 0 \\
\vdots & & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 1
\end{array}\right] \\
{\left[\begin{array}{lll}
\cdots & C_{s} & \cdots
\end{array}\right] M_{1}=\left[\begin{array}{lll}
\cdots & a C_{s} & \cdots
\end{array}\right]}
\end{gathered}
$$

