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Preface

This book is an outgrowth of a one-quarter, first-year graduate course that I
taught at Northeastern University in 1966 and 1967. The lectures were based
in turn on an algebra course given by Dock Sang Rim at Brandeis University in
1961-62. The book is a self-contained, general, and modern treatment of some
classical theorems of commuatative and noncommuatative ring theory. Princi-
pally these theorems are the primary decomposition of ideals in commuatative
Noetherian rings and the Artin-Wedderburn structure theory for semisimple
rings. By “general” and “modern” I mean that, as much as possible, theorems
are proved for modules over the rings being considered and then specialized to
obtain classical statements. Furthermore the techniques employed are among
those which have proved fruitful in modern ring theory, for example, localiza-
tion. In some sense, localization is the unifying idea in the commuatative ring
theory covered here.

The book begins with material usually treated in an undergraduate mod-
ern algebra course, namely, various kinds of ideals and operations on ideals,
isomorphism theorems and the Chinese Remainder Theorem (Chapter 2), and
Euclidean, principal ideal, and unique factorization domains (Chapter 4). How-
ever, proofs of standard theorems on unique factorization domains are not those
generally given in such courses since they rely heavily on the notion of rings of
quotients developed in Chapter 3. Chapter 5, an introduction to homological
notions, is devoted to modules and exact sequences including the splitting of
exact sequences and characterization of free and projective modules. Noethe-
rian rings and modules are treated in Chapter 6. Since the motivation for this
study is the search for a class of rings in which every ideal is a unique product
of prime ideals, we are naturally led to Dedekind domain in Chapter 7. Chapter
8 and 9 are devoted to noncommuatative Artin rings, including the connection
between the two chain condition by way of the idean of Jordan-Hélder series,
and the structure of semisimple rings. Thus Chapters 7 and 9 can be viewed
as deeper investigations of special classes of those rings studied in Chapter 6
and 8, respectively. Each chapter concludes with a set of exercises of varying
degrees of difficulty.

Since the book has been expanded from the original one-quarter course of
lecture, it now appears to be the appropriate amount of material for a one-
semester course. Although primarily designed for begining graduate students,
it should be accessible to undergraduates who have taken the modern algebra
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and linear algebra courses usually offered to sophomores or juniors. For the
graduate student it should provide a convenient place to learn the ring theory
often expected on qualifying examinations. For the undergraduate, particularly
one who is interested in algebra, the book should offer some insight into one
direction his future studies might take him.

I would like to thank Professor Rim and the various authors from whom I
have borrowed ideas. Their works are included in the bibliography. I would
further like to acknowledge the helpful suggestions of Mark Bridger, Burton
Fein, Marvin Freedman, and Kenneth Ireland. Finally, I am grateful to Delphine
Radcliffe and Cindy Feldman for typing the manuscript.

JACOB BARSHAY

Cambridge, Massachusetts
July 1969



Chapter 1

PRELIMINARY
TERMINOLOGY AND
EXAMPLES

We begin with a brief discussion of just two notions from set theory. The first
is that of an equivalence relation on a set and its associated decomposition ;
the second is Zorn’s lemma. The notation used here for set membership, set
inclusion, union and intersection of sets, and so forth, is standard.

Definition 1-1. A binary relation ~ on a set A is called an equivalence relation
if for any element a,b,c € A

(1) a~a (~ is reflexive) ;
(2) if a ~b, then b ~a (~ is symmetric) ;

(3) ifa~band b~ c, then a ~c (~ is transitive).

Definition 1-2. If A is a set, ~ is an equivalence relation on A, and a € A,
then the equivalence class of a is equal to {z € Ala ~ x} and is denoted by a.

In particular, observe that the equivalence class of an element of A is a subset
of A. To say that two equivalence class are distinct is to say that they are not
equal as sets.

Theorem 1-1. The distinct equivalence classes of an equivalence relation ~ on
a set A provide a decomposition of A as a union of mutually disjoint subsets.

Proof. Since a ~ a, we have a € a for any a € A. Thus A C [J,c,a On
the other hand, each a is a subset of A so |J,c4a@ € A whence A = J,c4a.
To complete the proof it suffices to show that distinct equivalence classes are
mutually disjoint, that is, if a,b € A then either @ = b or anNb = (). Suppose
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then that anNb # 0 and let € anNb. Thus a ~ z and b ~ x. But by Definition
1-1(2), 2 ~ b and by (3) a ~ b. Now if y € b, then b ~ y so again by (3) a ~y
whence y € a. We conclude that b C @. By a similar argument, we could show
@ C b. Therefore a = b. O

Definition 1-3. A binary relation < on a set A is called a partial ordering if
for any a,b,c€ A

(1) a<a;
(2) ifa<band a<c, thena<c;
(3) if a < band b < a, then a =b.

A together with the partial ordering < is called a partially ordered set.

Definition 1-4. A subset B of a partially ordered set A is said to be totally
ordered if for any a,b € B either a < b or b < a. A totally ordered subset will
also be referred to as a chain.

Definition 1-5. An element a in a partially ordered set A is called an upper
bound for a subset B of A if for any b € B, b < a.

Definition 1-6. A partially ordered set A is called inductive if any chain in A
has an upper bound in A.

Definition 1-7. An element m in a partially ordered set A is called a mazimal
element if for any a € A, m < a implies a = m.

Zorn’s Lemma. Every nonempty, inductive set has a maximal element.

Definition 1-8. Let f : A — B be a mapping (map, function) from a set A to
a set B. Then f is said to be

(1) surjective (onto) if for any element b € B there exists an element a € A
such that f(a) =b.

(2) injective (one-to-one) if for any elements aj,as € A, f(a1) = f(az) implies
a; = ay. [Equivalently, a; # ag implies f(ay) # f(az2).]

(3) bijective (a one-to-one correspondence) if it is both surjective and injective.

Definition 1-9. A group is a nonmempty set G on which is defined a binary
operation * satisfying the following conditions :

(1) If a,b € G, then axb e G. (Closure Law) ;

(2) Ifa,b € G, then (a*b)xc=ax(bxc). (Associative Law) ;



(3) There exists an element e € G such that for any a € G, exa =axe=a. e
is called the identity element of G.

(4) For any a € G, there exists an element @ € G such that axa=a*xa=e. a
is called the inverse of a.

The identity element of a group is unique as is the inverse of a given element.

Definition 1-10. A group is said to be Abelian if it satisfies the additional
condition:

(5) For any a,b€ G, axb="bxa.

Definition 1-11. If (G, *) and (H,o) are groups and f : G — H, then f is
called a group homomorphism if for any a,b € G, f(axb) = f(a) o f(b).

Definition 1-12. A ring is a set A on which are defined two binary operations
+ and - satisfying the following conditions :

(1) A is an Abelian group under + ;
(2) ifa,be A, thena-be A (Closure Law) ;

(3) ifa,b,c € A, then (a-b)-c=a-(b-c) (Associative Law) ;
(4)

4) if a,b,c € A, thena-(b+c¢) =a-b+a-cand (a+b)-c=a-c+b-c
(Distribution Laws).

There are other properties that a ring may or may not possess, among which
are the following :

(5) there exists an element 1 € A such that for any element a € A, 1-a = a-1 = a.
1 is called the unit element of A ;

(6) for any element 0 # a € A, there exists an element a=! € A such that

a-al=ag1l.a=1.

(7) for any a,b€ A, a-b=10-a.

In a ring, the identity element for the operation + is denoted by 0 and the
inverse of a is denoted by —a. The multiplication symbol - is generally omitted.

Definition 1-13.

is called a commutative ring ;

is called a ring with unit ;

and (6) is called a division ring ;

and (7) is called a commutative ring with unit ;
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(e) (5), (6) and (7) is called a field.

Definition 1-14. If (A, +,-) and (A’,*,0) are rings and f : A — A’, then f
is called a ring homomorphism if for any a,b € A, f(a +b) = f(a) * f(b) and
fla-b) = f(a)o f(b).

Definition 1-15. If A and A’ have units 1 and 1’ and f : A — A/, then [ is
said to be unitary if f(1) =1'.

Definition 1-16. A group or ring homomorphism is called an

(1) epimorphism if it is surjective ;

(2) monomorphism if it is injective ;

(3) isomorphism if it is bijective.

Examples.

1. Z = {0,+1,+£2,---}, the set of integers with + and - having the usual
meaning is a commutative ring with unit element.

2. Q, the set of rational numbers, R, the set of real numbers, and C, the set
of complex numbers, under the usual rules of addition and multiplication
are all examples of fields.

3. Let k be any field. Then k[X], the set of polynomials in one variable
with coefficient in k, under the usual rules for addition and multiplica-
tion of polynomials forms a commutative ring with unit. Similarly for
k[X1,--,X,], the set of polynomials in n variables with coefficients in k.

4. Zp,, the set of integers modulo m where + and - mean addition and mul-
tiplication modulo m, forms a commutative ring with unit element. Fur-
thermore Z,, is a field if and only if m is a prime number.

5. M, (k), the set of all n X n matrices with entries in a field k, under the
usual rules for addition and multiplication of matrices, forms a ring with
unit element, which is not commutative if n > 2.

6. 2Z = {0,+2,44, - -}, the set of even integers, forms a commutative ring
but has no unit element.

7. A, the real quaternions.
A= {1' = To +$1i+$2j +$3k‘ | Xo,21,T2,T3 € R}

If =29+ z1i 4+ x2j + x3k and y = yo + Y19 + y2J + y3k are in A, then
x+y=(xo+yo)+ (x1+y1)i+ (x2+y2)j + (23 + y3)k. The product zy
is found by using the distributive laws and the rules it = jj = kk = —1,



ij =—ji =k, jk=—kj =1, and ki = —ik = j. Then A forms a division
ring under these operations. In particular, the multiplicative inverse of
T =x9+ 10 + x2j + w3k is

1 ) Ly, X2 . T3
||

where |z| = 202 + 212 + 222 + 232,

Exercise.

1-1. Show that each of the following is an equivalence relation.
(a) In the set of integers, m ~ n if and only if m — n is even.

(b) In the set of polynomials with real coefficients, f(X) ~ g(X) if and only if
a, a fixed real number, is a root of f(X) — g(X).

1-2. Prove that for any two sets A and B, either there exists an injection from
A to B or an injection from B to A. (Hint : Consider the set £ of triples
(X,Y, f) where X C A, Y C B, f: X =Y is a bijection. Partially order K by
Xl,Yl,fl) S (XQ,YQ,fQ) if and only if X1 g XQ, Yl g YQ, f2 restricted to X1
equals f1. Apply Zorn’s lemma and show that a maximal element of & must
either have A as its first entry or B as its second entry.)

1-3. Let V be a vector space over a field k. Recall that a subset X of V' is called
linearly independent if for any finite sum »_ a;x; = 0 with a; € k and x; € X,
all a; must be zero. Use Zorn’s lemma to prove that there exists a maximal
linearly independent subset of V. Then prove that if X is such a subset and
v €V, then v =) a;z; (finite sum) for some unique a; € k — {0}, z; € X.

1-4. Z[i] = {a+ bi | a,b € Z}. Define binary operations in the set Z[i] by
(a+bi)+(c+di) = (a+c)+ (b+d)i and (a+bi)-(c+di) = (ac—bd) + (ad +bc)i.
Thus i2 = —1. Prove that Z[i] is a commutative ring with unit. Z[i] is called
the ring of Gaussian integers.

1-5. Let A be a ring. Prove that for each element A € A, the set C(\) = {u €
A | A= p for all p € A} is a commutative subring of A. C'is called the center
of A.

1-6. Let A be a ring and let I' denote the set Z x A. Define operations in I" by
(m,z) + (n,y) = (m+n,z+y) and (m,z) - (n,y) = (mn, my + nz + zy). Note
that my should be interpreted as y+y+- - - +y(m times) in A. Similarly for nz.
Show that T' is a ring with unit element (1,0). Furthermore, I" is commutative
if and only if A is commutative. Finally, consider the map ¢ : A — T" given by
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p(x) = (0,x). Prove that ¢ is a monomorphism and that if A possesses a unit
element, ¢ is not uniary.

1-7. Let f : A — A’ be a homomorphism of rings with unit. Suppose that
1" = f(X) for some X\ € A. Prove that f is unitary.

1-8. Prove that the map o : Z — Z,, which sends each integer to its remainder
upond division by m is a ring epimorphism.

1-9. Suppose that m and n are relatively prime integers. Prove that only ring
homomorphism from Z,, to Z, is the zero map.

1-10. Suppose that f : Q — Q is a ring homomorphism, not identically zero.
Prove that f is the identity map.



Chapter 2

IDEALS AND RESIDUE
RINGS

For the remainder of the book, "ring” will be understood to mean "ring with
unit element.” All ring homomorphisms will be assumed to be unitary.

Definition 2-1. A left ideal A in a ring A is a nonempty subset of A such that
(1) a, b € A, then a-b € A;

(2) ifa€c Aand A € A, then A a € A.
A right ideal A in A is defined by replacing condition (2) with

(3) if a € and A € A, then a\ € A. If A satisfies (1), (2), and (3), it is called a
two-sided ideal or simply an ideal. Note that in a commutative ring (2) is
equivalendt to (3) and so all ideals are two-sided.

Examples. 1. In a ring R, 0 and R are ideals. An ideal A # R is called proper.
2. In the ring of integers Z, all multiples of a given integer n form an ideal.
3. In the ring of polynomials in one variable with real coeflicients R[X], all
polynimials in one variable with real coefficients R[X], all polynomials that have
a given real number « as a root form an ideal.
4. In a field k, the only ideals are 0 and k. For if A # 0 is an ideal of k and
acA a#0,thena'-a=1¢A whenceifce€k,c-1=c¢€ A. Thatis, A
=k

(1) Addition of ideals. If A and B Re left ideals in A then A+B = {a+b | a
€ A, b € B } is again a left ideal of A called the sum of A and B.

(2) Multiplication of ideals. If A and B are left ideals in A, then AB =
{2_ finite @ibilai € A,b; € B} is again a left ideal in A called the intersection
of the Ai~
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(3) Intersection of ideals. A; (i €, finite or infinite) is a collection of left ideals
in A, then N;c;A; is again a left ideal in A called the intersection of the A;.

(4) Quotient of ideals. If A and B are left ideals in A, then (A:B) = {A € A |
Ab € A for all b € B} is again a left ideal in A called the quotient of A by
B.

At the end of the chapter, there are exercises exhibiting certain relationships
among these operations.

Definition 2-2. A left ideal A in a ring A is said to be finitely generated if

there exist elements a1, ag, -+, a, € A such that every element of A can be
written as Z?zl Aia; for some \; € A. We then write A = (a1, a2, -+ ,a,) and
call a1, a9, -+ ,a, a set of generators (basis, base) for A. On the other hand,

given any subset B of A, the set of elements that can be written as Finite Aibi
where A\; € A,b; € B forms an ideal in A, denoted by (B). It is in fact the
smallest ideal of A that contains the set B.

Definition 2-3. In a commutative ring R and ideal A = (a) = Ra generated
by a single element is called a principal ideal. A commutative ring R in which
every ideal is principal is called a principal ideal ring.

Examples. Z and k[X] where k is a field are each principal ideal rings.

Theorem 2-1. Let P be a proper ideal of a commutative ring R. the following
conditions are equivalent :

1. Ifa,be Rand ab € P,thena € Porb € P.
2. If A and B are ideals of R and AB C P, then A C Por B C P.

Proof. (1) implies (2). Suppose AB C P but A ¢ P and B ¢ P. Then there
are elements a € A,a¢ Pand b € B, B ¢ P. By(1l), ab ¢ P. However, ab €
AB C P. Contradiction. (2) implies (1). If ab € P, then (a)(b) C P. Thus
by (2), either (a) C P or (b) C P. In particular either a € P or b € P. O

Definition 2-4. An ideal P satisfying either (hence both) of the above condi-
tions is called a prime ideal.

Corollary 2-1. Let P be a prime ideal of R. If ajas - --a, € P then some a; €
P. If AjAy--- A, C P, then some A; C P.

Proof. Induction on n. O

Theorem 2-2. Let m be a proper left ideal of a ring A. The following conditions
are equivalent :
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1. If A is a left ideal such that m C A C A, then A =mor A = A.

2. If a €, a ¢ m, then (m,a) = A.

Proof. (1) implies (2). Since a ¢ m, A=(m,a) D m. Thus A= A. (2) implies
(1). Suppose m C A C A. If A 2 m then there exists a €, a ¢ m . Thus (m,a)
= A. But (m,a) C Aso A =A. O

Definition 2-5. A left ideal m satisfying either (hence both) of the above
conditions is called a maximal left ideal.

Theorem 2-3. In a commutative ring R, every maximal ideal is prime.

Proof. Suppose m is a maximal ideal and ab € m. If a ¢ m, then (m,a) = R.
In particular 1 = ra + m for some r €R, m € m. Then b =rab + mb € m. 0O

Definition 2-6. If f : A — T is a ring homomorphism, then the image of f,
denoted im f, is equal to {y € I'| v = f(A) for some A € A} ; the kernel of f,
denoted ker f, is equal to { A € A — f()\) = 0}.

Theorem 2-4. Let f: A — A with kernel K. Then K is and ideal of A.

Proof. Suppose a, b € K. Then f(a-b) = f(a) - f(b) = 0 s0 a-b € K. Also f(\a)
= f(M)f(a) = f(A)-0 = 0 so Aa € K for any A € A. Similarly f(aX) = 0 so a-\ €
K. Thus K is a two-sided ideal of A.

Conversely, and (two-sided) ideal A of A is the kernel of homomorphism with
domain A. To see this we define a relation on A by a = b (mod A), read ”a
congruent to b modulo A” if and only if a - b € A. O

Theorem 2-5. = mod A is an equivalence relation on A.

Proof. The proof is immediate from the definitions of an equivalence relation
and an ideal. It is thus left as an exercise.

Let A/A be the set of distinct equivalence classes.
If X, Y € AJA, say X =@, Y = b, then we define X + Y = Z where Z = a +
and XY = W where W = ab.

U<

Theorem 2-6. Under the operations defined above, A/A is a ring.
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Proof. It must be checked that the operations in A/A are well defined. In
partlcular if@ = a’ and b =/, we must show that a + b = a’ + b/ and ab = a'l’.
But a—a' = zandb—b =y for some x, y € A. Thus (a+b)—(a'+V)=z+y €
Asoa+b=a +b. Alsoab—a'b+a'b—a'bl =ab—a't/ =ab+a'y € A so ab
= a'l/. Hence the operations are well-defined.

Checking that the ring axioms are satisfied is left as an exercise.

There is a natural epimorphism o : A — A/A given by o(A\) = A\. A is called
the residue ring of A with respect to A. O

Theorem 2-7. (First Isomorphism Theorem) Suppose f : A — T is a ring
homomorphism. Then im f = A/ker {f.

Proof. Consider the following diagram : We define a map 7 : A/ker {f — im
f and show that it is an isomorphism. If X = @ € A/ker f, define 7(X) =

f(a). To see that this is well-defined, suppose @ = a'. Then a—a' € ker fso

fla—d') = f(a) = f(a') = Oorf(a) = f(a’). Hence 7(a) = 7(a’). Furthermore,
if Y = b, 7(X+Y) = 7(a+b) = 7(a +b) = f(a+b) = f(a ) ( )) T(@) + T(b)

= 7(X) + 7(Y) and 7(XY) = 7(a b) = 7(ab) = f(ab) = f(a)£(b) = 7(a) 7(b) =
7(X) 7(Y) so 7 is a homomorphism. If v € im f, then v = f(a) = 7(a) for some
a € A so 7 is surjective.

Finally, if 7(@) = f(a) = 0, then a € ker f so @ = 0. Hence 7 is injective and so
an isomorphism. O

S \

Theorem 2-8. (Second Isomorphism Theorem) If f: A — A’ is an epimorphism
with kernel K, then there is a bijection between the set of ideals A O K of A
and the set of ideals of A’.  Furthermore, if A and A’ are corresponding ideals
under this bijection, then A/A = A’/A" = (A/K) / (A/K).

Proof. Let ¢ equal the set of ideals of A which contain K and 7 equal the set of
ideals of A’. Define g: ( — n by g(A) = {f(a) — a € A}, which is clearly an ideal
of A’, hence in 7). Defineh: n — ( by h(A’) = {a € R—f(a) € A’ } which is an
ideal of A containing K, hence in ¢. It is easy to check that goh =1, andho g
= I, the respective identity maps on the sets n and . Hence each is a bijection.

To verify the second assertion of the theorem, let o : A’ — A’/A’ be the
natural epimorphism. Then 7 - o o f: A — A’/A’ is an epimorphism and

A € ker 7 if and only if 7(A) = 0 if and only if o(f(A\)) = 0 if and only if
f(A\)e A’ if and only if A € A. Hence ker 7 = A and by the previous theorem
AJA ~ N /A O

Definition 2-7. An element a in a commutative ring R is called a zero divisor
if there exists b # 0 in R such that ab=0. If a # 0, it is called a nontrivial zero
divisor.
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Definition 2-8. A commutative ring is called an integral domain(or simply a
domain) if it has no nontrivial zero divisors.

Examples. Z, k, and k[ X1, ..., X,,] where k is any field are all integral domains.
On the other hand M, (k), n > 2, Z,, where m is a nonprime are not integral
domains.
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Chapter 3

RINGS OF QUOTIENTS
AND LOCALIZATION

In this chapter we discuss another construction yielding a new ring from a given
ring. The reader should keep in mind the method by which the rationals Q are
contructed from the integers Z for it is just this process which is being gemer-
alized. In this chapter and the next, all rings are assumed commutative.

Definition 3-1. A subset S of a ring R is called a multiplicative set if
(1) 1€ 5;
(2) ifa,be S, then ab e S.

Let S be a multiplicative set in R. Consider the set {r/s|r € R,s € S}
thought of simply as formal symbols.

We say two such symbols 71/s1 and r9/ss are equinalent, denoted ry/s;~
ro/s2, if there exists s € S such that s(r;s;-r2s1)=0. The reader should
check that ~ is in fact an equavalence relation. Denote by [r/s] the class of
r/x and by Rg the set of distinct equavalence classes. We define addition
and multiplication in Rg by

[r1/s1] + [r2/s2] = [ris2 + rosi/s159]
and
[7“1/81} . [7’2/82] = [7‘17’2/8182].

Under these operations Rg is a ring called the ring of quotients of R with
respect to S. Furthermire there is a natural homomorphism ¢ : R — Rg

15
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given by o(r)=[r/1].

Theorem 3-1.
(1) If 0 € S, then Rg=0.

(2) ¢ is injective if and only if S contains no zero divisors.

Proof. (1) Note that [0/1] is the zero element if Rg since [r/s] = [0/1] = [r1 +
0s/sl] =[r/s]. If 0 € S and [r/s] € Rg, then [r/s] = [0/1] since 0(r1 4 0s) = 0.
Thus Rg reduces to just the zero element.

(2) r € kery if and only if ¢(r) = [r/1] = 0in Rg if and only if there exists s € S
such that st = 0. Thus keryp = 0 if and only if S contains no zero divisors. [

Examples.

1. Let S be the set of all non-zero divisors of R. Suppose a,b € S and ¢ € R
satisfy (ab)c = 0. Then a(bc) = 0 which implies bc = 0 since a € S. But this
implies ¢ = 0 since b € S. Thus ab € S. Clearly 1 € S so S is a multiplicative
set. Rg is called the total ring of quotients of R.

2. Let P be a prime ideal of R and S = R - P. This is a multicative set. The
ring if quotients Rg is usuallly denoted by Rp and is called the localization
of R at P.

3. As a special case of either example 1 or 2, let R be an integral domain. Then
(0) is a prime ideal and S = R - (0) is the set of all non-zero divisors of R.
The localization at (0) is called the quorient field of R. As the name suggests,
it is in fact a field.

Theorem 3-2. Let S be a multiplicative set in a ring R. Then there exists a
bijection between the set of prime ideals of R whose intersection with S is empty
and the set of prime ideals of Rg.

Proof. If 0 € S, then both sets are empty. Thus we can assume 0 ¢ S. We
begin by describing a method of associating an ideal in Rg with one in R and
vice versa.

If A is an ideal in R, define ARg = {t[a/1]|a € A,t € Rs}

This is called the extension of A to Rg. On the other hand, if B is ideal in
Rg, define

BNR=¢1B)

where ¢ : R — Rg is the natural homomorphism. This is called the con-
traction of B to R. Note that when S contains zero divisors, ¢ is not injective



17

so that R cannot be thought of as embedded in Rg. In this case the contraction
is not a genuine intersection. However, the intersection notation is a widely
accepted one.

The proof can now broken down into a sequence of steps.

(a) ARg is an edeal of Rg. For if t1[a1/1] and ¢3[as/1] are in ARg where t;
= [r1/s1] and t2 = [ro/ss], then

tila1/1] - talaz/1] = [r1a1/s1] - [r2a2/s2]
= [r1a152 — 12a251/8182] = t'[a’ /1]

where t” = [1/s152] € Rg and a’ = r1a182 - raass1 € A.

(b) If P is prime in R and P N'S = ®, then PRg is prime in Rg. First of all
PRg is a proper ideal of Rg.

For if 1 € PRg, then [1/1] = [rp/s] for some r € R, p € P, s € S in which
case there exists s> € S such that s’(s - rp) = 0.

That is 8’s = s’rp. But s8’s € S and s’rp € P so P NS # ®. Contradiction.
Thus € PRg is proper.

Furthermore if [r1/s1][r2/s2] = [r172/s152] € PRg, say [rirz2/s152] = [rp/s]
for somer € R, s € S, p € P, then there sxists 8’ € S such that §'(r1res—1rpsis2)
= 0. Thus s'riros = s'rps1ss € P. But s ¢ P, s’ ¢ P so either r; € P or ry
€ P. Hence either [r1/s1] € PRg or [r2/s2] € PRs.

(¢) BN R is an edeal of R. If by, bo € BN R, then ¢(b1) = [b1/1] and ¢(b2)
= [bg/l] € B. Thus [bl/].] - [bg/l] = [bl —bg/].] = (p(bl —bg) € B. Hence by — by
€ BNR.

(d) If B is prime in Rg, then BN R is prime in Rand (BN R) NS = &.
For ab € BN R implies [ab/1] = [a/1][b/1] € B whence [a/1] € B or [b/1] € B,
that is, a € BN R or b € BN R. Furthermore, if s € (BN R) NS, then [s/1]
€ B so [1/s][s/1] = [1/1] € B which implies B = Rg. Contradiction. Thus (B
N R) NS = ®. In particular, 1 ¢ BN R so B N R is proper, hence prime.

(e) It remains only to show that this pairing is actually a bijection between
the two sets in question. This is left as exercise for the reader.

O

Definition 3-2. An element r in a ring A (not necessarily commutative) is
called a unit if there exists s € A such that rs = 1 = sr.

Theorem 3-3. The following statements are equivalent :
(1) The set of nonunits of R form an ideal.
(2) R has a unique maximal ideal.

Proof. (1) implies (2). Let M be the ideal of nonunits. If x ¢ M, then x is
a unit so R=(x) C (x,M) C R. Thus (x,M) = R which implies M is maximal.
Now suppose N is any maximal ideal of R. Then 9 consists solely of nonunits.
Thus 9t € M C R which implies 9t = M.
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(2) implies (1). We first show that any proper ideal of R is contained in
at least one maximal ideal. To do this we will use Zorn’s lemma. Let A be a
proper ideal of R and consider

0 = {B | B is an ideal of R satistying A C B C R}

¢ is not empty since A is in . Furthermore, if B;, i € I, is a chain in 4, then
B = U;er B; is again in §. For certainly A C B and if B = R, then 1 € B, in
which case 1 € B; for some i. Thus B; = R contradicting the assumption that
B; isin 0. B is an upper bound for the chain so § is an inductive set. By Zorn’s
lemma, let M be a maxinal element of §. If x € R, x ¢ M, then M C (x,M) C
R. By the choice of M, it must be that (x,M) is not in ¢, that is, (x,M) = R.
Thus M is a maximal ideal of R which contains A.

Now Let 9t denote the maximal ideal of R and M the set of nonunits of R.
Clearly 971 C M since 9 consists solely of nonunits. On the other hand, if x €
M, then (x) subseteq M since M is the only maximal ideal. In particular, x €
Mt so M C M. Therefore M = 9t and so M is an ideal. O

Definition 3-3. Let ring satisfying either (hence both) of the above conditions
is called a local ring.

Theorem 3-4. Let P be a prime ideal of R. Then Rp is a local ring with unique
maximal ideal PRp.

Proof. By Theorem 3-2, the only prime ideals of Rp are of the form QRp where
Q is a prime ideal of R and Q N (R - P) = ®, that is, Q C P. Thus QRp C
PRp. Since maximal ideals are prime, PRp must be the only maximal ideal of
Rp. O

Theorem 3-5. Let P be a prime ideal of R. Then Rp/PRp is isomorphic to
the quotient field of R/P.

Proof. Recall that the quotient field of an integral domain is just the localization
at the prime ideal 0. Define a map
p: (R/P)o — RP/PRP by

p([7/8]) = [r/s]

where ¢ : R —+ R/P sendst — 7, % : Rp — Rp/PRp sends t — ¢, and |
| has the usual meaning of the class of an element in a ring of quotients. We
must show that p is well-defined and an isomorphism.

(a) p is well - defined. Suppose [r1/s1] = [r2/s2]. Then there exists 7 #
0 in R/P such that 7#(r182 — 7251) = 0. That is, there exists r € R — P such
that r(r182 —res1) € P. Thus 1182 — 281 € P which implies [r1s2 — 7951 /5152)
€ PRp. Therefore [rise — ra81/8182] = 0, that is [r1/s1] = [ra2/s2].
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(b) p is ring homomorphism. This verification is left as an exercise for the
reader.

(c) Suppose [r1/$1] € kerp. Then [r1/s1] € PRp. Thus there exist elements
p € P,r € R, s € R— P such that [r1/s1] = [rp/s], whence there exists s’ € R—P
such that s’sry = s'rpsy € P. Buts ¢ P, s’ ¢ P sory € P. Therefore 7 =

0 and so [r1/$1] = 0. Hence p is injective. It is immediate from the definition
that p is surjective, hence an isomorphism. O
Exercise.

3-1. Prove that the complement of a union of prime ideals in a ring R is
multiplicative set.

3-2. Let k be a field, a € k, and set
M, = {f(X) € k[X][f(a) # 0}.

Show that M, is a multiplicative set in the ring k[X]. More generally, let V
be any collection of n - tuples (a) = (az, -+ ,a,) in k™v and set
MV = {f(X17 e aXTI/) € k[Xla e 7Xn]|f(a) 7é Oforall(a) € V}

Show that My is a multiplicative set in k[X7, -+, X,,].

3-3. Prove that the quotient field of Z[i], the Gaussian integers, is isomorphic
to Q[i] = {a + bila,b € Q}.

3-4. Describe the total ring of quotients of Z,,.
3-5. Complete the proofs of Theorem 3 - 2(e) and Theorem 3 - 5(b).
3-6. Prove that the set of units of a ring form a group under multiplication.

3-7. First all units in the following rings :

(a) Z[i]
(b) k[X]
(c) Z

() M (R)

3-8. Let R be an integral domain with quotient field K, S a multiplicative set
in R, 0 ¢ S. Prove that Rg is an integral domain and that the quotient field of
Rg is K

3-9. Let S be a multiplicative subset of a ring R, 0 ¢ S. Let P be a maximal
element in the set of ideals whose intersection with S is empty. ( Show by Zorn’s
lemma that there exists such an ideal.) Prove that P is a prime ideal.
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3-10. Let R be a ring in which every nonzero prime ideal is maxinal. Prove
that PRp is the only nonzero prime ideal of Rp where P # 0 is a prime ideal
of R.



Chapter 4

UNIQUE
FACTORIZATION
DOMAINS

In this chapter we will employ the technuque of localization developed in the
previous chpater to cqpture some well known results about unique factorization
domains, namely Theorems 4-6, 4-7, and 4-8. We begin the chapter with a
special class of these rings called Euclidean domains. Once again, all rings are
commutative.

Definition 4-1. An integral domain R is called a Fuclidean domain if there
exists a fuction d:R— Z satisfying

(1) d(a) > d(0) for all 0 # a € R;

(2) For any a,b € R,b # 0, there exist elements ¢, € R such that a = ¢b+ r
with d(r) < d(b)

Examples.

1. Let R = Z and d(a) = |a|, ordinary absolute value. The elemnets ¢ and r are
what are usually called the quotient and remainder upon division of a by b.

2. Let r = k[X] for a field k and set d(f(X))=the degree of the polynomial
f(X)if f(X)#0and d(0) = -1

Theorem 4-1. Every Euclidean domain is a principal ideal domain.
Proof. Let (R,d) be a Euclidean domain and B and ideal in R. If B is the
zero ideal, then B = (0) and so is principal. Otherwise consider the non empty

subset X of Z given by X = {d(a)|a € B,a # 0}. By property (1) of the fuction
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d, z > d(0) for all z € X. Thus X is a nonempty subset of Z which is bounded
from below. Hence X has a minimal element. Let 0# b € B bu such that d(b)
is a minimal elemnet of X. We want to show that B = (b).

Suppose a € B. Then there exist elements ¢ and r in R such that a = ¢gb+ r
with d(r) < d(b). Since a € B, ¢b € B, we have r = a—gb € B. But d(r) < d(b)
contradicts the choice of b unless » = 0. Hence a = ¢b and B = (d). Therefore
every ideal of R is principal. O

Definition 4-2. A ring R is said to satisfy the ascending chain condition if
every strictly ascending chain of ideals of R, Ay C Ay C As C --- is finite.
Equivalently if for every infinite chain of ideals A; C Ay C -- -, there exists an
integer k such that A; = Ay for i > k.

Definition 4-3. A ring R is said to satisfy the mazimum condition if every
nonempty collection of ideals of R has a maximal element, that is, an ideal
which is properly contained in no ideal of the collection.

Theorem 4-2. A ring R satisfies the ascending chain condition if and only if
R satisfies the maximum condition.

Proof. If R does not satisfy the ascending chain condition, there exists an infi-
nite strictly ascending chain of ideals {A;}. The collection of these ideals has
no maximal element.

If R does not satisfy the ascending chain condition, let 2l be a nonempty col-
lection of ideals. Let A; € 2. If A; is maximal, we are done. Otherwise, there
exists As € 2 such that A; C Ay, if Ay is maxiaml, we are done, Otherwise,
continue the process. Since R satisfies the ascending chain condition, this pro-
cess must stop. When it does, we have a maximal element in 2. To say that a
ring satisfies the ascending chain condition for principal ideals has the obvious
meaning, that is, replace “ideal” by “principal ideal”in Definition 4-2. O

Definition 4-4. Let R be a domain. A nonunit p € R is called irreducible if
p = ab implies either a or b is a unit in R.

Definition 4-5. An integral domain R is called a unique factorization domain
if every nonzero nonunit of R can be written uniquely as a finite product of
irreducibles. More precisely,

(1) If @ #0 is a nonunit, then a = pyps - - - p where each p; is irreducible.

(2) If p1---pr =q1---¢s (all p; and g; irreducible) then r = s and there exists
a permutation m of {1,2,...r} such that p; = u;q(;)for some units u;.

Definition 4-6. A nonzero element p € R is called a prime if (p) is a prime
ideal of R.

Note.
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1. Every prime is irreducible. For if p is prime and p = ab, then ab € (p) so
eitehr a € (p) of b € (p). If a € (p), then a = rp for some r € R. Thus
p = ab = rpb, that is, 1 = rb so b is a unit in R.

2. Not every irreducible is prime. Consider the ring Z[v/—5]={a + b\/=5la,b €
Z} where the operations are the usual ones for complex numbers. In this
ring, 2-3 = (1 ++v/=5)(1 — v/=5). All of these elements are irreducible, but
none is prime.

Theorem 4-3. A domain R is a unique factorization domain if and only if every
nonzero nonunit of R can be written as a finite product of prime elements.

Proof. Assume R is a unique factorization domain. It suffices to show that every
irreducible elment of R is prime. Let p be irreducible and suppose ab € (p),
that is, ab = rp for some r € R. Write a,b,r as products of irreducibles, say
a = pip2-Pa, b= qug2---qp, v = piph---p,. Then pips-- paqigz---qs =
piPs - p,p. By uniqueness p = up; for some i, 1 <i < a or p = vg; for some
Jj, 1 <4 <, uand v units. In one case a € (p), in the other b € (p). Therefore
(p) is a prime ideal so p is a prime element.

Now assume every nonunit can be written as a finite product of primes. Since
primes are irreducible, it suffices to show the expression is unique. Suppose
p1--:Dr = q1---qs where all p;,q; are primes. Then p; divides g; for some
Jj, say j = 1(relabel if necessary). Hence ¢ =ujp; where u; is a unit. After
cancellation ps -+ -p. = u1qs---qs. Proceeding by induction, the uniqueness
follows. O

Theorem 4-4. Let S be the multiplicative set generated by 1 and all primes
in the domain R. Then R is a unique factorization domain if and only if Rg is
a field.

Proof. Assume R is a unique factorization domain. Then every nonzero nonunit
of Ris in S. But in Rg, elements of S become units. Hence every nonzero
element of Rg is a unit, that is, Rg is a field.

Suppose R is not a unique factorization domain and a € R is nonzero nonunit
which cannot be written as a finite product of primes, that is, a ¢ S. Clearly
then (a) NS = ®. For if ba is a finite product of primes, a must be also. Thus
0 # (a)Rs # Rsg, that is, the idel generated by [a/1]in Rg is nonzero and proper.
Therefore Rg is not a field since it has a nonzero proper ideal. O]

Theorem 4-5. Let R be a domain with the ascending chain condition on princi-
pal ideals. Let M be a multiplicative set generated by 1 and prime elements(not
necessarily all prime elements). if Ry, is a unique factorization domain, then R
is a unique factorization domain.
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Proof. Let S be the multiplicative sset generated by 1 and all primes in Rand
let T be the multiplicative set generated by [1/1] and all primes in Ry;. We will
asoomplish the proof by a series of reductions.

(a) Since Ry is by hypothesis a unique factorization domain, Theorem 4-4
states that (Rp/)r is a field. Again by Theorem 4-4, R is a unique fac-
torization domain if and only if Rg is a field. Thus it suffices to prove
Rs = (Rum)T-

(b) Rs C (R )r. For let x = [r/s] € Rg. Write s = ms’ where m is a product
of generators of M and s’ involves no generators of M. Then x = [r/m][1/s’]
where clearly [r/m] € (Rar)r. Thus it suffices to show taht [1/s'] € (Ras)r-
Furthermore it suffices to show that [1/p] € (Ry)r where p is a prime of
R and not one of the generators of M, since [1/s'] is just a product of such
elements. Now (p) is a pime ideal of R. If (0) N M # ®, then rp € M for
some r € R. Thus [1/rp] € Ry so [1/p] = [r/1][1/rp] € Rm € (Rar)r and
we are done. Otherwise (p) N M = ® in which case [p/1] generates a prime
ideal in Rp;. That is, [p/1] is a prime element in Ry, hence in T. Thus
[11/1]/[p/1]] = [1/p] € (Ra)r- This shows that Rs C (Ras)r-

(¢) The next claim is that in order to show (Rys)r € Rg, it suffices to prove the
following statement: if € R and [2/1] is a prime in Ry, then z € S. For
a typical element of (Rps)7 can be written as [z/t] where z € Ry, t € T
and t = [x1/1][x2/1] - [zi/1] where z1,- -,z € R and [x1/1]- - [z1/1]
are prime in Rp;. Our statement would then say that xq,--- ,xx € S. Thus
[1/t] € Rg. This verifies the claim.

(d) If £ € R and [x/1] is a prime in Ry, then x € S. Assume the contrary,
that is, there exists an element z € Rg such that [x/1] is prime in Rjs. Let
0 ={(x) C Rlz € R— S and [z/1] is prime in Rps}. By hypothesis ¢ is
nonempty and by the ascending chain condition on principal ideals, there
exists a maximal element in 6. Call it (y).

The next claim is that [y/1]Ry N R = (y). Suppose that [y/1][r/m] € R
for some r € R, m € M. That is, m divides yr. We want to show that m
divides r. If p is a prime (inR) factor of m and p divides y, then y = pz
for some z € R. Clearly z ¢ S for z € S would imply y € S. Furthermore
[2/11Rm = ly/p|Rm = [y/1]Rm so [z/1] is prime in Rp;. Hence (z) is in
0 and by the choice of (y), () = (y). Thus z = ay for some a in R from
which y = pz = pay. Therefore pa = 1 making p a unit and contradicting p a
prime. Thus no prime factor of m divides y, hence m divdes r. This gives the
inclusion [y/1]Ry N R C (y). The reverse inclusion is immediate and the claim
is established.

Finaly we conclude from the claim and Theorem 3-2 that y is a prime in R. This
immediately contradictg y ¢ S and completes and the proof of the theorme. O
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Theorem 4-6. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a principal ideal domain and S the multiplicative set generated
by 1 and all primes in R. If Rg is not a field, let 0 # A C Rg be a maximal
ideal in Rg.

Then A is a prime ideal of Rg so AN R is a prime ideal of R. But AN R = (r)
for some r € R, whence r is prime in R. Thus r € S. But his implies A =
(AN R)Rs = [r/1]Rs = Rg, contradicting the choice of A. Thus Rg is a field
and by Theorem 4-4, R is a unique factorization domain. O

Corollary 4-1. Every Euclidean domain is a unique factorization domain.

Lemma 4-1.
(1) If R is a domain, then R[X] is a domain.

(2) If R satisfies the ascending chain condition for principal ideals, so does R[X].

Proof. (1) Obvious.

(2) Consider (f1(X)) C (f2(X)) C ---. Then degfi(X) > degfz(X) > ---
This must end at some nonnegative integer. Suppose degf;(X) = deg fi,(X)
for all ¢ > k. Then (f%) C (fx+1)(X) implies fr(X) = afr4+1(X) for some
a € R.

Let a; be the leading coefficient of f;(X). Then (ai) C (ags+1) C ---. Thus
there exists N such that (a;) = (a;) for j, ¢ > N. Suppose j >t > n. Then
fj(X) divides fi(X), that is, fi(X) = af;(X). Therefore a; = aa;. But
(at) = (a;j) so a is a unit in R. Therefore (f;(X)) = (f;(X)).

O

Theorem 4-7. If R is a unique factorization domain, then R[X] is a unique
factorization domain.

Proof. Note that for any ideal A or R, (R/A)[X] =~ R[X]/AR[X]. Therefore if
P is a prime ideal in R, then PR[X] is a prime ieal in R[X]. So if p is a prime
element in R, it is also a prime element in R[X]. Let S be the multiplicative
set generated by prime elements in R.

Then (R[X])s) = Rs[X]. But Rg is a field so Rg[X] is a principal ideal domain.
Then by Theorem 4-6, Rg[X] is a unique factorization domain, whence by
Theorem 4-5 and the above lemma, R[X] is a unique factorization domain. [
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Note. We have used here the fact that a unique factorization domain satisfies
the ascending chain condition on principal ideals. This follows immediately by
considering the factorization of the generators of the ideals in a chain.

Corollary 4-2. If R is a unique factorization domain, then R[ Xy, -, X,]is a
unique factorization domain.

Corollary 4-3. If k is a field, k[ X1, - , X,,] is a unique facorization domain.

Note. Not every unique factorization domain is a princpal ideal domain. For
example, k[ X1, -, X,], n > 2.

Definition 4-7. If a = p* ---pi** and b = p* ---pt’gt are prime factorizations

of a and b in the unique factorization domain R where a; > 0,8; > 0, then

d= Hﬁzlp;’lm(a"”ﬂ” is called a greatest common divisor(g.c.d) of a and b. It is

unique up to multiplication by a unit.

Definition 4-8. Let R be a unique factorization domain and f(X) = ag +
a1 X + -+ 4+ a, X" € R[X]. Then the content of f = ¢(f) = g.c.d.(ag, -+ ,an).
If ¢(f) =1, f is called a primitive polynomial.

Theorem 4-8. (Gauss lemma) Let R be a unique factorization domain with
quotient field K. If f(X) € R[X] is irreducible over R[X], then it is irreducible
over K[X].

Proof. Suppose f(X) = G(X)H(X) where G(X), H(X) € K[X]. Set G(X) =
9(X)/d and H(X) = h(X)/e where d and e are the least common denominators
of the coefficients of G and H, respectively, and g(X), h(X) € R[X]. Set p(X) =
9(X)/c(g) so that p(X) is a primitive polynomial in R[X]. Then degf(X) =
c(g)h(X)p(X). But R[X] is a unique factorization domain, primes in R are
primes in R[X], and p(X) is primitive. Therefor de divides ¢(g)h(X) so f(X)
factors over R[X]. O

Exercise.

4-1. Let R be a Euclidean domain, a € R. Prove that a is a unit in R if and
only if d(a) = d(1).

4-2. Prove that every prime ideal in a Euclidean domain is maximal. Show by
example, that this is false for unique factorization domains.

4-3. Define d : Z — Z by d(a + bi) = a® + b2. Prove that this function gives
Z[i] the structure of a Euclidean domain.

4-4. (Factor Theorem) Let k be a field, a € k a root of f(X) = 0 where
f(X) € kE[X]. Prove that X — a divides f(X).
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4-5. Prove that Z[X] is not a principal ideal domain.

4-6. Prove that in a principal ideal domain, every ideal is a unique product of
prime ideals.

4-7. Prove the remark following Theorem 4-7, that is, every unique factorization
domain satisfies the ascending chain condition on principal ideals.

4-8. (Eisenstein’s Criterion) Let f(X) = ap + a1 X + -+ + a, X" € Z[X] and
suppose p is a prime number such that p divides a; for ¢ = 0,1,--- ,n —1, p
does not divide a,,, and p? does not divide ag. Prove that f(X) is irreducible

in Q[X].

4-9. Let p be a prime number. Prove that f(X) =142+ 224+ -+ XP~! =
XP —1/X —1 is irreducible in Q[X]. (Hint: If f(X) factors, so does f(X + 1).
Substitue X + 1 for X and apply Eisenstein’s Criterion.)

4-10. A ring A is called regular if for anu a € A, there exists b € A such that
aba = a. Suppose A. Prove each of the following;:

(a) Every non-zero divisor of A is a unit.
(b) Every prime ideal of A is maximal.

(c) Every principal left ideal of A is generated by an element e satisfying e? = e.
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Chapter 7

DEDEKIND DOMAINS

In view of the introductory remarks to Chapter 6 and the results obtained in
that chapter, we are still left with the question of describing a class of rings
in which every ideal can be written (preferably uniquely) as a product of prine
ideals. Since Noetherian rings yield a partial result in this direction, by replacing
”product” with ”intersection” and ”prime” with ”primary”, we might expect a
subclass of Noetherian rings to be the sought after type. In this chapter we
characterize these rings called Dedekind domains.

Definition 7-1. Let R be an integral domain with quotient field K. An R-
module 0 # B C K is called a fractionary ideal if there exists. d # 0 in R such
that B # d 'R.

Note. 1. If B is a fractionary ideal, then B = d~!' A where A is an ordinary ideal
of R. Namely, A = {z € R|d"'z € B}.

2. Every ordinary ideal 0 # A C R is a fractionary ideal by taking d = 1.
These will now be called integral ideals.

3. The addition, multiplication, intersection, and quotient of fractionary
ideals can be defined as they were for integral ideals in Chapter 2. The rela-
tionship among these operations carry over to fractionary ideals.

4. The ideal R acts as a unit in the multiplication of fractionary ideals.

5. If M is a R-module and B is a fractionary ideal of R, then BM =
{Zfinite b;m;|b; € B,m; € M}. Since B C K = Rj each summand b;m; is an
element of My and the addition should be interpreted as taking place in M.
Thus BM is a certain R-submodule of Mj.

Definition 7-2. A fractionary ideal A is called invertible if there exists a
fractionary ideal A=! such that AA~! = R.

Theorem 7-1. If a fractionary ideal A is invertible, then A=! = (R : A) =
r € K|zA C R. In particular, A~! is unique.

Proof. Suppose AA™! = R. Then A’ C (R: A). On the other hand, (R: A) =
(R:A)R=(R: A)AA CRA'=Aso A =(R:A).

33
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Theorem 7-2. If every integral ideal of R is invertivle, then every fractionary
ideal is invertible.

Proof. Let B be a fractionary ideal. Then B = d~'A, where A is an integral
ideal. If A~! is the inverse of A, then dA~! is the inverse of B so B is invertible.

Theorem 7-3. Let R be an integral domain in which every ideal is a unique
product of prime ideals and P an invertible integral prime ideal of R. Then P
is maximal.

Proof. Let a € R— P and set B = (P,a),C = (P,a?) and D = (P?,a). We want

to show B = R. Since P is invertible, this is equivalent to showing PB = P.
Let B =[[,_, P, and C = H;Zl Q; be the prime factorizations of B and C.

Set R=R/P and I = I /P for any ideal I of R. Then

i=1 j=1

By unique factorization in R, ¢ = 2s and by relabeling, we can assume that
Qo = Qo1 = Pifori =1,...;s. Thus Qo; = Qo;_1 = Pifori = 1,...,ss0B% = C.
Therefore P C C = B2 C D. If x € P,z = y + rafor somey € P2, r € R. Then
ra =z —y € Panda ¢ Ptextrmsor € P. Therefore P C (P2, Pa) = PB. The
inclusion PB C P is obvious and so PB = P.

Theorem 7-4. Let R be a local principal ideal domain with maximal ideal m



Chapter 8

ARTIN RINGS AND
MODULES

In this chapter and the following chapter Awill denote an arbitrary ring with
unit element, not necessarily commutative.

Lemma 8-1. Let A be a left ideal of a ring Asuch that every element of the set
1+ A={1+a|la € A} has a left inverse in A\. Then every element of 1+A is a
unit in A

Proof. O
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Chapter 9

SEMISIMPLE RINGS
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