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Preface

This book is an outgrowth of a one-quarter, first-year graduate course that I

taught at Northeastern University in 1966 and 1967. The lectures were based

in turn on an algebra course given by Dock Sang Rim at Brandeis University in

1961–62. The book is a self-contained, general, and modern treatment of some

classical theorems of commuatative and noncommuatative ring theory. Princi-

pally these theorems are the primary decomposition of ideals in commuatative

Noetherian rings and the Artin-Wedderburn structure theory for semisimple

rings. By “general” and “modern” I mean that, as much as possible, theorems

are proved for modules over the rings being considered and then specialized to

obtain classical statements. Furthermore the techniques employed are among

those which have proved fruitful in modern ring theory, for example, localiza-

tion. In some sense, localization is the unifying idea in the commuatative ring

theory covered here.

The book begins with material usually treated in an undergraduate mod-

ern algebra course, namely, various kinds of ideals and operations on ideals,

isomorphism theorems and the Chinese Remainder Theorem (Chapter 2), and

Euclidean, principal ideal, and unique factorization domains (Chapter 4). How-

ever, proofs of standard theorems on unique factorization domains are not those

generally given in such courses since they rely heavily on the notion of rings of

quotients developed in Chapter 3. Chapter 5, an introduction to homological

notions, is devoted to modules and exact sequences including the splitting of

exact sequences and characterization of free and projective modules. Noethe-

rian rings and modules are treated in Chapter 6. Since the motivation for this

study is the search for a class of rings in which every ideal is a unique product

of prime ideals, we are naturally led to Dedekind domain in Chapter 7. Chapter
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8 and 9 are devoted to noncommuatative Artin rings, including the connection

between the two chain condition by way of the idean of Jordan-Hölder series,

and the structure of semisimple rings. Thus Chapters 7 and 9 can be viewed

as deeper investigations of special classes of those rings studied in Chapter 6

and 8, respectively. Each chapter concludes with a set of exercises of varying

degrees of difficulty.

Since the book has been expanded from the original one-quarter course of

lecture, it now appears to be the appropriate amount of material for a one-

semester course. Although primarily designed for begining graduate students,

it should be accessible to undergraduates who have taken the modern algebra

and linear algebra courses usually offered to sophomores or juniors. For the

graduate student it should provide a convenient place to learn the ring theory

often expected on qualifying examinations. For the undergraduate, particularly

one who is interested in algebra, the book should offer some insight into one

direction his future studies might take him.

I would like to thank Professor Rim and the various authors from whom I

have borrowed ideas. Their works are included in the bibliography. I would

further like to acknowledge the helpful suggestions of Mark Bridger, Burton

Fein, Marvin Freedman, and Kenneth Ireland. Finally, I am grateful to Delphine

Radcliffe and Cindy Feldman for typing the manuscript.

JACOB BARSHAY

Cambridge, Massachusetts

July 1969



Chapter 1

PRELIMINARY

TERMINOLOGY AND

EXAMPLES

We begin with a brief discussion of just two notions from set theory. The first

is that of an equivalence relation on a set and its associated decomposition ;

the second is Zorn’s lemma. The notation used here for set membership, set

inclusion, union and intersection of sets, and so forth, is standard.

Definition 1-1. A binary relation ∼ on a set A is called an equivalence relation

if for any element a, b, c ∈ A

(1) a ∼ a (∼ is reflexive) ;

(2) if a ∼ b, then b ∼ a (∼ is symmetric) ;

(3) if a ∼ b and b ∼ c, then a ∼ c (∼ is transitive).

Definition 1-2. If A is a set, ∼ is an equivalence relation on A, and a ∈ A,

then the equivalence class of a is equal to {x ∈ A|a ∼ x} and is denoted by ā.

In particular, observe that the equivalence class of an element of A is a subset

of A. To say that two equivalence class are distinct is to say that they are not

equal as sets.
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Theorem 1-1. The distinct equivalence classes of an equivalence relation ∼ on

a set A provide a decomposition of A as a union of mutually disjoint subsets.

Proof. Since a ∼ a, we have a ∈ ā for any a ∈ A. Thus A ⊆
∪

a∈A ā. On

the other hand, each ā is a subset of A so
∪

a∈A ā ⊆ A whence A =
∪

a∈A ā.

To complete the proof it suffices to show that distinct equivalence classes are

mutually disjoint, that is, if a, b ∈ A then either ā = b̄ or ā ∩ b̄ = ∅. Suppose

then that ā ∩ b̄ 6= ∅ and let x ∈ ā ∩ b̄. Thus a ∼ x and b ∼ x. But by Definition

1-1(??), x ∼ b and by (??) a ∼ b. Now if y ∈ b̄, then b ∼ y so again by (??)

a ∼ y whence y ∈ ā. We conclude that b̄ ⊆ ā. By a similar argument, we could

show ā ⊆ b̄. Therefore ā = b̄.

Definition 1-3. A binary relation ≤ on a set A is called a partial ordering if

for any a, b, c ∈ A

(1) a ≤ a ;

(2) if a ≤ b and a ≤ c, then a ≤ c ;

(3) if a ≤ b and b ≤ a, then a = b.

A together with the partial ordering ≤ is called a partially ordered set.

Definition 1-4. A subset B of a partially ordered set A is said to be totally

ordered if for any a, b ∈ B either a ≤ b or b ≤ a. A totally ordered subset will

also be referred to as a chain.

Definition 1-5. An element a in a partially ordered set A is called an upper

bound for a subset B of A if for any b ∈ B, b ≤ a.

Definition 1-6. A partially ordered set A is called inductive if any chain in A

has an upper bound in A.

Definition 1-7. An element m in a partially ordered set A is called a maximal

element if for any a ∈ A, m ≤ a implies a = m.

Zorn’s Lemma. Every nonempty, inductive set has a maximal element.

Definition 1-8. Let f : A→ B be a mapping (map, function) from a set A to

a set B. Then f is said to be
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(1) surjective (onto) if for any element b ∈ B there exists an element a ∈ A

such that f(a) = b.

(2) injective (one-to-one) if for any elements a1, a2 ∈ A, f(a1) = f(a2) implies

a1 = a2. [Equivalently, a1 6= a2 implies f(a1) 6= f(a2).]

(3) bijective (a one-to-one correspondence) if it is both surjective and injective.

Definition 1-9. A group is a nonmempty set G on which is defined a binary

operation ∗ satisfying the following conditions :

(1) If a, b ∈ G, then a ∗ b ∈ G. (Closure Law) ;

(2) If a, b ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c). (Associative Law) ;

(3) There exists an element e ∈ G such that for any a ∈ G, e ∗ a = a ∗ e = a. e

is called the identity element of G.

(4) For any a ∈ G, there exists an element ā ∈ G such that a ∗ ā = ā ∗ a = e. ā

is called the inverse of a.

The identity element of a group is unique as is the inverse of a given element.

Definition 1-10. A group is said to be Abelian if it satisfies the additional

condition:

(5) For any a, b ∈ G, a ∗ b = b ∗ a.

Definition 1-11. If (G, ∗) and (H, ◦) are groups and f : G → H, then f is

called a group homomorphism if for any a, b ∈ G, f(a ∗ b) = f(a) ◦ f(b).

Definition 1-12. A ring is a set Λ on which are defined two binary operations

+ and · satisfying the following conditions :

(1) Λ is an Abelian group under + ;

(2) if a, b ∈ Λ, then a · b ∈ Λ (Closure Law) ;

(3) if a, b, c ∈ Λ, then (a · b) · c = a · (b · c) (Associative Law) ;
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(4) if a, b, c ∈ Λ, then a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.
(Distribution Laws).

There are other properties that a ring may or may not possess, among which

are the following :

(5) there exists an element 1 ∈ Λ such that for any element a ∈ Λ, 1·a = a·1 = a.

1 is called the unit element of Λ ;

(6) for any element 0 6= a ∈ Λ, there exists an element a−1 ∈ Λ such that

a · a−1 = a−1 · a = 1.

(7) for any a, b ∈ Λ, a · b = b · a.

In a ring, the identity element for the operation + is denoted by 0 and the

inverse of a is denoted by −a. The multiplication symbol · is generally omitted.

Definition 1-13.

(a) (??) is called a commutative ring ;

(b) (??) and (??) is called a ring with unit ;

(c) (??) and (??) is called a commutative ring with unit ;

(d) (??), (??) and (??) is called a field.

Definition 1-14. If (Λ,+, ·) and (Λ′, ∗, ◦) are rings and f : Λ → Λ′, then f

is called a ring homomorphism if for any a, b ∈ Λ, f(a + b) = f(a) ∗ f(b) and

f(a · b) = f(a) ◦ f(b).

Definition 1-15. If Λ and Λ′ have units 1 and 1′ and f : Λ → Λ′, then f is

said to be unitary if f(1) = 1′.

Definition 1-16. A group or ring homomorphism is called an

(1) epimorphism if it is surjective ;

(2) monomorphism if it is injective ;

(3) isomorphism if it is injective.
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Examples. 1. Z = {0,±1,±2, · · · }, the set of integers with + and · having the

usual meaning is a commutative ring with unit element.

2. Q, the set of rational numbers, R, the set of real numbers, and C, the set

of complex numbers, under the usual rules of addition and multiplication are

all examples of fields.

3. Let k be any field. Then k[X], the set of polynomials in one variable

with coefficient in k, under the usual rules for addition and multiplication of

polynomials forms a commutative ring with unit. Similarly for k[X1, · · · , Xn],

the set of polynomials in n variables with coefficients in k.

4. Zm, the set of integers modulo m where + and · mean addition and multi-

plication modulo m, forms a commutative ring with unit element. Furthermore

Zm is a field if and only if m is a prime number.

5. Mn(k), the set of all n × n matrices with entries in a field k, under the

usual rules for addition and multiplication of matrices, forms a ring with unit

element, which is not commutative if n ≥ 2.

6. 2Z = {0,±2,±4, · · · }, the set of even integers, forms a commutative ring

but has no unit element.

7. ∆, the real quaternions.

∆ = {x = x0 + x1i+ x2j + x3k | x0, x1, x2, x3 ∈ R}

If x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k are in ∆, then

x+y = (x0+y0)+(x1+y1)i+(x2+y2)j+(x3+y3)k. The product xy is found

by using the distributive laws and the rules ii = jj = kk = −1, ij = −ji = k,

jk = −kj = i, and ki = −ik = j. Then ∆ forms a division ring under these

operations. In particular, the multiplicative inverse of x = x0 + x1i+ x2j + x3k

is

x−1 =
x0
|x|

− x1
|x|
i− x2

|x|
j − x3

|x|
k

where |x| = x0
2 + x1

2 + x2
2 + x3

2.

Exercise.

1-1. Show that each of the following is an equivalence relation.

(a) In the set of integers, m ∼ n if and only if m− n is even.
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(b) In the set of polynomials with real coefficients, f(X) ∼ g(X) if and only if

α, a fixed real number, is a root of f(X)− g(X).

1-2. Prove that for any two sets A and B, either there exists an injection from

A to B or an injection from B to A. (Hint : Consider the set K of triples

(X,Y, f) where X ⊆ A, Y ⊆ B, f : X → Y is a bijection. Partially order K by

X1, Y1, f1) ≤ (X2, Y2, f2) if and only if X1 ⊆ X2, Y1 ⊆ Y2, f2 restricted to X1

equals f1. Apply Zorn’s lemma and show that a maximal element of K must

either have
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1-8. Prove that the map σ : Z → Zm which sends each integer to its remainder

upond division by m is a ring epimorphism.

1-9. Suppose that m and n are relatively prime integers. Prove that only ring

homomorphism from Zm to Zn is the zero map.

1-10. Suppose that f : Q → Q is a ring homomorphism, not identically zero.

Prove that f is the identity map.
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Chapter 2

IDEALS AND RESIDUE

RINGS

For the remainder of the book, ”ring” will be understood to mean ”ring with

unit element.” All ring homomorphisms will be assumed to be unitary.

De�nition 2-1. A left ideal A in a ring Λ is a nonempty subset of Λ such that

(1) a, b ∈ A, then a-b ∈ A;

(2) if a ∈ A and λ ∈ Λ, then λ a ∈ A.

A right ideal A in Λ is defined by replacing condition (2) with

(3) if a ∈ and λ ∈ Λ, then aλ ∈ A. If A satisfies (1), (2), and (3), it is called a

two-sided ideal or simply an ideal. Note that in a commutative ring (2) is

equivalendt to (3) and so all ideals are two-sided.

Examples. 1. In a ring R, 0 and R are ideals. An ideal A 6= R is called proper.

2. In the ring of integers Z, all multiples of a given integer n form an ideal.

3. In the ring of polynomials in one variable with real coefficients R[X], all

polynimials in one variable with real coefficients R[X], all polynomials that have

a given real number α as a root form an ideal.

4. In a field k, the only ideals are 0 and k. For if A 6= 0 is an ideal of k and

a ∈ A, a 6= 0, then a−1· a = 1 ∈ A whence if c ∈ k, c · 1 = c ∈ A. That is, A

= k.
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(1) Addition of ideals. If A and B Re left ideals in Λ then A+B = {a+b | a
∈ A, b ∈ B } is again a left ideal of Λ called the sum of A and B.

(2) Multiplication of ideals. If A and B are left ideals in Λ, then AB =

{
∑

finite aibi|ai ∈ A, bi ∈ B} is again a left ideal in Λ called the intersection

of the Ai.

(3) Intersection of ideals. Ai (i ∈, finite or infinite) is a collection of left ideals

in Λ, then ∩i∈IAi is again a left ideal in Λ called the intersection of the Ai.

(4) Quotient of ideals. If A and B are left ideals in Λ, then (A:B) = {λ ∈ Λ |
λb ∈ A for all b ∈ B} is again a left ideal in Λ called the quotient of A by

B.

At the end of the chapter, there are exercises exhibiting certain relationships

among these operations.

De�nition 2-2. A left ideal A in a ring Λ is said to be finitely generated if

there exist elements a1, a2, · · · , an ∈ A such that every element of A can be

written as
∑n

i=1 λiai for some λi ∈ Λ. We then write A = (a1, a2, · · · , an) and
call a1, a2, · · · , an a set of generators (basis, base) for A. On the other hand,

given any subset B of Λ, the set of elements that can be written as
∑

finite λibi

where λi ∈ Λ, bi ∈ B forms an ideal in Λ, denoted by (B). It is in fact the

smallest ideal of Λ that contains the set B.

De�nition 2-3. In a commutative ring R and ideal A = (a) = Ra generated

by a single element is called a principal ideal. A commutative ring R in which

every ideal is principal is called a principal ideal ring.

Examples. Z and k[X] where k is a field are each principal ideal rings.

Theorem 2-1. Let P be a proper ideal of a commutative ring R. the following

conditions are equivalent :

1. If a, b ∈ R and ab ∈ P, then a ∈ P or b ∈ P.

2. If A and B are ideals of R and AB ⊆ P, then A ⊆ P or B ⊆ P.
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Proof. (1) implies (2). Suppose AB ⊆ P but A * P and B * P. Then there

are elements a ∈ A, a /∈ P and b ∈ B, B /∈ P. By(1), ab /∈ P. However, ab ∈
AB ⊆ P. Contradiction. (2) implies (1). If ab ∈ P, then (a)(b) ⊆ P. Thus

by (2), either (a) ⊆ P or (b) ⊆ P. In particular either a ∈ P or b ∈ P.

De�nition 2-4. An ideal P satisfying either (hence both) of the above condi-

tions is called a prime ideal.

Corollary 2-1. Let P be a prime ideal of R. If a1a2 · · · an ∈ P then some ai ∈
P. If A1A2 · · ·An ⊆ P, then some Ai ⊆ P.

Proof. Induction on n.

Theorem 2-2. Let m be a proper left ideal of a ring Λ. The following conditions

are equivalent :

1. If A is a left ideal such that m ⊆ A ⊆ Λ, then A = m or A = Λ.

2. If a ∈, a /∈ m, then (m,a) = Λ.

Proof. (1) implies (2). Since a /∈ m, A=(m,a) ⊃ m. Thus A= Λ. (2) implies

(1). Suppose m ⊆ A ⊆ Λ. If A 6= m then there exists a ∈, a /∈ m . Thus (m,a)

= Λ. But (m,a) ⊆ A so A = Λ.

De�nition 2-5. A left ideal m satisfying either (hence both) of the above

conditions is called a maximal left ideal.

Theorem 2-3. In a commutative ring R, every maximal ideal is prime.

Proof. Suppose m is a maximal ideal and ab ∈ m. If a /∈ m, then (m,a) = R.

In particular 1 = ra + m for some r ∈R, m ∈ m. Then b = rab + mb ∈ m.

De�nition 2-6. If f : Λ → Γ is a ring homomorphism, then the image of f,

denoted im f, is equal to {γ ∈ Γ| γ = f(λ) for some λ ∈ Λ} ; the kernel of f,

denoted ker f, is equal to { λ ∈ Λ — f(λ) = 0}.

Theorem 2-4. Let f : Λ → Λ with kernel K. Then K is and ideal of Λ.
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Proof. Suppose a, b ∈ K. Then f(a-b) = f(a) - f(b) = 0 so a-b ∈ K. Also f(λa)

= f(λ)f(a) = f(λ)·0 = 0 so λa ∈ K for any λ ∈ Λ. Similarly f(aλ) = 0 so a·λ ∈
K. Thus K is a two-sided ideal of Λ.

Conversely, and (two-sided) ideal A of Λ is the kernel of homomorphism with

domain Λ. To see this we define a relation on Λ by a ≡ b (mod A), read ”a

congruent to b modulo A” if and only if a - b ∈ A.

Theorem 2-5. ≡ mod A is an equivalence relation on Λ.

Proof. The proof is immediate from the definitions of an equivalence relation

and an ideal. It is thus left as an exercise.

Let Λ/A be the set of distinct equivalence classes.

If X, Y ∈ Λ/A, say X = a, Y = b, then we define X + Y = Z where Z = a+ b

and XY = W where W = ab.

Theorem 2-6. Under the operations defined above, Λ/A is a ring.

Proof. It must be checked that the operations in Λ/A are well defined. In

particular, if a = a′ and b = b′, we must show that a+ b = a′ + b′ and ab = a′b′.

But a−a′ = xandb− b′ = y for some x, y ∈ A. Thus (a+ b)− (a′+ b′) = x+y ∈
A so a+ b = a′ + b′. Also ab− a′b+ a′b− a′b′ = ab− a′b′ = xb+ a′y ∈ A so ab

= a′b′. Hence the operations are well-defined.

Checking that the ring axioms are satisfied is left as an exercise.

There is a natural epimorphism σ : Λ → Λ/A given by σ(λ) = λ. Λ is called

the residue ring of Λ with respect to A.

Theorem 2-7. (First Isomorphism Theorem) Suppose f : Λ → Γ is a ring

homomorphism. Then im f = Λ/ker f.

Proof. Consider the following diagram : We define a map τ : Λ/ker f → im

f and show that it is an isomorphism. If X = a ∈ Λ/ker f, define τ(X) =

f(a). To see that this is well-defined, suppose a = a′. Then a − a′ ∈ ker f so

f(a− a′) = f(a)− f(a′) = 0orf(a) = f(a′). Hence τ(a) = τ(a′). Furthermore,

if Y = b, τ(X+Y) = τ(a+b) = τ(a+ b) = f(a+b) = f(a) + f(b) = τ(a) + τ(b)

= τ(X) + τ(Y) and τ(XY) = τ(a b) = τ(ab) = f(ab) = f(a)·f(b) = τ(a) τ(b) =
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τ(X) τ(Y) so τ is a homomorphism. If γ ∈ im f, then γ = f(a) = τ(a) for some

a ∈ Λ so τ is surjective.

Finally, if τ(a) = f(a) = 0, then a ∈ ker f so a = 0. Hence τ is injective and so

an isomorphism.

Theorem 2-8. (Second Isomorphism Theorem) If f : Λ→ Λ′ is an epimorphism

with kernel K, then there is a bijection between the set of ideals A ⊇ K of Λ

and the set of ideals of Λ′. Furthermore, if A and A′ are corresponding ideals

under this bijection, then Λ/A ≈ Λ′/A′ ≈ (Λ/K) / (A/K).

Proof. Let ζ equal the set of ideals of Λ which contain K and η equal the set of

ideals of Λ′. Define g : ζ → η by g(A) = {f(a) — a ∈ A}, which is clearly an ideal

of Λ′, hence in η. Define h : η → ζ by h(A′) = {a ∈ R — f(a) ∈ A′ } which is an

ideal of Λ containing K, hence in ζ. It is easy to check that g◦ h = Iη and h ◦ g

= Iζ , the respective identity maps on the sets η and ζ. Hence each is a bijection.

To verify the second assertion of the theorem, let σ : Λ′ → Λ′/A′ be the

natural epimorphism. Then τ - σ ◦ f : Λ → Λ′/A′ is an epimorphism and

λ ∈ ker τ if and only if τ(λ) = 0 if and only if σ(f(λ)) = 0 if and only if

f(λ)∈ A′ if and only if λ ∈ A. Hence ker τ = A and by the previous theorem

Λ/A ≈ Λ′/A′.

De�nition 2-7. An element a in a commutative ring R is called a zero divisor

if there exists b 6= 0 in R such that ab=0. If a 6= 0, it is called a nontrivial zero

divisor.

De�nition 2-8. A commutative ring is called an integral domain(or simply a

domain) if it has no nontrivial zero divisors.

Examples. Z, k, and k[X1, . . . , Xn] where k is any field are all integral domains.

On the other hand Mn(k), n ≥ 2, Zm where m is a nonprime are not integral

domains.
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Chapter 9

SEMISIMPLE RINGS
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