숙제2
[wiki:선형대수숙제: 위로] 두번째 숙제입니다. B. Duality, dual basis. %\resume{enumerate} \begin{enumerate}%\setcounter{enumi}{7} \item Suppose that for each $x$ in $\mathcal{P}$ the function $y$ is defined by \begin{enumerate} \item $y(x)=\int_{-1}^2 x(t)\,dt$ \item $y(x)=\int_0^2 (x(t))^2\,dt$ \item $y(x)=\int_0^1 t^2x(t)\,dt$ \item $y(x)=\int_0^1 x(t^2)\,dt$ \item $y(x)=\dfrac{dx}{dt}$ \item $y(x)=\dfrac{d^2x}{dt^2}\bigg|_{t=1}$ \end{enumerate} In which of these cases is \(y\) a linear function? \item If \(y\) … Read more